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Abstract: Increasing the number of satellites in a global navigation satellite system (GNSS) improves 
the positioning accuracy and increases availability. However, it reduces the positioning accuracy 
improvement rate and increases the calculation loads, which can cause battery usage problems in 
mobile devices using a GNSS. An appropriate satellite selection method is required. One current 
method entails the use of ideal satellite placement with respect to the minimum geometric dilution 
of precision (GDOP). In this study, the described ideal satellite placement with the minimum GDOP 
were divided in terms of the horizontal dilution of precision (HDOP) and vertical dilution of preci-
sion (VDOP). HDOP and VDOP were mathematically derived and analyzed. The derived formula 
was verified using simulations. The analysis was performed with actual dual GNSS satellite data. 
The satellites adjacent to the ideal placement were selected and the DOP was calculated. Simply 
selecting satellites closest to the ideal placement afforded large values for HDOP and VDOP. This 
issue was addressed using a satellite changing algorithm considering the dual GNSS, resulting in 
reduced values of the HDOP and VDOP. 

Keywords: global navigation satellite system (GNSS); dual GNSS; horizontal dilution of precision 
(HDOP); vertical dilution of precision (VDOP) 
 

1. Introduction 
As global navigation satellite systems (GNSSs) have become more popular and im-

portant, an increasing number of countries are developing and operating their own 
GNSSs. Typical examples include the United States’ global positioning system (GPS), Rus-
sia’s global navigation satellite system (GLONASS), the European Union’s Galileo, and 
China’s BeiDou. In addition to GNSSs, whose service areas encompass the entire globe, 
countries are also developing and operating regional navigation satellite systems 
(RNSSs), in which only certain regions are the serviced areas. Examples of RNSSs include 
India’s navigation with Indian constellation (NavIC) and Japan’s Quasi-Zenith satellite 
system (QZSS). Furthermore, South Korea is also promoting projects related to an RNSS, 
known as the Korea positioning system (KPS) [1]. In this manner, the number of naviga-
tion satellites has been increasing rapidly owing to the increase in navigation satellite sys-
tems [2]. As of January 2022, the number of GNSS satellites in operation were 31 in GPS, 
21 in GLONASS, 22 in Galileo, and 44 in BeiDou [3–6]. Over time, the number of naviga-
tion satellites is expected to increase further. 

As the number of navigation satellites increases, the number of visible satellites that 
can be used for positioning estimations also increases. Intuitively, it can be expected that 
the positioning accuracy will improve as the number of measurement values used in the 
positioning estimations are augmented. In addition, availability increases as positioning 
estimations become possible in environments with poor satellite visibility, such as urban 
and mountainous regions [7]. However, there are also drawbacks to this increase in the 
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number of visible satellites. As the number of satellites used in positioning estimations 
increases, the computational load also increases. This, in turn, causes an increase in elec-
tricity consumption. These increments in electricity consumption can constitute a severe 
problem for mobile devices such as smartphones, which currently use GNSSs on a large 
scale [8]. In addition, the extent of accuracy improvements decreases as the number of 
visible satellites increases. This phenomenon can be confirmed based on the fact that the 
minimum geometric dilution of precision (GDOP) is expressed as a fractional function of 
the number of satellites [8]. Consequently, studies on satellite selection have been con-
ducted. 

For instance, studies have focused on determining the satellite with the minimum 
GDOP among the subsets of all satellites, by using iterative methods in a GPS environ-
ment [9]. In the case of the GDOP, which is the main index used for satellite selection, the 
calculation load increases with the number of visible satellites increases. Various studies 
have also been conducted to compensate for this problem [10,11]. These studies were ef-
fective in reducing the GDOP calculations when selecting satellites. However, the rapidly 
increasing number of navigation satellites is causing an exponential increase in the num-
ber of satellite subsets that must be calculated. This may cause difficulties when employ-
ing the methods adopted in previous studies. The GDOP is related to the volume of the 
polyhedron formed by a user and the satellites. Accordingly, studies have focused on de-
veloping suitable techniques to select satellites based on this concept [12–14]. However, 
in these studies, there were difficulties pertaining to the composition of the polyhedron 
and the volume calculations when the number of selected satellites increased. Research 
has also been performed on successively reducing the number of satellites by using the 
position dilution of precision (PDOP) of all of the satellites and the amount of change in 
the PDOP when one visible satellite is removed [15]. As the satellites are removed one at 
a time, a minimum value of the PDOP can be maintained during this process. However, 
a global minimum cannot be guaranteed since the results are obtained sequentially. Stud-
ies have also been conducted on empirically determining the placement with the mini-
mum GDOP and selecting satellites that are close to these positions [8,16]. 

This study focused on the following content. The ideal satellite placement for mini-
mizing the GDOP obtained in a previous study [16] is described. This method places sat-
ellites at the zenith and horizon, where the horizon satellites are spaced evenly. This place-
ment approach is termed as the Zenith + Horizon (ZH) method. This study employed the 
satellite placement conditions under the ZH method without modifications, in order to 
derive the dilution of precision (DOP) mathematically. This mathematic derivation was 
performed to analytically interpret the information that was obtained empirically. 

Each GNSS provides services on its own reference time [17]. When estimating the 
position in a multiple GNSSs, it is necessary to handle the individual GNSS’ reference 
time and receiver hardware delay. There are two methods for resolving this problem [18]. 
The first method involves calculating the position via the unknown values of one re-
ceiver’s clock error by correcting the reference time between the GNSSs, with the infor-
mation obtained from the broadcast ephemeris. This method cannot compensate for the 
receiver hardware delay. The second method entails estimating the position by adding 
the receiver’s clock error as an unknown value depending on the number of receiving 
GNSSs. Unlike the first method, the second method can compensate for the receiver hard-
ware delay. Although the first method uses multiple GNSSs, the DOP calculation is the 
same as that of a single GNSS. Since this study is conducted in a single GNSS, the first 
method is also studied. Which one of these two methods has better position accuracy de-
pends on the environment; therefore, neither method can be considered superior [18]. For 
this reason, this study was performed using the second method. 

