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Abstract: Increasing the number of satellites in a global navigation satellite system (GNSS) improves
the positioning accuracy and increases availability. However, it reduces the positioning accuracy
improvement rate and increases the calculation loads, which can cause battery usage problems in
mobile devices using a GNSS. An appropriate satellite selection method is required. One current
method entails the use of ideal satellite placement with respect to the minimum geometric dilution of
precision (GDOP). In this study, the described ideal satellite placement with the minimum GDOP
were divided in terms of the horizontal dilution of precision (HDOP) and vertical dilution of precision
(VDOP). HDOP and VDOP were mathematically derived and analyzed. The derived formula was
verified using simulations. The analysis was performed with actual dual GNSS satellite data. The
satellites adjacent to the ideal placement were selected and the DOP was calculated. Simply selecting
satellites closest to the ideal placement afforded large values for HDOP and VDOP. This issue was
addressed using a satellite changing algorithm considering the dual GNSS, resulting in reduced
values of the HDOP and VDOP.

Keywords: global navigation satellite system (GNSS); dual GNSS; horizontal dilution of precision
(HDOP); vertical dilution of precision (VDOP)

1. Introduction

As global navigation satellite systems (GNSSs) have become more popular and impor-
tant, an increasing number of countries are developing and operating their own GNSSs.
Typical examples include the United States’ global positioning system (GPS), Russia’s
global navigation satellite system (GLONASS), the European Union’s Galileo, and China’s
BeiDou. In addition to GNSSs, whose service areas encompass the entire globe, countries
are also developing and operating regional navigation satellite systems (RNSSs), in which
only certain regions are the serviced areas. Examples of RNSSs include India’s navigation
with Indian constellation (NavIC) and Japan’s Quasi-Zenith satellite system (QZSS). Fur-
thermore, South Korea is also promoting projects related to an RNSS, known as the Korea
positioning system (KPS) [1]. In this manner, the number of navigation satellites has been
increasing rapidly owing to the increase in navigation satellite systems [2]. As of January
2022, the number of GNSS satellites in operation were 31 in GPS, 21 in GLONASS, 22 in
Galileo, and 44 in BeiDou [3–6]. Over time, the number of navigation satellites is expected
to increase further.

As the number of navigation satellites increases, the number of visible satellites that
can be used for positioning estimations also increases. Intuitively, it can be expected that
the positioning accuracy will improve as the number of measurement values used in the
positioning estimations are augmented. In addition, availability increases as positioning
estimations become possible in environments with poor satellite visibility, such as urban
and mountainous regions [7]. However, there are also drawbacks to this increase in the
number of visible satellites. As the number of satellites used in positioning estimations
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increases, the computational load also increases. This, in turn, causes an increase in
electricity consumption. These increments in electricity consumption can constitute a
severe problem for mobile devices such as smartphones, which currently use GNSSs on a
large scale [8]. In addition, the extent of accuracy improvements decreases as the number
of visible satellites increases. This phenomenon can be confirmed based on the fact that the
minimum geometric dilution of precision (GDOP) is expressed as a fractional function of the
number of satellites [8]. Consequently, studies on satellite selection have been conducted.

For instance, studies have focused on determining the satellite with the minimum
GDOP among the subsets of all satellites, by using iterative methods in a GPS environ-
ment [9]. In the case of the GDOP, which is the main index used for satellite selection, the
calculation load increases with the number of visible satellites increases. Various studies
have also been conducted to compensate for this problem [10,11]. These studies were
effective in reducing the GDOP calculations when selecting satellites. However, the rapidly
increasing number of navigation satellites is causing an exponential increase in the number
of satellite subsets that must be calculated. This may cause difficulties when employing the
methods adopted in previous studies. The GDOP is related to the volume of the polyhe-
dron formed by a user and the satellites. Accordingly, studies have focused on developing
suitable techniques to select satellites based on this concept [12–14]. However, in these
studies, there were difficulties pertaining to the composition of the polyhedron and the
volume calculations when the number of selected satellites increased. Research has also
been performed on successively reducing the number of satellites by using the position
dilution of precision (PDOP) of all of the satellites and the amount of change in the PDOP
when one visible satellite is removed [15]. As the satellites are removed one at a time, a
minimum value of the PDOP can be maintained during this process. However, a global
minimum cannot be guaranteed since the results are obtained sequentially. Studies have
also been conducted on empirically determining the placement with the minimum GDOP
and selecting satellites that are close to these positions [8,16].

This study focused on the following content. The ideal satellite placement for min-
imizing the GDOP obtained in a previous study [16] is described. This method places
satellites at the zenith and horizon, where the horizon satellites are spaced evenly. This
placement approach is termed as the Zenith + Horizon (ZH) method. This study employed
the satellite placement conditions under the ZH method without modifications, in order to
derive the dilution of precision (DOP) mathematically. This mathematic derivation was
performed to analytically interpret the information that was obtained empirically.

Each GNSS provides services on its own reference time [17]. When estimating the
position in a multiple GNSSs, it is necessary to handle the individual GNSS’ reference time
and receiver hardware delay. There are two methods for resolving this problem [18]. The
first method involves calculating the position via the unknown values of one receiver’s
clock error by correcting the reference time between the GNSSs, with the information
obtained from the broadcast ephemeris. This method cannot compensate for the receiver
hardware delay. The second method entails estimating the position by adding the receiver’s
clock error as an unknown value depending on the number of receiving GNSSs. Unlike the
first method, the second method can compensate for the receiver hardware delay. Although
the first method uses multiple GNSSs, the DOP calculation is the same as that of a single
GNSS. Since this study is conducted in a single GNSS, the first method is also studied.
Which one of these two methods has better position accuracy depends on the environment;
therefore, neither method can be considered superior [18]. For this reason, this study was
performed using the second method.

Owing to the mathematical complexity associated with multiple GNSSs, a dual GNSSs
was considered. It is expected that the results of studying a dual GNSS can be extended to
multiple GNSSs. Furthermore, most existing studies were conducted considering the GDOP.
This study employed the horizontal dilution of precision (HDOP) and the vertical dilution
of precision (VDOP), instead of using the GDOP. With regard to a GNSS, the importance
of the horizontal and vertical precision varies depending on the field of application. For
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instance, in the case of cars and boats, the horizontal accuracy is more important, whereas
the vertical accuracy is more important for aircraft. The GDOP includes the 3D positions
and clock errors. Hence, it expresses the average accuracy of the estimate. Therefore,
depending on the field of use, it can be more effective to use the HDOP and VDOP as
references, rather than the GDOP.

The contribution of this study can be summarized as follows:

1. Mathematical analysis of the simulated minimum DOP placement in a Dual GNSS;
2. Separation of GDOP into HDOP and VDOP to propose utilization according to

application fields;
3. Using actual satellite data to verify formulas and propose possibilities using the

satellite selection method.

The remainder of this study is organized as follows. Section 2 provides a brief descrip-
tion of the previously proposed ZH method [16]. In Sections 3 and 4, the HDOP and VDOP
are mathematically derived from a single GNSS and a dual GNSS’ ZH satellite placement.
In Section 5, a ZH placement simulation considering a dual GNSS is performed based on
the derived formulas, and the satellite placement is verified to ensure low values for the
HDOP and VDOP. In Section 6, actual satellite data are used to confirm the effect of the
proposed placement. Lastly, in Section 7, the content of this study is summarized, and the
conclusions are presented.

2. Zenith + Horizon Method

The ZH method places a suitable number of satellites on the zenith and horizon for
the minimum GDOP and selects the actual satellites located near these positions. Here,
the placement conditions of the ZH method are first described. For the satellites that are
placed at the zenith, duplication is possible. At the horizon, the satellites are placed in
such a manner that the azimuth included angles between the satellites are identical. This
placement is termed as the ZH placement.

