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Abstract: Previous works indicate that data fusion, compared to single data modelling can improve
the assessment of soil attributes using spectroscopy. In this work, two different kinds of proximal
soil sensing techniques i.e., mid-infrared (MIR) and X-ray fluorescence (XRF) spectroscopy were
evaluated, for assessment of seven fertility attributes. These soil attributes include pH, organic carbon
(OC), phosphorous (P), potassium (K), magnesium (Mg), calcium (Ca) and moisture contents (MC).
Three kinds of spectra fusion (SF) (spectra concatenation) approaches of MIR and XRF spectra were
compared, namely, spectra fusion-Partial least square (SF-PLS), spectra fusion-Sequential Orthogo-
nalized Partial least square (SF-SOPLS) and spectra fusion-Variable Importance Projection-Sequential
Orthogonalized Partial least square (SF-VIP-SOPLS). Furthermore, the performance of SF models was
compared with the developed single sensor model (based on individual spectra of MIR and XRF).
Compared with the results obtained from single sensor model, SF models showed improvement in the
prediction performance for all studied attributes, except for OC, Mg, and K prediction. More specifi-
cally, the highest improvement was observed with SF-SOPLS model for pH [R2p = 0.90, root mean
square error prediction (RMSEP) = 0.15, residual prediction deviation (RPD) = 3.30, and ratio of perfor-
mance inter-quantile (RPIQ) = 3.59], successively followed by P (R2p = 0.91, RMSEP = 4.45 mg/100 g,
RPD = 3.53, and RPIQ = 4.90), Ca (R2p = 0.92, RMSEP = 177.11 mg/100 g, RPD = 3.66, and RPIQ = 3.22)
and MC (R2p = 0.80, RMSEP = 1.91%, RPD = 2.31, RPIQ = 2.62). Overall the study concluded that SF
approach with SOPLS attained better performance over the traditional model developed with the
single sensor spectra, hence, SF is recommended as the best SF method for improving the prediction
accuracy of studied soil attributes. Moreover, the multi-sensor spectra fusion approach is not limited
for only MIR and XRF data but in general can be extended for complementary information fusion in
order to improve the model performance in precision agriculture (PA) applications.

Keywords: precision agriculture (PA); multi-sensor; spectra fusion (SF); sequential orthogonalized
partial least square (SOPLS); soil fertility

1. Introduction

Assessment of the within field spatial variability in soil fertility is important in pre-
cision agriculture (PA) for performing several variable rate operations such as tillage,
fertilization, irrigation and seeding [1]. Soil fertility attributes such as, pH, organic carbon
(OC), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca) and moisture content
(MC) are considered the most significant indicators associated with soil quality and crop
productivity [2,3]. Therefore, accurate measurement of these attributes is important to
make better farming decision in PA. In this effort, traditional laboratory-based methods are
often used for the measurement of soil attributes while, these methods require specialized
equipment, which is labor intensive, costly, time-consuming, and destructive in nature,
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prohibiting their use in real-time quality measurement. In contrast spectroscopy has been
considered as the most promising alternative technique to the traditional method for mea-
surement of soil indicators [4,5]. Spectroscopy is simple, cost-effective, non-destructive and
a rapid analytical technique, need minimum or no sample preparation that can be used in
online or offline modes for measurement of soil quality indicators [3].

In soil science, mid-infrared (MIR) spectroscopy is one of the most important optical
techniques available for qualitative and quantitative analysis of soil fertility and quality.
The MIR spectral region (400–4000 cm−1) is especially important because fundamental
vibrations of the molecules, related to key soil fertility attributes take place [6]. MIR
is becoming more common, due to its specificity and well-defined absorption bands of
principal constituents (e.g., organic carbon, clay minerals and moisture contents) of the soil
in this spectral region. Various studies have investigated the potential of MIR spectroscopy
for successful determination of soil properties [7–11]. Likewise, another spectroscopic
technique, X-ray fluorescence (XRF) spectroscopy provide the characteristic elemental
information (for e.g., Mg, P, K, Ca) of the measured soil. The portable XRF technique is non-
invasive, cost-effective, non-destructive, and can be applied for both field and laboratory
conditions. In this technique soil atoms are irradiated with X-rays and they emit a secondary
florescence radiation and most of the elements present from sodium to uranium in the
periodic table are detected. Usage of XRF spectroscopy in soil science has been reported
by several authors for successful determination of soil elemental composition [4,12–15].
Most previous reports used each of these optical methods individually for prediction of
soil properties.