Owing to the mathematical complexity associated with multiple GNSSs, a dual 
GNSSs was considered. It is expected that the results of studying a dual GNSS can be 
extended to multiple GNSSs. Furthermore, most existing studies were conducted consid-
ering the GDOP. This study employed the horizontal dilution of precision (HDOP) and 
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the vertical dilution of precision (VDOP), instead of using the GDOP. With regard to a 
GNSS, the importance of the horizontal and vertical precision varies depending on the 
field of application. For instance, in the case of cars and boats, the horizontal accuracy is 
more important, whereas the vertical accuracy is more important for aircraft. The GDOP 
includes the 3D positions and clock errors. Hence, it expresses the average accuracy of the 
estimate. Therefore, depending on the field of use, it can be more effective to use the 
HDOP and VDOP as references, rather than the GDOP. 

The contribution of this study can be summarized as follows: 
1. Mathematical analysis of the simulated minimum DOP placement in a Dual GNSS; 
2. Separation of GDOP into HDOP and VDOP to propose utilization according to ap-

plication fields; 
3. Using actual satellite data to verify formulas and propose possibilities using the sat-

ellite selection method. 
The remainder of this study is organized as follows. Section 2 provides a brief de-

scription of the previously proposed ZH method [16]. In Sections 3 and 4, the HDOP and 
VDOP are mathematically derived from a single GNSS and a dual GNSS’ ZH satellite 
placement. In Section 5, a ZH placement simulation considering a dual GNSS is performed 
based on the derived formulas, and the satellite placement is verified to ensure low values 
for the HDOP and VDOP. In Section 6, actual satellite data are used to confirm the effect 
of the proposed placement. Lastly, in Section 7, the content of this study is summarized, 
and the conclusions are presented. 

2. Zenith + Horizon Method 
The ZH method places a suitable number of satellites on the zenith and horizon for 

the minimum GDOP and selects the actual satellites located near these positions. Here, 
the placement conditions of the ZH method are first described. For the satellites that are 
placed at the zenith, duplication is possible. At the horizon, the satellites are placed in 
such a manner that the azimuth included angles between the satellites are identical. This 
placement is termed as the ZH placement. 

Figure 1 shows an example of the ZH placement. The azimuth included angle be-
tween two satellites placed on the horizon can be expressed as in Equation (1): 

360 /c unφ = ° . (1) 

 
Figure 1. Example of satellite placement under the Zenith + Horizon (ZH) method. 

Here, 
cφ : Azimuth Included Angle 

un : Number of Uniformly Placed Satellites 
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To ensures the minimum GDOP, the satellites placed on the horizon must all main-
tain elevation angles of 0°. In the subsequent discussions, we only consider that the eleva-
tion angles of the satellites placed on the horizon are identical, without the need for these 
angles to be zero. Thus, these satellites can be depicted as uniform satellites. 

In a previous study [16], the minimum GDOP was obtained when the ratio of the 
numbers of zenith satellites to the number of uniform satellites was 1:2. Figure 1 depicts 
the placement with the minimum GDOP, for a total of six satellites (two satellites placed 
at the zenith and four satellites placed uniformly). The actual satellite selection criteria are 
as follows: For the zenith satellites, the satellites with the highest elevation angles are se-
lected from among the visible satellites. For the uniform satellites, the ZH method entails 
the calculation of as many regular polyhedron vertex vectors as necessary, based on the 
satellite with the lowest elevation angle. These vectors and their dot product are then used 
to select the closest satellites. Lastly, the results are checked for duplicated satellites. If 
there are duplicate satellites, the dot product is used to change the satellite selection. 

When actual satellites are selected, the ZH placement cannot be maintained. How-
ever, even when the satellites are placed near the ZH placement, there are no problems 
with selecting the nearby positions, provided the DOP does not increase by a large 
amount. Figure 2 shows the GDOP when only one of the satellites in the placement in 
Figure 1 is moved with respect to the overall elevation angle and the azimuth. In Figure 
2a, Satellite 1, which is placed at the zenith, is moved, whereas in Figure 2b, the uniform 
Satellite 6 is moved. In both these cases, it can be observed that the increase in the GDOP 
becomes larger as the satellite moves farther away from the position at which it was pre-
viously located. Although it varies according to the fixed satellites, selecting satellites that 
are close to the ZH placement allows for a lower DOP, in comparison to those at the other 
positions. 

  
(a) (b) 

Figure 2. GDOP simulation according to the change in the position of one satellite in the ZH place-
ment (six selected satellites): (a) satellite #1 is moved; (b) satellite #6 is moved. 

This study involved three changes to method adopted in a previous research [16]: 
1. In this work, HDOP and VDOP were used instead of the GDOP used in the previous 

study; 
2. Instead of four unknown values (three position coordinates + one single GNSS re-

ceiver clock), this study employed five unknown values (three position coordinates 
+ two dual GNSS receiver clocks); 

3. The previous results derived via simulations were analyzed via mathematical deri-
vations. 
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3. Single GNSS Formula Derivation 
The HDOP and VDOP were derived mathematically considering a state where the 

ZH placement conditions were maintained in a single GNSS. The derived results were 
then compared with the placement obtained using the GDOP [16], and the differences 
were subsequently analyzed. 

Before deriving the formulas, the order of the satellite numbers was expressed using 
the following formula: 
1. Zenith satellite  uniform satellite; 
2. The uniform satellites were ordered from the lowest azimuth angle (from the north) 

to the highest. 
The formulae used for the calculation of the DOP are expressed in Equations (2) and 

(3) [19]. 

( ) 1T

EE EN EU EC

NN NU NC

UU UC

CC

Q H H

q q q q
q q q

q q
q

−
=

 
 
 =
 
 
  . 

(2) 

Here, 
H : Observation matrix in ENU coordination 
Q : Local cofactor matrix 
q : Elements of local cofactor matrix 
In Equation (2), Q  is a symmetric matrix. In a symmetric matrix, only a triangle of 

the matrix elements is shown, whereas the symmetric terms are omitted. 