Figure 1 shows an example of the ZH placement. The azimuth included angle between
two satellites placed on the horizon can be expressed as in Equation (1):

φc = 360◦/nu. (1)

Here,
φc: Azimuth Included Angle
nu: Number of Uniformly Placed Satellites

Figure 1. Example of satellite placement under the Zenith + Horizon (ZH) method.

To ensures the minimum GDOP, the satellites placed on the horizon must all maintain
elevation angles of 0◦. In the subsequent discussions, we only consider that the elevation
angles of the satellites placed on the horizon are identical, without the need for these angles
to be zero. Thus, these satellites can be depicted as uniform satellites.
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In a previous study [16], the minimum GDOP was obtained when the ratio of the
numbers of zenith satellites to the number of uniform satellites was 1:2. Figure 1 depicts
the placement with the minimum GDOP, for a total of six satellites (two satellites placed
at the zenith and four satellites placed uniformly). The actual satellite selection criteria
are as follows: For the zenith satellites, the satellites with the highest elevation angles are
selected from among the visible satellites. For the uniform satellites, the ZH method entails
the calculation of as many regular polyhedron vertex vectors as necessary, based on the
satellite with the lowest elevation angle. These vectors and their dot product are then used
to select the closest satellites. Lastly, the results are checked for duplicated satellites. If
there are duplicate satellites, the dot product is used to change the satellite selection.

When actual satellites are selected, the ZH placement cannot be maintained. However,
even when the satellites are placed near the ZH placement, there are no problems with
selecting the nearby positions, provided the DOP does not increase by a large amount.
Figure 2 shows the GDOP when only one of the satellites in the placement in Figure 1 is
moved with respect to the overall elevation angle and the azimuth. In Figure 2a, Satellite 1,
which is placed at the zenith, is moved, whereas in Figure 2b, the uniform Satellite 6 is
moved. In both these cases, it can be observed that the increase in the GDOP becomes
larger as the satellite moves farther away from the position at which it was previously
located. Although it varies according to the fixed satellites, selecting satellites that are close
to the ZH placement allows for a lower DOP, in comparison to those at the other positions.

Figure 2. GDOP simulation according to the change in the position of one satellite in the ZH
placement (six selected satellites): (a) satellite #1 is moved; (b) satellite #6 is moved.

This study involved three changes to method adopted in a previous research [16]:

1. In this work, HDOP and VDOP were used instead of the GDOP used in the previ-
ous study;

2. Instead of four unknown values (three position coordinates + one single GNSS receiver
clock), this study employed five unknown values (three position coordinates + two
dual GNSS receiver clocks);

3. The previous results derived via simulations were analyzed via mathematical derivations.

3. Single GNSS Formula Derivation

The HDOP and VDOP were derived mathematically considering a state where the ZH
placement conditions were maintained in a single GNSS. The derived results were then
compared with the placement obtained using the GDOP [16], and the differences were
subsequently analyzed.

Before deriving the formulas, the order of the satellite numbers was expressed using
the following formula:

1. Zenith satellite → uniform satellite;
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2. The uniform satellites were ordered from the lowest azimuth angle (from the north)
to the highest.

The formulae used for the calculation of the DOP are expressed in Equations (2)
and (3) [19].

Q =
(

HT H
)−1

=


qEE qEN qEU qEC

qNN qNU qNC
qUU qUC

qCC

.
(2)

Here,
H: Observation matrix in ENU coordination
Q: Local cofactor matrix
q: Elements of local cofactor matrix
In Equation (2), Q is a symmetric matrix. In a symmetric matrix, only a triangle of the

matrix elements is shown, whereas the symmetric terms are omitted.

HDOP =
√

qEE + qNN
VDOP =

√
qUU

(3)

In Equation (3), the elements of matrix Q are used to determine the HDOP and
VDOP. For the ZH placement conditions, the HDOP and VDOP are calculated using the
following process:

H =

 − cos θ1 sin φ1 − cos θ1 cos φ1 − sin θ1 1
...

...
...

...
− cos θn sin φn − cos θn cos φn − sin θn 1



=



0 0 −1 1
...

...
...

...
0 0 −1 1

− cos θ sin φ1u − cos θ cos φ1u − sin θ 1
...

...
...

...
− cos θ sin φnu − cos θ cos φnu − sin θ 1


.

(4)

Here,
θ: Elevation angle (◦)
φ: Azimuth angle (◦)
n: Satellite number
Equation (4) presents the observation matrix used in the least squares estimation

method, and it consists of the unit vectors between the user and the satellites, as well as
terms related to the receiver’s clock error. Since the zenith satellite has an elevation angle
of 90◦, columns 1 and 2 are 0, whereas column 3 is −1. Since the uniform satellites all have
the same elevation angles, they are expressed uniformly.

HT H =



cos2 θ
nu
∑

k=1
sin2 φk cos2 θ

nu
∑

k=1

sin 2φk

2
sin 2θ

2

nu
∑

k=1
sin φk − cos θ

nu
∑

k=1
sin φk

cos2 θ
nu
∑

k=1
cos2 φk sin 2θ

2

nu
∑

k=1
cos φk − cos θ

nu
∑

k=1
cos φk

nz + nu sin2 θ −nz − nu sin θ

n



=



cos2 θ
nu
∑

k=1
sin2 φk 0 0 0

cos2 θ
nu
∑

k=1
cos2 φk 0 0

nz + nu sin2 θ −nz − nu sin θ

n


.

(5)
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Here,
nz: Number of zenith satellites
In Equation (5), if the condition of the uniform satellites is maintained and the number

of satellites is 3 or more, the matrix elements (1,2), (1,3), (1,4), (2,3), and (2,4) are 0. To
calculate the Q matrix, the inverse matrix of Equation (5) is used. Equation (5) can be
expressed as a block matrix, as shown in Equation (6).

HT H =

[
BEN

2×2 02×2
BUC

2×2

]
. (6)

Here,
B: Block matrix
0: Zero matrix
x: Coordinate of block matrix
x: Matrix size
In Equation (6), the HDOP can be calculated via the BEN

2×2 inverse matrix, and the
VDOP can be calculated via the BUC

2×2 inverse matrix. The calculated HDOP and VDOP are
shown in Equations (7) and (8):

HDOP =
1√
nu

2
cos θ

, (7)

VDOP =

√
n

nznu

1
1− sin θ

. (8)

Furthermore, Equations (7) and (8) can be divided into two parts. The first part is
related to the number of satellites that are placed at the zenith and placed uniformly. The
second part is related to the elevation angles of the uniform satellites. Looking at the first
part, the HDOP decreases as the number of uniform satellites increases. If the number
of selected satellites remains fixed, the VDOP decreases as the numbers of zenith and
uniform satellites become nearly equal. In the second part, the DOP decreases as the
elevation angles of the uniform satellites decrease. This indicates that the DOP is low if
uniform satellites exist on the horizon, as reported previously [16]. Low-elevation satellites
increase pseudorange errors [20]. This can reduce the positioning accuracy. To improve the
positioning accuracy, additional studies on the elevation angle of the uniform satellites are
required. In this study, only DOP is analyzed, so this content is not considered.

Table 1 presents the GDOP, HDOP, and VDOP results according to the numbers of
zenith and uniform satellites, considering four to eight selected satellites. As mentioned
earlier, three or more satellites are placed uniformly. In addition, when a zenith satellite
is not placed, the calculation becomes impossible; therefore, a minimum of one satellite
must be placed at the zenith. As can be observed, the GDOP decreases as the ratio of
the number of zenith satellites to the number of uniform satellites approaches 1:2, as in
previous studies [8,16]. Moreover, the HDOP decreases as the number of uniform satellites
increases, as indicated by Equation (7). The VDOP also decreases as the numbers of zenith
and uniform satellites become equal, as indicated by Equation (8).
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Table 1. Dilution of precision (DOP) simulation of single GNSS ZH satellite placement.

n nz:nu GDOP HDOP VDOP

4 1:3 1.7321 1.1547 1.1547
5 1:4 1.5811 1.0000 1.1180
5 2:3 1.5811 1.1547 0.9129
6 1:5 1.4832 0.8944 1.0954
6 2:4 1.4142 1.0000 0.8660
6 3:3 1.5275 1.1547 0.8165
7 1:6 1.4142 0.8165 1.0801
7 2:5 1.3038 0.8944 0.8367
7 3:4 1.3540 1.0000 0.7638
7 4:3 1.5000 1.1547 0.7638
8 1:7 1.3628 0.7559 1.0690
8 2:6 1.2247 0.8165 0.8165
8 3:5 1.2383 0.8944 0.7303
8 4:4 1.3229 1.0000 0.7071
8 5:3 1.4832 1.1547 0.7303

4. Dual GNSS Formula Derivation

As in the equations for determining the HDOP and VDOP for a single GNSS, a mathe-
matical derivation was performed using a dual GNSS.