Although the individual use of MIR and XRF technique have proven their effectiveness
to estimate soil fertility attributes with different degree of success, single sensor can barely
measure all soil related attributes alone [2]. In addition, data collected with a single sensor
sometimes does not hold comprehensive information of the measured sample to allow
accurate predictions of target attributes. Therefore, it is essential to explore spectra fusion
(SF) approaches that can handle multi-sensor data simultaneously and assess majority of
soil fertility attributes accurately and rapidly.

Recently SF approaches played an important role in providing vast and improved
amount of information. Reports demonstrated that SF modelling may improve the accuracy
of predictions for the spectral analysis [16]. In this context, advance chemometric tools
such as multi-block chemometric strategy could be considered for the purpose of analyzing
complex data. The multi-block chemometric strategy can be defined as the merging of data
blocks from two or more sensors in a single model. It produces a more comprehensive
dataset, enhancing data visualization, identifying key variables, improving predictive per-
formance and allowing deeper data interpretation [17]. Thus, it is more effective to extract
information by handling all the blocks at the same time, instead of building individual
models for each set of data. For soil spectroscopy analysis there are several SF methods for
this purpose; the most well-known standard analysis method is multi-block PLS regression.
Recently, the multi-block SF method, named Sequential Orthogonalized Partial Least square
(SOPLS) became highly popular in the food sector to extract relevant information from
multi sensor data to predict chemical composition in various food products [18,19]. The
advantage of SOPLS is its ability to process multiple source data simultaneously (including
both regression and discrimination). Correlations between each block of predictors and the
response(s) are sequentially calculated after orthogonalization with respect to the scores
of previous regressions. Therefore, it can easily handle blocks with more than one latent
variable in comparison with standard analytical methods [20]. Such modeling combination
already showed improvement in the prediction accuracy of non-soil samples [21]. Which
may anticipate a great potential of the methodology to improve the prediction accuracy
for soil fertility attributes. Although some studies reported SF methods for soil prediction
based on Regression kriging (RK) for fusion of Geophysical and hyperspectral data, Prin-
ciple Component Analysis (PCA), Outer Product Analysis (OPA), Least–square (LS) and
Granger–Ramanathan (GR) for fusion of near-infrared (NIR), MIR and XRF data [5,22–25],
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to the best of our knowledge, no previous study has reported the use of SOPLS based SF
method in soil science. Moreover, to date no study has reported the combined prediction of
soil fertility parameters based on SOPLS based SF of MIR and XRF data.

Motivated by the above considerations, the overall study aims to investigate the
performance of SF-SOPLS models against the traditional SF-PLS model and individual
sensor spectra models [traditional partial least squares (TPLS)] in improvement of the
prediction accuracy of MIR and XRF data for key soil fertility properties (i.e., OC, MC, pH,
P, K, Ca, Mg).

2. Materials and Methods
2.1. Study Sites and Soil Sampling

In this study a total of 196 soil samples were randomly collected from agricultural
fields at different locations in Belgium and Spain. The samples were taken at 10–20 cm soil
depth, with an average spatial sampling rate of 3.25 samples/ha. The fields included are:
one field in Spain, designated SP1 (38.776888◦ N, 1.838478◦ E), and six fields in Belgium,
designated Keerkestraat (50.918051◦ N, 3.732146◦ E), Krokey (50.999652◦ N, 2.548878◦ E),
Kattestraat (50.780363◦ N, 5.071657◦ E), VDD Tegen ti hof (51.021233◦ N, 2.574553◦ E),
Langs de route (51.017723◦ N, 2.581572◦ E), and Bijna vrij (51.023043◦ N, 2.576173◦ E).
The detailed information about the studied fields is provided in Table 1 and sampling
area map is shown in Figure 1. Soil samples were brought to the laboratory and were
properly cleaned by removing non-soil particles such as plant residues, stones and other
debris. The cleaned soil samples were mixed properly by following the standard coning
and quartering method [26]. Further, one portion (consisting of 200 g soil/sample) was
used for sensor measurement (MIR and XRF measurement), and other portion (consisting
of 200 g soil/sample) was used for laboratory chemical analysis of pH, OC, P, K, Mg, Ca
and MC determination.
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Table 1. Characteristics of the study fields in Spain and Belgium.