EE NN

UU

HDOP q q

VDOP q

= +

=  
(3) 

In Equation (3), the elements of matrix Q  are used to determine the HDOP and 
VDOP. For the ZH placement conditions, the HDOP and VDOP are calculated using the 
following process: 

1 1 1 1 1

1 1

cos sin cos cos sin 1

cos sin cos cos sin 1

0 0 1 1

0 0 1 1
cos sin cos cos sin 1

cos sin cos cos sin 1

u u

u u

n n n n n

n n

H
θ φ θ φ θ

θ φ θ φ θ

θ φ θ φ θ

θ φ θ φ θ

 − − −
 =  
 − − − 

− 
 
 
 −

=  − − − 
 
 
− − − 

   

   

   

. 

(4) 

Here, 
θ : Elevation angle (°) 
φ : Azimuth angle (°) 
n : Satellite number 
Equation (4) presents the observation matrix used in the least squares estimation 

method, and it consists of the unit vectors between the user and the satellites, as well as 
terms related to the receiver’s clock error. Since the zenith satellite has an elevation angle 
of 90°, columns 1 and 2 are 0, whereas column 3 is −1. Since the uniform satellites all have 
the same elevation angles, they are expressed uniformly. 
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 
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(5) 

Here, 
zn : Number of zenith satellites 

In Equation (5), if the condition of the uniform satellites is maintained and the num-
ber of satellites is 3 or more, the matrix elements (1,2), (1,3), (1,4), (2,3), and (2,4) are 0. To 
calculate the Q  matrix, the inverse matrix of Equation (5) is used. Equation (5) can be 
expressed as a block matrix, as shown in Equation (6). 

2 2 2 2

2 2

0EN
T

UC

B
H H

B
× ×

×

 
=  
  . 

(6) 

Here, 
B : Block matrix 
0 : Zero matrix 
x : Coordinate of block matrix 
x : Matrix size 
In Equation (6), the HDOP can be calculated via the 

2 2
ENB ×

 inverse matrix, and the 
VDOP can be calculated via the 

2 2
UCB ×

 inverse matrix. The calculated HDOP and VDOP are 
shown in Equations (7) and (8): 

1 2
cosu

HDOP
n θ

=
, 

(7) 

1
1 sinz u

nVDOP
n n θ

=
−

. (8) 

Furthermore, Equations (7) and (8) can be divided into two parts. The first part is 
related to the number of satellites that are placed at the zenith and placed uniformly. The 
second part is related to the elevation angles of the uniform satellites. Looking at the first 
part, the HDOP decreases as the number of uniform satellites increases. If the number of 
selected satellites remains fixed, the VDOP decreases as the numbers of zenith and uni-
form satellites become nearly equal. In the second part, the DOP decreases as the elevation 
angles of the uniform satellites decrease. This indicates that the DOP is low if uniform 
satellites exist on the horizon, as reported previously [16]. Low-elevation satellites in-
crease pseudorange errors [20]. This can reduce the positioning accuracy. To improve the 
positioning accuracy, additional studies on the elevation angle of the uniform satellites 
are required. In this study, only DOP is analyzed, so this content is not considered. 

Table 1 presents the GDOP, HDOP, and VDOP results according to the numbers of 
zenith and uniform satellites, considering four to eight selected satellites. As mentioned 
earlier, three or more satellites are placed uniformly. In addition, when a zenith satellite 
is not placed, the calculation becomes impossible; therefore, a minimum of one satellite 
must be placed at the zenith. As can be observed, the GDOP decreases as the ratio of the 
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number of zenith satellites to the number of uniform satellites approaches 1:2, as in pre-
vious studies [8,16]. Moreover, the HDOP decreases as the number of uniform satellites 
increases, as indicated by Equation (7). The VDOP also decreases as the numbers of zenith 
and uniform satellites become equal, as indicated by Equation (8). 

Table 1. Dilution of precision (DOP) simulation of single GNSS ZH satellite placement. 

n  :z un n  GDOP HDOP VDOP 
4 1:3 1.7321 1.1547 1.1547 
5 1:4 1.5811 1.0000 1.1180 
5 2:3 1.5811 1.1547 0.9129 
6 1:5 1.4832 0.8944 1.0954 
6 2:4 1.4142 1.0000 0.8660 
6 3:3 1.5275 1.1547 0.8165 
7 1:6 1.4142 0.8165 1.0801 
7 2:5 1.3038 0.8944 0.8367 
7 3:4 1.3540 1.0000 0.7638 
7 4:3 1.5000 1.1547 0.7638 
8 1:7 1.3628 0.7559 1.0690 
8 2:6 1.2247 0.8165 0.8165 
8 3:5 1.2383 0.8944 0.7303 
8 4:4 1.3229 1.0000 0.7071 
8 5:3 1.4832 1.1547 0.7303 

4. Dual GNSS Formula Derivation 
As in the equations for determining the HDOP and VDOP for a single GNSS, a math-

ematical derivation was performed using a dual GNSS. 
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

cos sin cos cos sin 1 0

cos sin cos cos sin 0 1

cos sin cos cos sin 1 0
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z z z z z
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H

θ φ θ φ θ

θ φ θ φ θ

θ φ θ φ θ

θ φ θ φ θ
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 
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

= 
− − −


− − −
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    

    

    

1 1

1 1

0 0 1 1 0
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cos sin cos cos sin 0 1
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u u

b b
u u

θ φ θ φ θ

θ φ θ φ θ

− 
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 

  −
  
  =  − − −  
  
  
 − − − 
  

 

    

    

    
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. 

(9) 

Here, 
a : First GNSS 
b : Second GNSS 
The equation is expanded to a dual GNSS, and a fifth column is added to Equation 

(4). In the case of the second GNSS, the fifth column has a value of 1 [11]. 

2 2

1 1 1

2 2

1 1 1
2

cos sin 0 0 cos cos sin

cos cos 0 cos cos cos cos

sin sin sin
0

a b
u u u

a b
u u u

n n n
k k k

k k k

n n n
k k k

T
k k k

a a b b
z u z u z u

a

b
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n
n
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 
 
 − −=  
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 
 
 

  

  

. 