H =



− cos θ1a
z sin φ1a

z − cos θ1a
z cos φ1a

z − sin θ1a
z 1 0

...
...

...
...

...
− cos θ1b

z sin φ1b
z − cos θ1b

z cos φ1b
z − sin θ1b

z 0 1
...

...
...

...
...

− cos θ1a
u sin φ1a

u − cos θ1a
u cos φ1a

u − sin θ1a
u 1 0

...
...

...
...

...
− cos θ1b

u sin φ1b
u − cos θ1b

u cos φ1b
u − sin θ1b

u 0 1
...

...
...

...
...


=



0 0 −1 1 0
...

...
...

...
...

0 0 −1 0 1
...

...
...

...
...

− cos θ sin φ1a
u − cos θ cos φ1a

u − sin θ 1 0
...

...
...

...
...

− cos θ sin φ1b
u − cos θ cos φ1b

u − sin θ 0 1
...

...
...

...
...


. (9)

Here,
a: First GNSS
b: Second GNSS
The equation is expanded to a dual GNSS, and a fifth column is added to Equation (4).

In the case of the second GNSS, the fifth column has a value of 1 [11].

HT H =



cos2 θ
nu
∑

k=1
sin2 φk 0 0 − cos θ

na
u

∑
k=1

φk − cos θ
nb

u
∑

k=1
sin φk

cos2 θ
nu
∑

k=1
cos2 φk 0 − cos θ

na
u

∑
k=1

cos φk − cos θ
nb

u
∑

k=1
cos φk

nz + nu sin2 θ −na
z − na

u sin θ −nb
z − nb

u sin θ
na 0

nb


. (10)

Equation (10) is comparable to Equation (5), which involved a similar process for
the single GNSS. If uniformity is maintained in Equation (5), most of the elements of the
nondiagonal matrix would become 0. In a dual GNSS, the matrix elements (1,4), (1,5), (2,4),
and (2,5) are not 0. Therefore, it is difficult to perform a simple inverse matrix calculation,
as in the case of a single GNSS. Equation (10) can also be expressed in the block matrix
form, and the results are shown in Equation (11):

HT H =

[
BENU

3×3 BPC
3×2

BC
2×2

]
. (11)
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In Equation (6), the horizon-related elements and the vertical or clock-related parts
were separated. For a dual GNSS, the position-related term (BENU

3×3 ) and the clock-related
term (BC

2×2) are separated, as in Equation (11). Moreover, an additional term (BPC
3×2) is

present since the nondiagonal matrix is not 0. If the inverse matrix of Equation (11) is
calculated, the result would be as shown in Equation (12):

(
HT H

)−1
=


(

BENU
3×3 − BPC

3×2
(

BC
2×2
)−1(BPC

3×2
)T
)−1 (

BC
2×2 −

(
BPC

3×2
)T(BENU

3×3
)−1BPC

3×2

)−1

. (12)

In this study, only the HDOP and VDOP are used; therefore, in Equation (12), only the
(1,1) block matrix is considered. Since the calculation process is complex, it is not described
in this Section. A detailed formula derivation is shown in Appendix A. Ultimately, when
a dual GNSS is used, the HDOP and VDOP are as expressed in Equations (13) and (14):

HDOP =

√
1

nu

(
na

zna
unb

u + na
zna

unb
z + na

unb
znb

u + na
znb

znb
u
)
− nzSST(

na
zna

unb
u + na

zna
unb

z + na
unb

znb
u + na

znb
znb

u
)
− 2nzSST

2
cos θ

, (13)

VDOP =

√√√√ nanb − 2n
nu

SST(
na

zna
unb

u + na
zna

unb
z + na

unb
znb

u + na
znb

znb
u
)
− 2nzSST

1
1− sin θ

. (14)

In Equations (13) and (14), the square sum trigonometrical function (SST) is given
by Equation (15):

SST =

(
na

u

∑
k=1

sin φk

)2

+

(
na

u

∑
k=1

cos φk

)2

=

 nb
u

∑
k=1

sin φk

2

+

 nb
u

∑
k=1

cos φk

2

. (15)

Equation (15) yields trigonometric functions with all of the azimuth angles of the
uniform satellites for one of the dual GNSSs, and the squares of their sums are added. This
value remains the same, regardless of which GNSS is considered. The properties of this
value are explained in subsequent sections.

Here, the properties of the HDOP and VDOP in a dual GNSS are analyzed by consider-
ing Equations (13) and (14). As in the case of the single GNSS, both equations are separated
into two parts, where one is related to the number of satellites and the other is related to the
elevation angles of the uniform satellites. The analysis of the part related to the elevation
angles is similar to that in the case of the single GNSS. Therefore, the description of this part
is omitted; only the part related to the number of satellites in the square root is analyzed.

In Equation (13), this part in the square root is further divided into two parts: the
first part only consists of nu, and the second part has a form in which the numerator
and denominator are similar but the subtracted term on the right side is doubled in the
denominator. First, the correlation between nu and HDOP can be determined via the first
part. In nu, as the number of uniform satellites increases, the HDOP decreases. In this study,
we analyzed the relationship between the HDOP and the variables included in the second
part, namely na

zna
unb

u + na
zna

unb
z + na

unb
znb

u + na
znb

znb
u, nz, and SST. All of these variables have

positive values. na
zna

unb
u + na

zna
unb

z + na
unb

znb
u + na

znb
znb

u is calculated via the satellites that are
classified as zenith, uniform, first GNSS, and second GNSS. As this term increases, the
values of the numerator and denominator become similar, and the HDOP decreases. nz
is the number of zenith satellites, and SST is described briefly above. These two variables
exhibit tendencies similar to that of the HDOP. As the two variables increase, the value
subtracted from the denominator increases, and the HDOP consequently increases.

In Equation (14), for determining VDOP, n, nanb, nz, nu, na
zna

unb
u + na

zna
unb

z + na
unb

znb
u +

na
znb

znb
u, and SST are considered as variables. First, n is the number of selected satellites; as

it increases, the VDOP decreases. However, for a more convenient analysis, this variable is
considered as a fixed value. nanb is calculated from the number of satellites in each GNSS.
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As the numbers of satellites in each part become equal, its value increases, and the VDOP
also increases. If nz increases, the denominator decreases, and the VDOP increases. If nu
increases, the value of the numerator increases, and the VDOP increases. Furthermore, if
na

zna
unb

u + na
zna

unb
z + na

unb
znb

u + na
znb

znb
u increases, the denominator increases, and the VDOP

decreases. The effect of the SST is dependent on the values of the other variables in the
numerator and denominator; therefore, it does not have a tendency that is consistent with
respect to the VDOP. Thus far, the individual effects of each of the variables that constitute
Equation (14) have been examined. However, since these variables are not independent of
each other, it is difficult to clearly discern the tendencies of the VDOP, as realized in the case
of the HDOP. For example, if both nz and nu increase, the VDOP increases, as explained
previously. However, these two values are related to n = nz + nu. Therefore, the two values
cannot increase in the same manner. In addition, terms other than the SST are related to the
number of satellites, and they are also correlated with each other. For these reasons, it is
difficult to describe the effect of the variables on the VDOP through mathematic results
alone. Therefore, the VDOP needs to be determined through simulations.