Field Period Area (ha) Crop Type N Soil Texture Average MC (%) Average OC (%)

SP1, Spain 2019 50 Opium, Garlic 100 Clay loam 13.18 1.48
Keerkestraat, Belgium 2020 1.2 Maize 10 Loam 21.63 1.26

Krokey, Belgium 2020 13 Oil seed rape 4 Loam 19.31 1.66
Kattestraat, Belgium 2020 5 Potatoes 9 Loam 18.00 1.27

VDD Tegen ti hof, Belgium 2020 5 Potatoes 20 Loam 16.61 1.50
Langs de route, Belgium 2020 6 Potatoes 18 Polder 17.78 1.12

Bijna vrij, Belgium 2020 7 Sprout 35 Polder 22.43 1.08

N = number of samples; MC = moisture content; OC = organic carbon.

2.2. MIR Measurement of Soil Samples

Soil samples were first air dried, grinded, and sieved with a 2 mm mesh. For MIR
scanning of the processed soil samples, approximately 50 g of each air-dried (at 25 ◦C for
three weeks) and sieved soil sample was placed in a Petri dish (1.0 cm height by 5.5 cm
in diameter) and gentle pressure was applied on the surface with a spatula to generate
a levelled and smooth surface to ensure the maximum signal-to-noise ratio. A detailed
procedure about soil sampling can be found in [8,27]. Three replicates (50 g each) of
each sample were prepared following this method. Samples were scanned with the MIR
spectrometer (Agilent Technologies, Santa Clara, CA, USA), with a spectral wavenumber
range of 4000–650 cm−1 at 8 cm−1 resolution and 3.73 cm−1 sampling interval. Prior to the
soil scanning, a background was also obtained (at interval of 30 min) with a silver-plated
reference to calibrate the instrument. The spectral data were collected with absorbance
mode using the Microlab software V5.0 supplied with the spectrometer and exported in
txt format. Average absorbance of the three scans was used for further analysis. Figure 2a
shows the experiment process of soil samples with MIR measurement.
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2.3. X-ray Fluorescence (XRF) Measurement of Soil Samples

About 10 g of each air-dried and sieved soil sample was placed on a 30 mm open-
ended XRF cup of 31 mm diameter (n. 1530, Chemplex Industries Inc., Palm City, FL,
USA) sealed at the bottom with a 5-µm thick polypropylene film (n. 3520, SPEX, Costa
Mesa, CA, USA). A Vanta VMR M-Series handheld XRF scanner (Olympus, Hamburg,
Germany), equipped with a Rh X-ray tube (4 W, max. 50 kV, max. 200 µA) and an integrated
large-area silicon drift detector (165 eV) was used. Because of safety, the XRF working
station (benchtop mode) was used when operating with the XRF device. The samples were
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put over the measurement window and scanned in triplicate in two operating conditions
(15 kV at 30 µA; and 45 kV at 30 µA) by moving the sample cups over the measurement
window of the scanner. The three records were then averaged to obtain final elemental
concentration for each sample. The spectra were normalized by the detector live time and
exported in counts of photons per second (cps). A detailed description about XRF spectra
normalization can be found in [5]. Figure 2b shows the experimental process of soil samples
with XRF measurement.

2.4. Laboratory Measured Soil Properties

The other set of samples was sieved (<2 mm), homogenized and sent to the soil
service Belgium (BDB) for reference laboratory chemical analysis of pH, OC, P, K, Mg
and Ca. Table 2 shows the descriptive statistics of measured soil attributes. Soil pH was
measured in the supernatant, after shaking and equilibration for 2 h in 1 mol/potassium
chloride solution (KCI), using 1:2.5 soil: solution ratio. Soil OC was determined using the
dry combustion following Dumas principle (ISO 10694; CMA/2/II/A.7; BOC) [7]. For
the determination of the OC content, total inorganic carbon (TIC) compounds were in
advance removed by treating the soil sample with hydrochloric acid. The ammonium
lactate extracted P, K, Mg and Ca were analyzed using inductively coupled plasma atomic
emission spectroscopy (ISO 11885; CMA 2/I/B1) [3]. MC was analyzed using air-drying
method [7].

Table 2. Descriptive statistics of laboratory measured soil attributes for selected sample sets used for
building training and test sets.