(10) 
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Equation (10) is comparable to Equation (5), which involved a similar process for the 
single GNSS. If uniformity is maintained in Equation (5), most of the elements of the 
nondiagonal matrix would become 0. In a dual GNSS, the matrix elements (1,4), (1,5), (2,4), 
and (2,5) are not 0. Therefore, it is difficult to perform a simple inverse matrix calculation, 
as in the case of a single GNSS. Equation (10) can also be expressed in the block matrix 
form, and the results are shown in Equation (11): 

3 3 3 2

2 2

ENU PC
T

C

B B
H H

B
× ×

×

 
=  
  . 

(11) 

In Equation (6), the horizon-related elements and the vertical or clock-related parts 
were separated. For a dual GNSS, the position-related term (

3 3
ENUB ×

) and the clock-related 
term (

2 2
CB ×

) are separated, as in Equation (11). Moreover, an additional term (
3 2
PCB ×

) is present 
since the nondiagonal matrix is not 0. If the inverse matrix of Equation (11) is calculated, 
the result would be as shown in Equation (12): 

( )
( ) ( )( )

( ) ( )( )

11

3 3 3 2 2 2 3 21

11

2 2 3 2 3 3 3 2

TENU PC C PC

T

TC PC ENU PC

B B B B
H H

B B B B

−−

× × × ×−

−−

× × × ×
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=  
 −   . 

(12) 

In this study, only the HDOP and VDOP are used; therefore, in Equation (12), only 
the (1,1) block matrix is considered. Since the calculation process is complex, it is not de-
scribed in this Section. A detailed formula derivation is shown in Appendix A. Ultimately, 
when a dual GNSS is used, the HDOP and VDOP are as expressed in Equations (13) and 
(14): 

( )
( )

1 2
cos2

a a b a a b a b b a b b
z u u z u z u z u z z u z

a a b a a b a b b a b b
u z u u z u z u z u z z u z

n n n n n n n n n n n n n SST
HDOP

n n n n n n n n n n n n n n SST θ
+ + + −

=
+ + + −

, 
(13) 

( )

2
1

1 sin2

a b

u
a a b a a b a b b a b b
z u u z u z u z u z z u z

nn n SST
nVDOP

n n n n n n n n n n n n n SST θ

−
=

−+ + + −
. 

(14) 

In Equations (13) and (14), the square sum trigonometrical function (SST) is given by 
Equation (15): 

2 2 2 2

1 1 1 1
sin cos sin cos

a a b b
u u u un n n n

k k k k
k k k k

SST φ φ φ φ
= = = =

       
= + = +              
       
   

. 
(15) 

Equation (15) yields trigonometric functions with all of the azimuth angles of the 
uniform satellites for one of the dual GNSSs, and the squares of their sums are added. This 
value remains the same, regardless of which GNSS is considered. The properties of this 
value are explained in subsequent sections. 

Here, the properties of the HDOP and VDOP in a dual GNSS are analyzed by con-
sidering Equations (13) and (14). As in the case of the single GNSS, both equations are 
separated into two parts, where one is related to the number of satellites and the other is 
related to the elevation angles of the uniform satellites. The analysis of the part related to 
the elevation angles is similar to that in the case of the single GNSS. Therefore, the de-
scription of this part is omitted; only the part related to the number of satellites in the 
square root is analyzed. 

In Equation (13), this part in the square root is further divided into two parts: the first 
part only consists of un , and the second part has a form in which the numerator and 
denominator are similar but the subtracted term on the right side is doubled in the de-
nominator. First, the correlation between un  and HDOP can be determined via the first 
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part. In un , as the number of uniform satellites increases, the HDOP decreases. In this 
study, we analyzed the relationship between the HDOP and the variables included in the 
second part, namely a a b a a b a b b a b b

z u u z u z u z u z z un n n n n n n n n n n n+ + + , zn , and SST. All of these variables 
have positive values. a a b a a b a b b a b b

z u u z u z u z u z z un n n n n n n n n n n n+ + +  is calculated via the satellites that 
are classified as zenith, uniform, first GNSS, and second GNSS. As this term increases, the 
values of the numerator and denominator become similar, and the HDOP decreases. zn  
is the number of zenith satellites, and SST is described briefly above. These two variables 
exhibit tendencies similar to that of the HDOP. As the two variables increase, the value 
subtracted from the denominator increases, and the HDOP consequently increases. 

In Equation (14), for determining VDOP, n , a bn n , zn , un , 
a a b a a b a b b a b b
z u u z u z u z u z z un n n n n n n n n n n n+ + + , and SST are considered as variables. First, n  is the 

number of selected satellites; as it increases, the VDOP decreases. However, for a more 
convenient analysis, this variable is considered as a fixed value. a bn n  is calculated from 
the number of satellites in each GNSS. As the numbers of satellites in each part become 
equal, its value increases, and the VDOP also increases. If zn  increases, the denominator 
decreases, and the VDOP increases. If un  increases, the value of the numerator increases, 
and the VDOP increases. Furthermore, if a a b a a b a b b a b b

z u u z u z u z u z z un n n n n n n n n n n n+ + +  increases, the 
denominator increases, and the VDOP decreases. The effect of the SST is dependent on 
the values of the other variables in the numerator and denominator; therefore, it does not 
have a tendency that is consistent with respect to the VDOP. Thus far, the individual ef-
fects of each of the variables that constitute Equation (14) have been examined. However, 
since these variables are not independent of each other, it is difficult to clearly discern the 
tendencies of the VDOP, as realized in the case of the HDOP. For example, if both zn  
and un  increase, the VDOP increases, as explained previously. However, these two val-
ues are related to z un n n= + . Therefore, the two values cannot increase in the same man-
ner. In addition, terms other than the SST are related to the number of satellites, and they 
are also correlated with each other. For these reasons, it is difficult to describe the effect of 
the variables on the VDOP through mathematic results alone. Therefore, the VDOP needs 
to be determined through simulations. 

5. Simulation of Zenith + Horizon Placement Considering Dual GNSS 
The HDOP and VDOP for the ZH placement considering a scenario with a dual GNSS 

were derived in Section 4. To verify the mathematically derived content, a simulation was 
performed. As the number of selected satellites increases, the number of simulations also 
increases; therefore, the number of satellites was limited to 6 in this study. 