5. Simulation of Zenith + Horizon Placement Considering Dual GNSS

The HDOP and VDOP for the ZH placement considering a scenario with a dual GNSS
were derived in Section 4. To verify the mathematically derived content, a simulation was
performed. As the number of selected satellites increases, the number of simulations also
increases; therefore, the number of satellites was limited to 6 in this study.

5.1. Horizontal Dilution of Precision

Using the derived formulas, it was confirmed that the HDOP declines if the number of
uniform satellites increases, for both the single and dual GNSSs. However, if the selected
satellites are all placed at a uniform satellite, the angles of elevation are identical. Therefore,
the H matrix cannot have a full rank, and the position and DOP calculations become
impossible. Therefore, one satellite is placed at the zenith to resolve this problem.

Table 2 presents the result of the dual GNSS HDOP simulation with one zenith satellite
and five uniform satellites. All of the possible cases were simulated, and the HDOP values
were arranged in ascending order. The na

zna
unb

u + na
zna

unb
z + na

unb
znb

u + na
znb

znb
u variable in

Equation (13) is represented as nC in Table 2. The final row in Table 2 denotes the case
where the DOP calculations were impossible. In this case, the types of GNSSs used for
the uniform satellites were the same, whereas those for the zenith satellite was different.
Here, as in the case of placing uniform satellites alone, the H matrix cannot have a full
rank, and the DOP calculations become impossible. In the simulation results, the minimum
HDOP was calculated for the case involving a single GNSS. As can be observed, this is
similar to the result of a previous study [21], where the DOP for a single GNSS was lower
than that for a dual GNSS. However, for the single GNSS, there is a high probability that
the satellites will be located far from the ZH placement, owing to the limited number
of satellites. Therefore, it is necessary to analyze the ZH placement while considering a
dual GNSS. From Table 2, it can be observed that, overall, when the dual GNSS satellite is
selected, the HDOP features a strong correlation with the SST variable.

Table 2. Horizontal dilution of precision (HDOP) simulation (zenith: 1, uniform: 5).

na
z nb

z na
u nb

u nC SST HDOP

1 0 5 0 0 0.0000 0.8944
1 0 3 2 6 0.3820 0.9265
0 1 3 2 6 0.3820 0.9265
1 0 4 1 4 1.0000 1.0954
0 1 4 1 4 1.0000 1.0954
1 0 3 2 6 2.6180 1.8819
0 1 3 2 6 2.6180 1.8819
0 1 5 0 0 0.0000 X
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SST is the value expressed by Equation (15). This value is calculated solely from the
uniform satellites of the individual GNSSs, as explained previously. As can be observed
from Equation (13) and Table 2, the HDOP decreases as the SST decreases. If the satellites
of each GNSS are placed uniformly, the two terms in Equation (15) approach 0, and the SST
decreases. Therefore, to lower the HDOP, the satellites of individual GNSSs must be placed
uniformly. This was confirmed through simulations involving five uniform satellites.

Using these five uniform satellites, four placements were created for a dual GNSS.
These four placements are depicted in Figure 3. The SST values for the four cases are listed
in Table 3. When the satellite placement was configured as a single GNSS, as in Case 1, the
SST was 0. When one dual GNSS satellite was added, as in Case 2, the SST was 1. Further,
when two dual GNSS satellites were added, as in Cases 3 and 4, the value varied according
to the placement of satellites. As mentioned in the mathematical analysis above, the SST in
Case 4, where the dual GNSS placement was arranged more uniformly, was lower than
that in Case 3. In this manner, it can be observed that, as the satellites of individual GNSSs
are placed more uniformly, the SST decreases; consequently, the HDOP decreases. This
result holds even when the number of satellites increases.

Figure 3. Squared Sum Trigonometric function (SST) simulation for five uniform satellites (blue-circle:
first GNSS, red-square: second GNSS): (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Table 3. SST for satellite placement.

Case 1 2 3 4

SST 0.0000 1.0000 2.6180 0.3820
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5.2. Vertical Dilution of Precision

In the case of the VDOP, the simulations were performed for all of the cases with six
selected satellites, without any additional conditions. The simulation results are presented
in Table 4, in ascending order of the VDOP. Here, the table omits cases where the calculation
was impossible owing to the insufficient rank of the H matrix. As described in Equation (14),
it is difficult to identify a clear correlation between the VDOP and its variables. However,
in the simulation results, tendencies can be determined in the satellite placements with
low VDOP. The case with the lowest VDOP was the single GNSS case; this is similar to
the HDOP results. The single GNSS had the minimum VDOP when the number of zenith
satellites and the number of uniform satellites were equal, as in Equation (8). When a dual
GNSS satellite was selected, the VDOP decreased as the number of zenith satellites and the
number of uniform satellites within the individual GNSS became nearly equal.

Table 4. Vertical dilution of precision (VDOP) simulation (n = 6).

na
z nb

z na
u nb

u nC SST VDOP

3 0 3 0 0 0.0000 0.8165
2 1 2 1 12 1.0000 0.8165
2 0 4 0 0 0.0000 0.8660
1 1 2 2 12 0.0000 0.8660
1 1 2 2 12 2.0000 0.8660
2 1 3 0 6 0.0000 0.9129
1 2 2 1 12 1.0000 0.9129
1 1 3 1 10 1.0000 0.9129
2 0 2 2 8 0.0000 1.0000
0 2 2 2 8 0.0000 1.0000
2 0 3 1 6 1.0000 1.0000
1 0 5 0 0 0.0000 1.0954
1 1 4 0 4 0.0000 1.1180
1 0 4 1 4 1.0000 1.1402
1 2 3 0 6 0.0000 1.1547
1 0 3 2 6 0.3820 1.1631
0 1 3 2 6 0.3820 1.2425
1 0 3 2 6 2.6180 1.4991
0 1 4 1 4 1.0000 1.6733
0 2 3 1 6 1.0000 1.7321

Unlike the HDOP, the VDOP was simulated without additional conditions, and a
relatively large number of simulations were required, as presented in Table 4. Thus, to
facilitate the analyses, additional conditions were applied to the VDOP. These additional
conditions were applied to the placement with the minimum VDOP, which consisted of
three zenith and three uniform satellites. Table 5 lists the numbers of satellites for all
possible cases, according to the type of dual GNSS in this scenario. These cases were
applied when using actual satellites, as discussed in the following section.

Table 5. VDOP case (zenith satellites: three, uniform satellites: three).

Case Zenith (First GNSS: Second GNSS) Uniform (First GNSS: Second GNSS)

1 3:0 3:0
2 3:0 2:1
3 3:0 1:2
4 3:0 0:3
5 2:1 3:0
6 2:1 2:1
7 2:1 1:2
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6. Verification of Formulas Using Actual Satellites

The real-world data used in the analyses were acquired over the course of approx-
imately 29 h, from 01:00 on 22 December 2021, to 06:00 on 23 December 2021. To avoid
similarities in the satellite placement, sampling was performed at 15 min intervals. These
data were acquired on the roof of the New Engineering Building of Konkuk University,
Seoul, South Korea. A NOVATEL OEM6 was used as the receiver. The actual data receiv-
ing environment is given in Figure 4. GPS and Galileo were selected as the dual GNSSs,
considering the number of visible satellites and the variety of satellite placements, from
which the data were received.

Figure 4. Actual data receiving environment: (a) Antenna (NOVATEL, GNSS-750); (b) Receiver
(NOVTEL, OEM-6, Flexpak6); (c) Antenna Position.