Soil Indicators N Sample Set Range Mean ± SD

pH 156 Training set 6.50–8.65 8.02 ± 0.50
40 Test set 6.60–8.76 8.19 ± 0.51

OC (%)
156 Training set 0.73–2.47 1.34 ± 0.30
40 Test set 0.79–1.84 1.43 ± 0.28

P (mg/100 g) 156 Training set 0.33–69 19.21 ± 18.77
40 Test set 0.51–58 10.31 ± 15.59

K (mg/100 g) 156 Training set 9.00–122.91 41.56 ± 22.46
40 Test set 10.00–110.28 48.81 ± 20.72

Mg (mg/100 g) 156 Training set 17.00–175.29 62.25 ± 23.78
40 Test set 18.00–102.91 62.48 ± 23.12

Ca (mg/100 g) 156 Training set 196.00–3880 1380 ± 956.93
40 Test set 212.00–2900 929.23 ± 652.40

MC (%)
156 Training set 9.01–26.01 16.75 ± 4.33
40 Test set 7.02–23.05 14.83 ± 4.31

N = number of samples; OC = organic carbon; P = Phosphorous; K = potassium; Mg = Magnesium; Ca = Calcium;
MC = Moisture content; SD = standard deviation.

2.5. Spectra Pre-Treatment

The measured spectral data from MIR and XRF were imported in MATLAB software
for successive data processing. The spectral data contain random noise, and spectral
variation generated by the sensor therefore, different pre-treatment steps were considered
before subjecting the data to multivariate analysis. At first the raw data were smoothed by
a moving average method of size 5, which was successively followed by normalization,
multiplicative scatter correction (MSC), standard normal variate (SNV) and Savitzky-Golay
(SG) filtering. After several rounds of trials, the best preprocessing steps were used for
further analysis. The maximum normalization method was used, as it fits the spectral data
within unity so that all values would range from 0 to 1 [28]. The scatter correction by the
MSC technique is widely used to correct the additive scatter effect from data [29]. It fits
a regression line to each sample spectrum by averaging the spectral values obtained at
each wavelength using the least squares method. SNV transformation is a normalization
method that addresses the slope variation of sample spectra by centering and scaling
the individual spectra of the sample. In addition, the SG filtering technique is used to
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smoothen spectra by removing baseline variations and overlapping peaks [28]. For XRF
data an extra preprocessing steps including baseline correction and Compton normalization
were also implemented. A more detailed description about Compton normalization can be
found in [5]. With each preprocessing technique, prediction models (SF-PLS, SF-SOPLS
and SF-VIP-SOPLS) were developed, whose prediction performance was evaluated by
means of coefficient of determination (R2), residual prediction deviation (RPD), ratio of
performance to interquartile distance (RPIQ) and root mean square error (RMSE) values.
The preprocessing technique showing the highest R2, RPD and RPIQ and lowest RMSE
values was considered to lead to the best performing model. Table 3 shows the best
preprocessing steps used for the correction of the soil MIR and XRF data.

Table 3. Best preprocessing steps considered for correction of mid infrared (MIR) and X-ray fluores-
cence (XRF) spectral data.

Data Spectral Pretreatment Soil Quality Indicators

MIR Moving average→ Normalization pH, OC, Mg, MC
MIR Moving average→ SNV P
MIR Moving average K
MIR Moving average→MSC Ca
XRF Baseline correction→ Compton normalization→Moving average→ Normalization pH, OC, Mg, MC
XRF Baseline correction→ Compton normalization→Moving average→ SNV P
XRF Baseline correction→ Compton normalization→Moving average K
XRF Baseline correction→ Compton normalization→Moving average→MSC Ca

MIR = mid-infrared; XRF = X-ray fluorescence; SNV = Standard normal variate; MSC: Multiplicative scat-
ter correction; OC = organic carbon; P = Phosphorous; K = potassium; Mg = Magnesium; Ca = Calcium;
MC = Moisture content; SD = standard deviation.

2.6. Data Preparation

Prior to the creation of the prediction models, the preprocessed spectral dataset (X
and Y matrix data) from both sensors was divided into training and test set by Kenard-
Stone (KS) algorithm, which divides the samples in a uniform manner by calculating the
Euclidean distances between the X variables [30]. By using the KS method 80% of the
data (n = 156) were used to build the training dataset, while 20% of the data (n = 40) were
used as a test dataset. Further, the model was constructed using the training set, while
the test set was retained for testing the model performance. In this study two kinds of
chemometric models were adopted for the analysis of soil data that includes, TPLS model
for single sensor spectral data modeling, and spectral-fusion models by concatenated MIR
and XRF spectral data. In this study all kinds of data preprocessing, data partition, and data
modeling were accomplished in MATLAB software (version 2020b; MathWorks, Natick,
MA, USA).