5.1. Horizontal Dilution of Precision 
Using the derived formulas, it was confirmed that the HDOP declines if the number 

of uniform satellites increases, for both the single and dual GNSSs. However, if the se-
lected satellites are all placed at a uniform satellite, the angles of elevation are identical. 
Therefore, the H  matrix cannot have a full rank, and the position and DOP calculations 
become impossible. Therefore, one satellite is placed at the zenith to resolve this problem. 

Table 2 presents the result of the dual GNSS HDOP simulation with one zenith sat-
ellite and five uniform satellites. All of the possible cases were simulated, and the HDOP 
values were arranged in ascending order. The a a b a a b a b b a b b

z u u z u z u z u z z un n n n n n n n n n n n+ + +  variable 
in Equation (13) is represented as nC  in Table 2. The final row in Table 2 denotes the 
case where the DOP calculations were impossible. In this case, the types of GNSSs used 
for the uniform satellites were the same, whereas those for the zenith satellite was differ-
ent. Here, as in the case of placing uniform satellites alone, the H  matrix cannot have a 
full rank, and the DOP calculations become impossible. In the simulation results, the min-
imum HDOP was calculated for the case involving a single GNSS. As can be observed, 
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this is similar to the result of a previous study [21], where the DOP for a single GNSS was 
lower than that for a dual GNSS. However, for the single GNSS, there is a high probability 
that the satellites will be located far from the ZH placement, owing to the limited number 
of satellites. Therefore, it is necessary to analyze the ZH placement while considering a 
dual GNSS. From Table 2, it can be observed that, overall, when the dual GNSS satellite 
is selected, the HDOP features a strong correlation with the SST variable. 

Table 2. Horizontal dilution of precision (HDOP) simulation (zenith: 1, uniform: 5). 

a
zn  b

zn  a
un  b

un  nC  SST HDOP 

1 0 5 0 0 0.0000 0.8944 
1 0 3 2 6 0.3820 0.9265 
0 1 3 2 6 0.3820 0.9265 
1 0 4 1 4 1.0000 1.0954 
0 1 4 1 4 1.0000 1.0954 
1 0 3 2 6 2.6180 1.8819 
0 1 3 2 6 2.6180 1.8819 
0 1 5 0 0 0.0000 X 

SST is the value expressed by Equation (15). This value is calculated solely from the 
uniform satellites of the individual GNSSs, as explained previously. As can be observed 
from Equation (13) and Table 2, the HDOP decreases as the SST decreases. If the satellites 
of each GNSS are placed uniformly, the two terms in Equation (15) approach 0, and the 
SST decreases. Therefore, to lower the HDOP, the satellites of individual GNSSs must be 
placed uniformly. This was confirmed through simulations involving five uniform satel-
lites. 

Using these five uniform satellites, four placements were created for a dual GNSS. 
These four placements are depicted in Figure 3. The SST values for the four cases are listed 
in Table 3. When the satellite placement was configured as a single GNSS, as in Case 1, 
the SST was 0. When one dual GNSS satellite was added, as in Case 2, the SST was 1. 
Further, when two dual GNSS satellites were added, as in Cases 3 and 4, the value varied 
according to the placement of satellites. As mentioned in the mathematical analysis above, 
the SST in Case 4, where the dual GNSS placement was arranged more uniformly, was 
lower than that in Case 3. In this manner, it can be observed that, as the satellites of indi-
vidual GNSSs are placed more uniformly, the SST decreases; consequently, the HDOP 
decreases. This result holds even when the number of satellites increases. 

  
(a) (b) 
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(c) (d) 

Figure 3. Squared Sum Trigonometric function (SST) simulation for five uniform satellites (blue-
circle: first GNSS, red-square: second GNSS): (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4. 

Table 3. SST for satellite placement. 

Case 1 2 3 4 
SST 0.0000 1.0000 2.6180 0.3820 

5.2. Vertical Dilution of Precision 
In the case of the VDOP, the simulations were performed for all of the cases with six 

selected satellites, without any additional conditions. The simulation results are presented 
in Table 4, in ascending order of the VDOP. Here, the table omits cases where the calcula-
tion was impossible owing to the insufficient rank of the H  matrix. As described in 
Equation (14), it is difficult to identify a clear correlation between the VDOP and its vari-
ables. However, in the simulation results, tendencies can be determined in the satellite 
placements with low VDOP. The case with the lowest VDOP was the single GNSS case; 
this is similar to the HDOP results. The single GNSS had the minimum VDOP when the 
number of zenith satellites and the number of uniform satellites were equal, as in Equation 
(8). When a dual GNSS satellite was selected, the VDOP decreased as the number of zenith 
satellites and the number of uniform satellites within the individual GNSS became nearly 
equal. 

Table 4. Vertical dilution of precision (VDOP) simulation (n = 6). 

a
zn  b

zn  a
un  b

un  nC  SST VDOP 

3 0 3 0 0 0.0000 0.8165 
2 1 2 1 12 1.0000 0.8165 
2 0 4 0 0 0.0000 0.8660 
1 1 2 2 12 0.0000 0.8660 
1 1 2 2 12 2.0000 0.8660 
2 1 3 0 6 0.0000 0.9129 
1 2 2 1 12 1.0000 0.9129 
1 1 3 1 10 1.0000 0.9129 
2 0 2 2 8 0.0000 1.0000 
0 2 2 2 8 0.0000 1.0000 
2 0 3 1 6 1.0000 1.0000 
1 0 5 0 0 0.0000 1.0954 
1 1 4 0 4 0.0000 1.1180 
1 0 4 1 4 1.0000 1.1402 
1 2 3 0 6 0.0000 1.1547 
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1 0 3 2 6 0.3820 1.1631 
0 1 3 2 6 0.3820 1.2425 
1 0 3 2 6 2.6180 1.4991 
0 1 4 1 4 1.0000 1.6733 
0 2 3 1 6 1.0000 1.7321 

Unlike the HDOP, the VDOP was simulated without additional conditions, and a 
relatively large number of simulations were required, as presented in Table 4. Thus, to 
facilitate the analyses, additional conditions were applied to the VDOP. These additional 
conditions were applied to the placement with the minimum VDOP, which consisted of 
three zenith and three uniform satellites. Table 5 lists the numbers of satellites for all pos-
sible cases, according to the type of dual GNSS in this scenario. These cases were applied 
when using actual satellites, as discussed in the following section. 