In this study, four DOPs were calculated and compared at each time point. If the
satellites used in the DOP calculations were from a single GNSS, the estimations were
performed for a case involving four unknown values. Further, when dual GNSS satellites
were selected, five unknown values were estimated. The first of the four DOPs was
calculated using all visible satellites. For the second, the DOP values were calculated for
all subsets, in which six satellites were selected from among all of the satellites, and the
minimum DOP was used. The third DOP value was calculated by selecting the satellites
closest to the ZH placement. Finally, the fourth DOP was calculated by changing the
satellites that were selected in the third DOP, based on Sections 4 and 5 considering a dual
GNSS. These four DOPs are shown in following figure and table, and they are labeled as
all-in-view (AIV), brute force (BF), regular polygon (RP), and case change (CC), respectively.
These values were analyzed, and the previously described formulas were verified.

6.1. Horizontal Dilution of Precision

Figure 5 and Table 6 present the HDOP and statistical values obtained over time.
AIV and BF naturally exhibited a low HDOP, and the average difference in the HDOP
was approximately 0.27. By examining this difference, it is evident that when appropriate
satellites are selected, there is no significant difference compared to the DOP determined
using all satellites. In the case of RP, where the results were obtained considering satellites
close to the ZH placement with one zenith satellite and five uniform satellites, high HDOP
values were calculated at several time points. This is due to the fact that the closest satellites
were selected, without considering the placement according to the type of GNSS. CC
represents the results obtained by changing the uniform satellites in the RP placement in
descending order of SST.

Algorithm 1 is the pseudo code of an algorithm for changing the uniform satellites.
This algorithm was designed to change the satellites to those in Cases 3, 2, 4, and 1,
which are arranged in descending order by SST. Only one satellite was changed at a time,
except when Case 4 was changed to Case 1 at the end. Moreover, as the placements move
farther from the ZH placement on changing the satellites, the HDOP values before and
after the change were compared; notably, the change was not implemented if the HDOP
value increased.



Sensors 2022, 22, 3475 13 of 21

Figure 5. Actual data satellite selection horizontal results (a) HDOP; (b) uniform satellite case.

Table 6. HDOP statistical results by type of satellite selection.

Selection Min Mean Max

AIV 0.5689 0.7228 1.0050
BF 0.8780 0.9883 1.2848
RP 0.9668 1.7770 20.0791
CC 0.9418 1.1551 1.6639

An analysis was performed at the time point with the highest HDOP in RP, as shown
in Figure 5. The time point was 3 h and 45 min. A skyplot of this time is shown in Figure 6.
The graph in Figure 6a is the skyplot of all visible satellites in the dual GNSS, and the
HDOP at this time was calculated as 0.9331. As can be observed, there were no satellites
in the northwestern sky at this time. The graph in Figure 6b shows the RP results, for
which satellites close to the ZH placement were selected, and the HDOP was calculated
as 20.0791. Satellite 30 in the second system was close to the zenith placement in the
ZH placement, and the rest of the satellites were thus selected as the uniform satellites.
With regard to the uniform satellites, three satellites from the first GNSS were selected
in succession, and 2 satellites from the second GNSS were selected in succession, which
represents the placement for Case 3 in Figure 3. Moreover, Case 3 entails the placement
with the highest SST, and its HDOP was higher than that in the other cases. Furthermore,
the satellites themselves were not visible in the northwestern sky, and satellites with low
elevation angles could not be selected in that direction. Hence, it was predicted that a
high HDOP can be calculated. The graph in Figure 6c shows the skyplot for CC, where
the uniform satellites were changed using the algorithm, and the HDOP at this time was
1.5239. Owing to this change in the uniform satellites, the HDOP was reduced by 18.5552.
The zenith satellites and satellites 24 and 31 in the first GNSS, as well as satellite 27 in the
second GNSS, were not modified; the remaining two satellites were changed. The changed
satellite positions were close to the RP satellites, and the type of GNSS was changed. This
changed placement is depicted under Case 4 in Figure 3. Consequently, the HDOP was
considerably reduced, solely on changing the type of GNSS in this manner. Based on these
results, the previously presented conclusions were deemed to be valid.

Figure 5 indicates that, after applying the algorithm, the HDOP of CC was reduced
in comparison to that for RP. Cases 2 and 3, which presented a high SST in the graph of
Figure 5b and in Table 7, exhibited a reduction when moving from RP to CC. By contrast,
Cases 1 and 4, which had a low SST, exhibited an increase. These results indicate that, Case
change considering a dual GNSS proceeds for decreasing SST. This leads to a reduction
in HDOP. These results demonstrate that it is important to perform satellite placement
according to the dual GNSS.
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Algorithm 1 Changing uniform satellite for HDOP improvement (nu = 5)

1: void function changing uniform satellite(azimuth_satellites, elevation_satellites)
2: nu = 5;
3: sat_me = find satellite of minimum elevation(elevation_satellites);
4: vec_s = generate vector of satellites(azimuth_satellites, elevation_satellites);
5: vec_rp = generate vector of regular polygon(nu, sat_me);
6: sat_selec = select satellite of nearest regular polygon vector(vec_s, vec_rp);
7: case_selec = check case of selected satellite(sat_selec);
8: if case_selec == 3
9: sat_case2 = change satellite from case 3 to case 2;
10: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case2);
11: end
12: if case_selec == 2
13: sat_case1 = change satellite from case 2 to case 1;
14: sat_case4 = change satellite from case 2 to case 4;
15: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1, sat_case4);
16: end
17: if case_selec == 4
18: sat_case1 = change satellite from case 4 to case 1;
19: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1);
20: end
21: return sat_selec, case_selec
22: end function changing uniform satellite
23:
24: void function compare case(case_selec, sat_selec, sat_caseA, sat_caseB, . . . )
25: flag_case = compare minimum HDOP(sat_selec, sat_caseA, sat_caseB, . . . );
26: switch flag_case
27: case case_selec
28: return sat_selec, case_selec
29: case A
30: sat_selec = sat_caseA;
31: case_selec = A;
32: return sat_selec, case_selec
33: case B
34: . . .
35: end
36: end function case selection

Figure 6. Skyplot, 3 h 45 min epoch (blue-circle: first GNSS, red-square: second GNSS): (a) AIV;
(b) RP; (c) CC.
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Table 7. Number and percentage of HDOP cases after applying the algorithm.

Case
RP CC

Number Percentage Number Percentage

1 9 7.563 43 36.134
2 31 26.050 11 9.244
3 46 38.656 5 4.202
4 33 27.731 60 50.420

Sum 119 100.000 119 100.000

6.2. Vertical Dilution of Precision

Figure 7 and Table 8 present the VDOP and statistical values over time. AIV and BF
showed low VDOP values, and there was an average difference of approximately 0.22.
For the VDOP, three zenith satellites and three uniform satellites were selected. Moreover,
for the three zenith satellites in the ZH placement, three satellites with high elevation
angles were selected. For the three uniform satellites, this study selected satellites that were
closest to the triangular vectors created based on the lowest elevation angle. The VDOP
calculated using the satellites selected in this manner is shown as RP. In these results as
well, there were intervals where the VDOP increased. To compensate for this, a VDOP
satellite placement changing algorithm was applied, as in the case of the HDOP.

Figure 7. Actual data satellite selection vertical results (a) VDOP; (b) satellite case.

Table 8. VDOP statistical results by type of satellite selection.