Table 5. VDOP case (zenith satellites: three, uniform satellites: three). 

Case Zenith (First GNSS: Second GNSS) Uniform (First GNSS: Second GNSS) 
1 3:0 3:0 
2 3:0 2:1 
3 3:0 1:2 
4 3:0 0:3 
5 2:1 3:0 
6 2:1 2:1 
7 2:1 1:2 

6. Verification of Formulas Using Actual Satellites 
The real-world data used in the analyses were acquired over the course of approxi-

mately 29 h, from 01:00 on 22 December 2021, to 06:00 on 23 December 2021. To avoid 
similarities in the satellite placement, sampling was performed at 15 min intervals. These 
data were acquired on the roof of the New Engineering Building of Konkuk University, 
Seoul, South Korea. A NOVATEL OEM6 was used as the receiver. The actual data receiv-
ing environment is given in Figure 4. GPS and Galileo were selected as the dual GNSSs, 
considering the number of visible satellites and the variety of satellite placements, from 
which the data were received. 

 
Figure 4. Actual data receiving environment: (a) Antenna (NOVATEL, GNSS-750); (b) Receiver 
(NOVTEL, OEM-6, Flexpak6); (c) Antenna Position. 

In this study, four DOPs were calculated and compared at each time point. If the 
satellites used in the DOP calculations were from a single GNSS, the estimations were 
performed for a case involving four unknown values. Further, when dual GNSS satellites 
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were selected, five unknown values were estimated. The first of the four DOPs was calcu-
lated using all visible satellites. For the second, the DOP values were calculated for all 
subsets, in which six satellites were selected from among all of the satellites, and the min-
imum DOP was used. The third DOP value was calculated by selecting the satellites clos-
est to the ZH placement. Finally, the fourth DOP was calculated by changing the satellites 
that were selected in the third DOP, based on Sections 4 and 5 considering a dual GNSS. 
These four DOPs are shown in following figure and table, and they are labeled as all-in-
view (AIV), brute force (BF), regular polygon (RP), and case change (CC), respectively. 
These values were analyzed, and the previously described formulas were verified. 

6.1. Horizontal Dilution of Precision 

Figure 5 and Table 6 present the HDOP and statistical values obtained over time. AIV 
and BF naturally exhibited a low HDOP, and the average difference in the HDOP was 
approximately 0.27. By examining this difference, it is evident that when appropriate sat-
ellites are selected, there is no significant difference compared to the DOP determined 
using all satellites. In the case of RP, where the results were obtained considering satellites 
close to the ZH placement with one zenith satellite and five uniform satellites, high HDOP 
values were calculated at several time points. This is due to the fact that the closest satel-
lites were selected, without considering the placement according to the type of GNSS. CC 
represents the results obtained by changing the uniform satellites in the RP placement in 
descending order of SST. 

 
Figure 5. Actual data satellite selection horizontal results (a) HDOP; (b) uniform satellite case. 

Table 6. HDOP statistical results by type of satellite selection. 

Selection Min Mean Max 
AIV 0.5689 0.7228 1.0050 
BF 0.8780 0.9883 1.2848 
RP 0.9668 1.7770 20.0791 
CC 0.9418 1.1551 1.6639 

Algorithm 1 is the pseudo code of an algorithm for changing the uniform satellites. 
This algorithm was designed to change the satellites to those in Cases 3, 2, 4, and 1, which 
are arranged in descending order by SST. Only one satellite was changed at a time, except 
when Case 4 was changed to Case 1 at the end. Moreover, as the placements move farther 
from the ZH placement on changing the satellites, the HDOP values before and after the 
change were compared; notably, the change was not implemented if the HDOP value in-
creased. 

0 5 10 15 20 25 30
Time (h)

0

5

10
AIV
BF
RP
CC

0 5 10 15 20 25 30
Time (h)

1

2

3

4 RP
CC
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Algorithm 1 Changing Uniform Satellite for HDOP Improvement (nu = 5) 
1: void function changing uniform satellite(azimuth_satellites, elevation_satellites) 
2:  nu = 5; 
3: sat_me = find satellite of minimum elevation(elevation_satellites); 
4: vec_s = generate vector of satellites(azimuth_satellites, elevation_satellites); 
5: vec_rp = generate vector of regular polygon(nu, sat_me); 
6:  sat_selec = select satellite of nearest regular polygon vector(vec_s, vec_rp); 
7: case_selec = check case of selected satellite(sat_selec); 
8: if case_selec == 3 
9: sat_case2 = change satellite from case 3 to case 2; 
10: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case2); 
11: end 
12: if case_selec == 2 
13: sat_case1 = change satellite from case 2 to case 1; 
14: sat_case4 = change satellite from case 2 to case 4; 
15: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1, sat_case4); 
16: end 
17: if case_selec == 4 
18: sat_case1 = change satellite from case 4 to case 1; 
19: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1); 
20: end 
21: return sat_selec, case_selec 
22: end function changing uniform satellite 
23:  
24: void function compare case(case_selec, sat_selec, sat_caseA, sat_caseB, …) 
25: flag_case = compare minimum HDOP(sat_selec, sat_caseA, sat_caseB, …); 
26: switch flag_case 
27: case case_selec 
28: return sat_selec, case_selec 
29: case A 
30: sat_selec = sat_caseA; 
31: case_selec = A; 
32: return sat_selec, case_selec 
33: case B 
34: … 
35: end 
36: end function case selection 

An analysis was performed at the time point with the highest HDOP in RP, as shown 
in Figure 5. The time point was 3 h and 45 min. A skyplot of this time is shown in Figure 
6. The graph in Figure 6a is the skyplot of all visible satellites in the dual GNSS, and the 
HDOP at this time was calculated as 0.9331. As can be observed, there were no satellites 
in the northwestern sky at this time. The graph in Figure 6b shows the RP results, for 
which satellites close to the ZH placement were selected, and the HDOP was calculated 
as 20.0791. Satellite 30 in the second system was close to the zenith placement in the ZH 
placement, and the rest of the satellites were thus selected as the uniform satellites. With 
regard to the uniform satellites, three satellites from the first GNSS were selected in suc-
cession, and 2 satellites from the second GNSS were selected in succession, which repre-
sents the placement for Case 3 in Figure 3. Moreover, Case 3 entails the placement with 
the highest SST, and its HDOP was higher than that in the other cases. Furthermore, the 
satellites themselves were not visible in the northwestern sky, and satellites with low ele-
vation angles could not be selected in that direction. Hence, it was predicted that a high 
HDOP can be calculated. The graph in Figure 6c shows the skyplot for CC, where the 
uniform satellites were changed using the algorithm, and the HDOP at this time was 
1.5239. Owing to this change in the uniform satellites, the HDOP was reduced by 18.5552. 
The zenith satellites and satellites 24 and 31 in the first GNSS, as well as satellite 27 in the 
second GNSS, were not modified; the remaining two satellites were changed. The changed 
satellite positions were close to the RP satellites, and the type of GNSS was changed. This 
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changed placement is depicted under Case 4 in Figure 3. Consequently, the HDOP was 
considerably reduced, solely on changing the type of GNSS in this manner. Based on these 
results, the previously presented conclusions were deemed to be valid. 

   
(a) (b) (c) 

Figure 6. Skyplot, 3 h 45 min epoch (blue-circle: first GNSS, red-square: second GNSS): (a) AIV; (b) 
RP; (c) CC. 

Figure 5 indicates that, after applying the algorithm, the HDOP of CC was reduced 
in comparison to that for RP. Cases 2 and 3, which presented a high SST in the graph of 
Figure 5b and in Table 7, exhibited a reduction when moving from RP to CC. By contrast, 
Cases 1 and 4, which had a low SST, exhibited an increase. These results indicate that, 
Case change considering a dual GNSS proceeds for decreasing SST. This leads to a reduc-
tion in HDOP. These results demonstrate that it is important to perform satellite place-
ment according to the dual GNSS. 

Table 7. Number and percentage of HDOP cases after applying the algorithm. 

Case 
RP CC 

Number Percentage Number Percentage 
1 9 7.563 43 36.134 
2 31 26.050 11 9.244 
3 46 38.656 5 4.202 
4 33 27.731 60 50.420 

Sum 119 100.000 119 100.000 

6.2. Vertical Dilution of Precision 
Figure 7 and Table 8 present the VDOP and statistical values over time. AIV and BF 

showed low VDOP values, and there was an average difference of approximately 0.22. 
For the VDOP, three zenith satellites and three uniform satellites were selected. Moreover, 
for the three zenith satellites in the ZH placement, three satellites with high elevation an-
gles were selected. For the three uniform satellites, this study selected satellites that were 
closest to the triangular vectors created based on the lowest elevation angle. The VDOP 
calculated using the satellites selected in this manner is shown as RP. In these results as 
well, there were intervals where the VDOP increased. To compensate for this, a VDOP 
satellite placement changing algorithm was applied, as in the case of the HDOP. 

Table 8. VDOP statistical results by type of satellite selection. 

 Min Mean Max 
AIV 0.8371 1.0633 1.4352 
BF 1.0457 1.2810 1.7934 
RP 1.0457 1.8160 21.1959 
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CC 1.0457 1.5087 2.7137 

 
Figure 7. Actual data satellite selection vertical results (a) VDOP; (b) satellite case. 

Algorithm 2 the pseudo code of an algorithm for changing the VDOP satellite place-
ment. Based on previous results, it can be predicted that the minimum VDOP in Table 5 
is obtained under Case 1, whereas the maximum VDOP is obtained under Case 4. This 
algorithm changed one satellite at a time, starting with Case 4, which had the maximum 
VDOP. The interval within which the case change was performed included the process of 
comparing the VDOP before and after the satellite change and determining whether a 
change occurred. 

Algorithm 2 Changing Satellite for VDOP Improvement (n = 6) 
1: void function changing satellite(azimuth_satellites, elevation_satellites) 
2: nz = 3; 
3: nu = 3; 
4: sat_me = find satellite of minimum elevation(elevation_satellites); 
5: sat_zenith = select satellite of high elevation(nz, azimuth_satellites); 
6: vec_s = generate vector of satellites(azimuth_satellites, elevation_satellites); 
7: vec_rp = generate vector of regular polygon(nu, sat_me); 
8: sat_uniform = select satellite of nearest regular polygon vector(vec_s, vec_rp); 
9: sat_selec = merge zenith and uniform satellites(sat_zenith, sat_uniform); 
10: case_selec = check case of selected satellite(sat_selec); 
11: if case_selec == 4 
12: sat_case8 = change satellite from case 4 to case 8; 
13: sat_case3 = change satellite from case 4 to case 3; 
14: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case8, sat_case3); 
15: end 
16: if case_selec == 8 
17: sat_case7 = change satellite from case 8 to case 7; 
18: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case7); 
19: end 
20: if case_selec == 3 
21: sat_case7 = change satellite from case 3 to case 7; 
22: sat_case2 = change satellite from case 3 to case 2; 
23: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case7, sat_case2); 
24: end 
25: if case_selec == 5 
26: sat_case6 = change satellite from case 5 to case 6; 
27: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6); 
28: end 
29: if case_selec == 7 
30: sat_case6 = change satellite from case 7 to case 6; 
31: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6); 
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32: end 
33: if case_selec == 2 
34: sat_case6 = change satellite from case 2 to case 6; 
35: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6); 
36: end 
37: if case_selec == 6 
38: sat_case1 = change satellite from case 6 to case 1; 
39: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1); 
40: end 
41: return sat_selec, case_selec 
42: end function changing satellite 
43:  
44: void function compare case(case_selec, sat_selec, sat_caseA, sat_caseB, …) 
45: flag_case = compare minimum VDOP(sat_selec, sat_caseA, sat_caseB, …); 
46: switch flag_case 
47: case case_selec 
48: return sat_selec, case_selec 
49: case A 
50: sat_selec = sat_caseA; 
51: case_selec = A; 
52: return sat_selec, case_selec 
53: case B 
54: … 
55: end 
56: end function case selection 