Min Mean Max

AIV 0.8371 1.0633 1.4352
BF 1.0457 1.2810 1.7934
RP 1.0457 1.8160 21.1959
CC 1.0457 1.5087 2.7137

Algorithm 2 the pseudo code of an algorithm for changing the VDOP satellite place-
ment. Based on previous results, it can be predicted that the minimum VDOP in Table 5
is obtained under Case 1, whereas the maximum VDOP is obtained under Case 4. This
algorithm changed one satellite at a time, starting with Case 4, which had the maximum
VDOP. The interval within which the case change was performed included the process
of comparing the VDOP before and after the satellite change and determining whether a
change occurred.
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Algorithm 2 Changing satellite for VDOP improvement (n = 6)

1: void function changing satellite(azimuth_satellites, elevation_satellites)
2: nz = 3;
3: nu = 3;
4: sat_me = find satellite of minimum elevation(elevation_satellites);
5: sat_zenith = select satellite of high elevation(nz, azimuth_satellites);
6: vec_s = generate vector of satellites(azimuth_satellites, elevation_satellites);
7: vec_rp = generate vector of regular polygon(nu, sat_me);
8: sat_uniform = select satellite of nearest regular polygon vector(vec_s, vec_rp);
9: sat_selec = merge zenith and uniform satellites(sat_zenith, sat_uniform);
10: case_selec = check case of selected satellite(sat_selec);
11: if case_selec == 4
12: sat_case8 = change satellite from case 4 to case 8;
13: sat_case3 = change satellite from case 4 to case 3;
14: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case8, sat_case3);
15: end
16: if case_selec == 8
17: sat_case7 = change satellite from case 8 to case 7;
18: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case7);
19: end
20: if case_selec == 3
21: sat_case7 = change satellite from case 3 to case 7;
22: sat_case2 = change satellite from case 3 to case 2;
23: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case7, sat_case2);
24: end
25: if case_selec == 5
26: sat_case6 = change satellite from case 5 to case 6;
27: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6);
28: end
29: if case_selec == 7
30: sat_case6 = change satellite from case 7 to case 6;
31: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6);
32: end
33: if case_selec == 2
34: sat_case6 = change satellite from case 2 to case 6;
35: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case6);
36: end
37: if case_selec == 6
38: sat_case1 = change satellite from case 6 to case 1;
39: [case_selec, sat_selec] = compare case(case_selec, sat_selec, sat_case1);
40: end
41: return sat_selec, case_selec
42: end function changing satellite
43:
44: void function compare case(case_selec, sat_selec, sat_caseA, sat_caseB, . . . )
45: flag_case = compare minimum VDOP(sat_selec, sat_caseA, sat_caseB, . . . );
46: switch flag_case
47: case case_selec
48: return sat_selec, case_selec
49: case A
50: sat_selec = sat_caseA;
51: case_selec = A;
52: return sat_selec, case_selec
53: case B
54: . . .
55: end
56: end function case selection
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An analysis was performed at the time point where the largest values were calculated
for the VDOP RP results. This time point was the 30 min point. The graph in Figure 8a is a
skyplot of the AIV satellite, and the VDOP at this time was 1.0075. The graph in Figure 8b
shows the RP results, and the VDOP at this time was 21.1959. The three zenith satellites in
the satellite arrangement for this time were from the first GNSS, whereas the three uniform
satellites were from the second GNSS. This arrangement is presented under Case 4 in
Table 5. Case 4 represents the arrangement in which the VDOP is considered to be the
highest; it can be observed that this analysis is consistent with the actual satellite selection.
The graph in Figure 8c presents a skyplot for the results of changing the satellites, while
considering a dual GNSS. Among the RP satellites, only Satellite 15 of the second GNSS
was changed to Satellite 12 of the first GNSS. When such changes were implemented, the
VDOP was 1.9062, which indicates a reduction of 19.2897 in comparison to that for RP.
Thus, the VDOP was significantly reduced on changing the type of GNSS, although the
satellites were farther away from the ZH placement after this change. These results indicate
that the methods studied thus far are also valid in the case of the VDOP.

Figure 8. Skyplot, 30 min epoch (blue-circle: first GNSS, red-square: second GNSS): (a) AIV; (b) RP;
(c) CC.

Table 9 presents the number of case selections before and after the VDOP satellite
change. When the satellite changes were performed considering the GNSS, there was an
increase in the numbers of selections for Cases 1 and 6, which exhibit low VDOP values,
and a decrease in the numbers of selections for the other cases. With regard to the HDOP,
the placement according to the dual GNSS type is also important for VDOP.

Table 9. Number and percentage of VDOP cases after applying the algorithm.

Case
RP CC

Number Percentage Number Percentage

1 1 0.840 14 11.765
2 0 0.000 0 0.000
3 1 0.840 0 0.000
4 1 0.840 0 0.000
5 10 8.404 4 3.361
6 45 37.815 66 55.462
7 42 35.294 29 24.370
8 19 15.967 6 5.042

Sum 119 100.000 119 100.000

7. Conclusions

In this study, we mathematically derived the HDOP and VDOP for dual GNSS satellites
in the ZH placement, which is an ideal condition, and verified these results through simu-
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lations and actual satellite data. For the ZH method used in previous studies, minimum
GDOP conditions were confirmed through simulations. In this study, the ZH placement
conditions were used without modifications, and the DOP was calculated mathematically.
Furthermore, the HDOP and VDOP were differentiated and mathematically derived, rather
than the GDOP. The results confirmed that the HDOP decreases as the number of uniform
satellites in a single GNSS increases, whereas the VDOP decreases as the numbers of zenith
and uniform satellites become more similar. This indicates that the DOP values vary ac-
cording to the numbers of satellites placed at the zenith and those placed uniformly. Thus,
satellite placements can be changed and used depending on the importance of horizontal
or vertical placement for a given field of application.

There are two methods for handling the receiver clock errors in each system when us-
ing dual GNSSs. This study employed the method that handles errors by adding unknown
values. The HDOP and VDOP for a dual GNSS in the ZH placement were mathematically
derived, and simulations were performed. As in the case of a single GNSS, the HDOP
for a dual GNSS decreases as the number of uniform satellites increases. Further, it was
confirmed that the SST variable has a strong correlation with the HDOP for a dual GNSS.
The SST is a variable that indicates the uniformity of the satellites in each individual GNSS
of a dual GNSS. It was found that SST and HDOP decrease as the individual GNSS satel-
lites’ uniformity increases. Based on the VDOP formula, it was difficult to confirm a clear
correlation between the variables and the VDOP. One reason for this is that the numbers
of zenith and uniform satellites both have the same correlation with VDOP, but the sum
of the numbers of zenith and uniform satellites is constant, and they cannot both cause a
reduction in the VDOP simultaneously. Therefore, the characteristics of the VDOP were
confirmed through simulation results. In the simulation results, the VDOP decreased as
an individual GNSS’ number of zenith satellites and the number of uniform satellites in
the dual GNSS became nearly equal. In this manner, it was confirmed that the HDOP and
VDOP tendencies of a single GNSS are also maintained in the dual GNSS. Therefore, it is
predicted that these tendencies will be maintained even on expanding to multiple GNSS.

Through the simulation results, it was confirmed that the HDOP and VDOP of a
single GNSS are lower than those of a dual GNSS. These results suggest that, if the ZH
placement is to be implemented, it is more effective to use single GNSS satellites than dual
GNSS satellites. However, this may differ when actual satellites that are closest to the ZH
placement are selected, given that it is difficult for actual satellites to remain in the perfect
ZH placement. In the case of a single GNSS, the number of satellites is small; therefore,
it is more unlikely that the satellites are close to the ZH placement, as compared to those
in the dual GNSS. Consequently, further research on satellite placement is necessary to
lower the HDOP and VDOP for a dual GNSS. To confirm this, actual satellite data were
used. When satellites close to the ZH placement were selected, without considering the
type of GNSS, there were intervals within which the HDOP and VDOP both increased
considerably. In this study, a satellite change algorithm that considers the type of GNSS
was used. The results confirmed that the increase in the HDOP and VDOP was reduced.
In addition, on applying this algorithm, the number of satellite placement cases for lower
HDOP and VDOP values increases. These results confirmed that the research presented
herein is valid.

It should be noted that this study was limited to investigating a dual GNSS owing to the
mathematical complexity involved. Nevertheless, it was confirmed that the characteristics
of a single GNSS are maintained even for a dual GNSS. Therefore, it can be expected that
the same tendencies will also be maintained when multiple GNSSs are considered. In
addition, since these results were derived mathematically, it is expected that the same
tendencies will exist when selecting a larger number of satellites, as opposed to the limited
number of satellites adopted in this study. Since this study aims to mathematically derive
and verify DOP, we did not analyze the optimality of the satellite selection method in detail.
However, it explained the necessity and effectiveness of satellite selection. Therefore, this
study is expected to be applicable to various satellite selection methods.