An analysis was performed at the time point where the largest values were calculated 
for the VDOP RP results. This time point was the 30 min point. The graph in Figure 8a is 
a skyplot of the AIV satellite, and the VDOP at this time was 1.0075. The graph in Figure 
8b shows the RP results, and the VDOP at this time was 21.1959. The three zenith satellites 
in the satellite arrangement for this time were from the first GNSS, whereas the three uni-
form satellites were from the second GNSS. This arrangement is presented under Case 4 
in Table 5. Case 4 represents the arrangement in which the VDOP is considered to be the 
highest; it can be observed that this analysis is consistent with the actual satellite selection. 
The graph in Figure 8c presents a skyplot for the results of changing the satellites, while 
considering a dual GNSS. Among the RP satellites, only Satellite 15 of the second GNSS 
was changed to Satellite 12 of the first GNSS. When such changes were implemented, the 
VDOP was 1.9062, which indicates a reduction of 19.2897 in comparison to that for RP. 
Thus, the VDOP was significantly reduced on changing the type of GNSS, although the 
satellites were farther away from the ZH placement after this change. These results indi-
cate that the methods studied thus far are also valid in the case of the VDOP. 
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(a) (b) (c) 

Figure 8. Skyplot, 30 min epoch (blue-circle: first GNSS, red-square: second GNSS): (a) AIV; (b) RP; 
(c) CC. 

Table 9 presents the number of case selections before and after the VDOP satellite 
change. When the satellite changes were performed considering the GNSS, there was an 
increase in the numbers of selections for Cases 1 and 6, which exhibit low VDOP values, 
and a decrease in the numbers of selections for the other cases. With regard to the HDOP, 
the placement according to the dual GNSS type is also important for VDOP. 

Table 9. Number and percentage of VDOP cases after applying the algorithm. 

Case 
RP CC 

Number Percentage Number Percentage 
1 1 0.840 14 11.765 
2 0 0.000 0 0.000 
3 1 0.840 0 0.000 
4 1 0.840 0 0.000 
5 10 8.404 4 3.361 
6 45 37.815 66 55.462 
7 42 35.294 29 24.370 
8 19 15.967 6 5.042 

Sum 119 100.000 119 100.000 

7. Conclusions 
In this study, we mathematically derived the HDOP and VDOP for dual GNSS satel-

lites in the ZH placement, which is an ideal condition, and verified these results through 
simulations and actual satellite data. For the ZH method used in previous studies, mini-
mum GDOP conditions were confirmed through simulations. In this study, the ZH place-
ment conditions were used without modifications, and the DOP was calculated mathe-
matically. Furthermore, the HDOP and VDOP were differentiated and mathematically 
derived, rather than the GDOP. The results confirmed that the HDOP decreases as the 
number of uniform satellites in a single GNSS increases, whereas the VDOP decreases as 
the numbers of zenith and uniform satellites become more similar. This indicates that the 
DOP values vary according to the numbers of satellites placed at the zenith and those 
placed uniformly. Thus, satellite placements can be changed and used depending on the 
importance of horizontal or vertical placement for a given field of application. 

There are two methods for handling the receiver clock errors in each system when 
using dual GNSSs. This study employed the method that handles errors by adding un-
known values. The HDOP and VDOP for a dual GNSS in the ZH placement were mathe-
matically derived, and simulations were performed. As in the case of a single GNSS, the 
HDOP for a dual GNSS decreases as the number of uniform satellites increases. Further, 
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it was confirmed that the SST variable has a strong correlation with the HDOP for a dual 
GNSS. The SST is a variable that indicates the uniformity of the satellites in each individ-
ual GNSS of a dual GNSS. It was found that SST and HDOP decrease as the individual 
GNSS satellites’ uniformity increases. Based on the VDOP formula, it was difficult to con-
firm a clear correlation between the variables and the VDOP. One reason for this is that 
the numbers of zenith and uniform satellites both have the same correlation with VDOP, 
but the sum of the numbers of zenith and uniform satellites is constant, and they cannot 
both cause a reduction in the VDOP simultaneously. Therefore, the characteristics of the 
VDOP were confirmed through simulation results. In the simulation results, the VDOP 
decreased as an individual GNSS’ number of zenith satellites and the number of uniform 
satellites in the dual GNSS became nearly equal. In this manner, it was confirmed that the 
HDOP and VDOP tendencies of a single GNSS are also maintained in the dual GNSS. 
Therefore, it is predicted that these tendencies will be maintained even on expanding to 
multiple GNSS. 

Through the simulation results, it was confirmed that the HDOP and VDOP of a sin-
gle GNSS are lower than those of a dual GNSS. These results suggest that, if the ZH place-
ment is to be implemented, it is more effective to use single GNSS satellites than dual 
GNSS satellites. However, this may differ when actual satellites that are closest to the ZH 
placement are selected, given that it is difficult for actual satellites to remain in the perfect 
ZH placement. In the case of a single GNSS, the number of satellites is small; therefore, it 
is more unlikely that the satellites are close to the ZH placement, as compared to those in 
the dual GNSS. Consequently, further research on satellite placement is necessary to lower 
the HDOP and VDOP for a dual GNSS. To confirm this, actual satellite data were used. 
When satellites close to the ZH placement were selected, without considering the type of 
GNSS, there were intervals within which the HDOP and VDOP both increased consider-
ably. In this study, a satellite change algorithm that considers the type of GNSS was used. 
The results confirmed that the increase in the HDOP and VDOP was reduced. In addition, 
on applying this algorithm, the number of satellite placement cases for lower HDOP and 
VDOP values increases. These results confirmed that the research presented herein is 
valid. 

It should be noted that this study was limited to investigating a dual GNSS owing to 
the mathematical complexity involved. Nevertheless, it was confirmed that the character-
istics of a single GNSS are maintained even for a dual GNSS. Therefore, it can be expected 
that the same tendencies will also be maintained when multiple GNSSs are considered. In 
addition, since these results were derived mathematically, it is expected that the same 
tendencies will exist when selecting a larger number of satellites, as opposed to the limited 
number of satellites adopted in this study. Since this study aims to mathematically derive 
and verify DOP, we did not analyze the optimality of the satellite selection method in 
detail. However, it explained the necessity and effectiveness of satellite selection. There-
fore, this study is expected to be applicable to various satellite selection methods. 
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