Sensors 2022, 22, 3475 19 of 21

Author Contributions: Conceptualization, J.J. and Y.J.L.; methodology, J.J.; validation, J.J., S.S., and
Y.J.L.; formal analysis, J.J.; investigation, J.J. and D.P.; data curation, J.J. and D.P.; writing—original
draft preparation, J.J. and Y.J.L.; writing—review and editing, J.J. and Y.L; visualization, J.J.; supervi-
sion, S.S. and Y.J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea Government (MSIT) (No. 2019R1F1A1063111).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

HT H =



cos2 θ
nu
∑

k=1
sin2 φk 0 0 − cos θ

na
u

∑
k=1

sin φk − cos θ
nb

u
∑

k=1
sin φk

cos2 θ
nu
∑

k=1
cos2 φk 0 − cos θ

na
u

∑
k=1

cos φk − cos θ
nb

u
∑

k=1
cos φk

nz + nu sin2 θ −na
z − na

u sin θ −nb
z − nb

u sin θ
na 0

nb



=


nu
2 cos2 θ 0 0 −SS cos θ SS cos θ

nu
2 cos2 θ 0 −SC cos θ SC cos θ

nz + nu sin2 θ −na
z − na

u sin θ −nb
z − nb

u sin θ
na 0

nb


∵

na
u

∑
k=1

sin φk +
nb

u
∑

k=1
sin φk = 0,

na
u

∑
k=1

cos φk +
nb

u
∑

k=1
cos φk = 0

∵ SS :=
na

u
∑

k=1
sin φk, SC :=

na
u

∑
k=1

cos φk

∵
nu
∑

k=1
sin2 φk =

nu
∑

k=1

1−cos 2φk

2 =
nu−

nu
∑

k=1
cos 2φk

2 = nu
2

(
i f nu ≥ 3,

nu
∑

k=1
cos 2φk = 0

)
∵

nu
∑

k=1
cos2 φk =

nu
∑

k=1

1+cos 2φk

2 =
nu+

nu
∑

k=1
cos 2φk

2 = nu
2

(
i f nu ≥ 3,

nu
∑

k=1
cos 2φk = 0

)

(10)

(
HT H

)−1
=


(

BENU
3×3 − BPC

3×2
(

BC
2×2
)−1(BPC

3×2
)T
)−1 (

BC
2×2 −

(
BPC

3×2
)T(BENU

3×3
)−1BPC

3×2

)−1

 (12)

BPC
3×2
(

BC
2×2
)−1(BPC

3×2
)T

=

 −SS cos θ SS cos θ
−SC cos θ SC cos θ

−na
z − na

u sin θ −nb
z − nb

u sin θ

[ 1/na 0
0 1/nb

][
−SS cos θ −SC cos θ −na

z − na
u sin θ

SS cos θ SC cos θ −nb
z − nb

u sin θ

]

=

 − 1
na SS cos θ 1

nb SS cos θ

− 1
na SC cos θ 1

nb SC cos θ

− na
z

na − na
u

na sin θ − nb
z

nb −
nb

u
nb sin θ

[ −SS cos θ −SC cos θ −na
z − na

u sin θ

SS cos θ SC cos θ −nb
z − nb

u sin θ

]

=


na+nb

nanb SS2 cos2 θ na+nb

nanb SS·SC cos2 θ
(na

unb−nb
z na) sin θ+na

z nb−nb
z na

nanb SS cos θ

na+nb

nanb SC2 cos2 θ
(na

unb−nb
z na) sin θ+na

z nb−nb
z na

nanb SC cos θ

na
una

unb+nanb
unb

u
nanb sin2 θ +

2(na
z na

unb+nanb
z nb

u)
nanb sin θ + na

z na
z nb+nanb

z nb
z

nanb



(A1)



Sensors 2022, 22, 3475 20 of 21

BENU
3×3 − BPC

3×2

(
BC

2×2

)−1(
BPC

3×2

)T
=

 h11 h12 h13
h22 h23

h33



=



nu
2 cos2 θ − na+nb

nanb SS2 cos2 θ − na+nb

nanb SS·SC cos2 θ −

(
na

unb−nb
z na

)
sin θ+na

z nb−nb
z na

nanb SS cos θ

nu
2 cos2 θ − na+nb

nanb SC2 cos2 θ −

(
na

u nb−nb
z na

)
sin θ+na

z nb−nb
z na

nanb SC cos θ

nz + nu sin2 θ − na
una

unb+nanb
u nb

u
nanb sin2 θ −

2
(

na
z na

u nb+nanb
z nb

u
)

nanb sin θ − na
z na

z nb+na nb
z nb

z
na nb



=



(
nu
2 −

na+nb

na nb SS2
)

cos2 θ na+nb

nanb SS·SC cos2 θ
na

unb
z−na

z nb
u

na nb (sin θ − 1)SS cos θ(
nu
2 −

na+nb

nanb SC2
)

cos2 θ
na

unb
z−na

z nb
u

nanb (sin θ − 1)SC cos θ

na
z na

unb
u+na

z na
unb

z+na
unb

z nb
u+na

z nb
z nb

u
nanb (sin θ − 1)2


∵ na = na

z + na
u , nb = nb

z + nb
u , nu = na

u + nb
u , nz = na

z + nb
z

(A2)

det
(

BENU
3×3 − BPC

3×2
(

BC
2×2
)−1(BPC

3×2
)T
)

= h11h22h33 − h11h2
23 − h2

12h33 − h2
13h22 + 2h12h13h23

=

((
n2

u(na
z na

unb
u+na

z na
unb

z+na
unb

z nb
u+na

z nb
z nb

u)
4nanb

)
− (na

u+nb
u)

2
(na

z+nb
z)

2nanb

(
SS2 + SC2)) cos4 θ(sin θ − 1)2

(A3)

h11h22h33 =
((

nu
2 −

na+nb

nanb SS2
)

cos2 θ
)((

nu
2 −

na+nb

nanb SC2
)

cos2 θ
)(

na
zna

unb
u+na

zna
unb

z+na
unb

znb
u+na

znb
znb

u
nanb (sin θ − 1)2

)
=
(

n
nanb SS2 − nu

2

)(
n

nanb SC2 − nu
2

)(
na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u

nanb

)
cos4 θ(sin θ − 1)2

(A3.1)

h11h2
23 =

((
nu
2 −

na+nb

nanb SS2
)

cos2 θ
)(

na
unb

z−na
znb

u
nanb (sin θ − 1)SC cos θ

)2

=
(

na
unb

z−na
znb

u
nanb

)2(
nu
2 −

n
nanb SS2

)
SC2 cos4 θ(sin θ − 1)2

(A3.2)

h2
12h33 =

(
na+nb

nanb SS · SC cos2 θ
)2( na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u

nanb (sin θ − 1)2
)

=
(

n
nanb

)2
SS2 · SC2 na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u

nanb (sin θ − 1)2 cos4 θ
(A3.3)

h2
13h22 =

(
na

unb
z−na

znb
u

nanb (sin θ − 1)SS cos θ
)2((

nu
2 −

na+nb

nanb SC2
)

cos2 θ
)

=
(

na
unb

z−na
znb

u
nanb

)2(
nu
2 −

n
nanb SC2

)
SS2(sin θ − 1)2 cos4 θ

(A3.4)

2h12h13h23 = 2
(

na+nb

nanb SS · SC cos2 θ
)(

na
unb

z−na
znb

u
nanb (sin θ − 1)SS cos θ

)(
na

unb
z−na

znb
u

nanb (sin θ − 1)SC cos θ
)

= 2
(

n
nanb

)(
na

unb
z−na

znb
u

nanb

)2
SS2 · SC2 cos4 θ(sin θ − 1)2

(A3.5)

HDOP2 =
h22h33−h2

23+h11h33−h2
13

det
(

BENU
3×3 −BPC

3×2(BC
2×2)

−1
(BPC

3×2)
T) =

h33(h11+h22)−(h2
13+h2

23)
det
(

BENU
3×3 −BPC

3×2(BC
2×2)

−1
(BPC

3×2)
T)

= 4
nu cos2 θ

(na
zna

unb
u+na

zna
unb

z+na
unb

znb
u+na

znb
znb

u)−nz(SS2+SC2)
(na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u)−2nz(SS2+SC2)

(A4)

h33(h11 + h22) = na
zna

unb
u+na

zna
unb

z+na
unb

znb
u+na

znb
znb

u
nanb (sin θ − 1)2

((
nu
2 −

na+nb

nanb SS2
)

cos2 θ +
(

nu
2 −

na+nb

nanb SC2
)

cos2 θ
)

=
(

nu − na+nb

nanb

(
SS2 + SC2)) na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u

nanb cos2 θ(sin θ − 1)2 (A4.1)

h2
13 + h2

23 =
(

na
unb

z−na
znb

u
nanb (sin θ − 1)SS cos θ

)2
+
(

na
unb

z−na
znb

u
nanb (sin θ − 1)SC cos θ

)2

=
(

na
unb

z−na
znb

u
nanb

)2(
SS2 + SC2)(sin θ − 1)2 cos2 θ

(A4.2)

VDOP2 =
h11h22−h2

12

det
(

BENU
3×3 −BPC

3×2(BC
2×2)

−1
(BPC

3×2)
T)

=
nanb− 2n

nu (SS2+SC2)
(na

zna
unb

u+na
zna

unb
z+na

unb
znb

u+na
znb

znb
u)−2nz(SS2+SC2)

1
(1−sin θ)2

(A5)

h11h22 − h2
12 =

(
nu
2 −

na+nb

nanb SS2
)

cos2 θ
(

nu
2 −

na+nb

nanb SC2
)

cos2 θ −
(

na+nb

nanb SS · SC cos2 θ
)2

=
(( nu

2
)2 − nun

2nanb

)
cos4 θ

(A5.1)



Sensors 2022, 22, 3475 21 of 21

References
1. Han, K.; Lee, S.; You, M.; Won, J.H. A Comprehensive Evaluation of Possible RNSS Signals in the S-Band for the KPS. Sensors

2022, 22, 2180. [CrossRef] [PubMed]
2. Reid, T.G.R.; Pervez, N.; Ibrahim, U.; Houts, S.E.; Pandey, G.; Alla, N.K.R.; Hsia, A. Standalone and RTK GNSS on 30,000 Km of

North American Highways. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019.

3. Navigation Center. Available online: https://www.navcen.uscg.gov/?Do=constellationStatus (accessed on 27 January 2022).
4. Application Consumer Center. GLONASS. Available online: https://www.glonass-iac.ru/glonass/sostavOG/ (accessed on 27

January 2022).
5. Constellation Information|European GNSS Service Centre. Available online: https://www.gsc-europa.eu/system-service-

status/constellation-information (accessed on 27 January 2022).
6. Test and Assessment Research Center of China Satellite Navigation Office Available. Available online: http://www.csno-tarc.cn/

en/system/constellation (accessed on 27 January 2022).
7. Ramawickrama, Y.; Vijayanga, J.; Dharmarathne, R.; Wijesooriya, H. The Future of GNSS in the Next Ten Years. In Proceedings of

the 3rd Asia Pacific Space Generation Workshop (3rd AP-SGW), Los Barnos, Philippines, 12–13 November 2016.
8. Zhang, M.; Zhang, J. A Fast Satellite Selection Algorithm: Beyond Four Satellites. IEEE J. Sel. Top. Signal Process. 2009, 3, 740–747.

[CrossRef]
9. Phatak, M.S. Recursive Method for Optimum GPS Satellite Selection. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 751–754.

[CrossRef]
10. Doong, S.H. A Closed-Form Formula for GPS GDOP Computation. GPS Solut. 2009, 13, 183–190. [CrossRef]
11. Teng, Y.; Wang, J. A Closed-Form Formula to Calculate Geometric Dilution of Precision (GDOP) for Multi-GNSS Constellations.

GPS Solut. 2016, 20, 331–339. [CrossRef]
12. Kihara, M.; Okada, T. A Satellite Selection Method and Accuracy for the Global Positioning System. Navigation 1984, 31, 8–20.

[CrossRef]
13. Zheng, Z.; Huang, C.; Feng, C.; Zhang, F. Selection of GPS Satellites for the Optimum Geometry. Chin. Astron. Astrophys. 2004, 28,

80–87. [CrossRef]
14. Tao, A.L.; Jan, S.S. Optimal Navigation with Multi-Constellation GNSS: A Satellite Selection Algorithm. In Proceedings of the

29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR,
USA, 16–20 September 2016.

15. Nie, Z.; Gao, Y.; Wang, Z.; Ji, S. A New Method for Satellite Selection with Controllable Weighted PDOP Threshold. Surv. Rev.
2017, 49, 285–293. [CrossRef]

16. Cheng, Y.; Dambeck, J.; Holzapfel, F. Satellite Selection in Multi-GNSS Positioning. In Proceedings of the 29th International Tech.
Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 16–20 September 2016.

17. Sarkar, S. A Study on Compatibility and Interoperability among Multi- GNSS. AAOAJ 2021, 5, 25–31. [CrossRef]
18. Defraigne, P.; Pinat, E.; Bertrand, B. Impact of Galileo-to-GPS-Time-Offset Accuracy on Multi-GNSS Positioning and Timing. GPS

Solut. 2021, 25, 45. [CrossRef]
19. Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More;

Springer: Vienna, Austria; New York, NY, USA, 2008; pp. 262–266.
20. Won, D.H.; Ahn, J.S.; Lee, S.W.; Lee, J.Y.; Sung, S.K.; Park, H.W.; Park, J.P.; Lee, Y.J. Weighted DOP With Consideration on

Elevation-Dependent Range Errors of GNSS Satellites. IEEE Trans. Instrum. Meas. 2012, 61, 3241–3250. [CrossRef]
21. Teng, Y.; Wang, J. New Characteristics of Geometric Dilution of Precision (GDOP) for Multi-GNSS Constellations. J. Navig. 2014,

67, 1018–1028. [CrossRef]

http://doi.org/10.3390/s22062180
http://www.ncbi.nlm.nih.gov/pubmed/35336351
https://www.navcen.uscg.gov/?Do=constellationStatus
https://www.glonass-iac.ru/glonass/sostavOG/
https://www.gsc-europa.eu/system-service-status/constellation-information
https://www.gsc-europa.eu/system-service-status/constellation-information
http://www.csno-tarc.cn/en/system/constellation
http://www.csno-tarc.cn/en/system/constellation
http://doi.org/10.1109/JSTSP.2009.2028381
http://doi.org/10.1109/7.937488
http://doi.org/10.1007/s10291-008-0111-2
http://doi.org/10.1007/s10291-015-0440-x
http://doi.org/10.1002/j.2161-4296.1984.tb00856.x
http://doi.org/10.1016/S0275-1062(04)90009-4
http://doi.org/10.1080/00396265.2016.1171959
http://doi.org/10.15406/aaoaj.2021.05.00124
http://doi.org/10.1007/s10291-021-01090-6
http://doi.org/10.1109/TIM.2012.2205512
http://doi.org/10.1017/S037346331400040X

	Introduction 
	Zenith + Horizon Method 
	Single GNSS Formula Derivation 
	Dual GNSS Formula Derivation 
	Simulation of Zenith + Horizon Placement Considering Dual GNSS 
	Horizontal Dilution of Precision 
	Vertical Dilution of Precision 

	Verification of Formulas Using Actual Satellites 
	Horizontal Dilution of Precision 
	Vertical Dilution of Precision 

	Conclusions 
	Appendix A
	References