2.7. Single Sensor Modeling

For the single sensor modeling, TPLS regression analysis was carried out individually
for MIR and XRF data to establish models to predict the soil properties under consideration.
In this paper, the individual sensor models were designated as MIR-TPLS and XRF-TPLS.

2.7.1. Traditional Partial Least Squares (TPLS)

TPLS is the most widely used chemometric tool for processing large amounts of spec-
troscopic data. It is used to solve multicollinearity problems that arise when two or more
predictor variables are highly correlated. It can be used for both regression and classifica-
tion (e.g., partial least squares discriminant analysis) purposes. The analysis determines
the linear relationship between X (independent variable) and Y (dependent variables)
and predicts the behavior of the Y. In PLS regression, data decomposed into orthogonal
structures called latent variables (LVs). The LVs describe the maximum covariance between
the spectral data and the response variables [29]. The general model of PLS is defined
as follows:

X = TPT + E (1)
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Y = UQT + F (2)

where Y is the matrix of dependent variables corresponding to the measured sample values
from the reference soil analysis methods, and X is the n× p matrix of independent variables
corresponding to the spectral variables for each measurement. The matrix X decomposes
into the score matrix T, loading matrix P, and error matrix E. The matrix Y decomposes into
the score matrix U, loading matrix Q, and error matrix F. In addition, scores T and U are
connected by the inner linear relationship. In this work, MIR-TPLS and XRF-TPLS models
for all studied soil attributes were developed using the training set.

2.8. Spectra Fusion (SF) Modeling

Before modelling, the MIR and XRF spectra and the laboratory measured soil attributes
were concatenated in one matrix. The resulting matrixes for each soil attributes were
subjected to three kinds of regression analysis including SF-PLS, SF-SOPLS and SF-VIP-
SOPLS, whose detailed description is provided in the following sections.

2.8.1. SF-PLS

The concatenated spectra of both sensors were used to build a PLS calibration mod-
els for the studied soil attributes. Details description of PLS regression is provided in
Section 2.7.1.

2.8.2. SF-SOPLS

The second multiblock data-fusion method namely, SOPLS was adopted to solve
the regression problem for soil dataset. SOPLS belongs to the family of multi-block PLS-
method. It allows easy handling of large collinear variables (blocks) and it is not affected
by variances of the blocks thus, particularly suitable for spectroscopic data [31,32]. SOPLS
approach uses a matrix orthogonalization operation to extract complementary information
sequentially from each data blocks or sensors (in this study MIR and XRF sensors). In this
process, the extraction of information is sequential, so that blocks of data are incorporated
one at a time, and their incremental contribution is then assessed. In this study the first
block was built with MIR data as it is more informative, easy to use and nonhazardous to
the samples. While the second block was built with XRF data due to its data complexity and
non-ionizing characteristics. For detailed information of SO-PLS method, the readers are
referred to the following references [18,21]. A standard linear model of SOPLS algorithm is
given as:

Y = X1B1 + X2C2 + E (3)

where Y is the response matrix; X1 and X2 are the data blocks; B1 and C2 represent the
regression coefficients respectively and E is a residual matrix. SOPLS model involves the
following steps:
Step 1: Y response is fitted to X1 by PLS regression
Step 2: X2 is orthogonalized with respect to X1-scores of the PLS regression extracted in
Step (1), obtaining X orth

2
Step 3: X orth

2 is used to predict the Y-residuals obtained from Step (1)
Step 4: The final regression model is obtained by summing up the predications of Step (1)
and Step (3), and can be expressed as:

Ŷ = X1B1 + X orth
2 C orth

2 = TX1 Q T
X1 + TX orth

2
Q T

X orth
2

(4)

where Ŷ indicates the model predictions B1 and C orth
2 are the regression coefficient matrices,

while T and Q are the X-scores and Y-loadings, respectively.

2.8.3. SF-VIP-SOPLS

The SF-VIP-SOPLS model is similar to the SF-SOPLS model however the only differ-
ence lies in using variable selection step (based on MIR and XRF spectra) before applying
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SOPLS model. The selected variables are than concatenated to develop a SOPLS model.
Therefore, instead of using a full spectrum (variables) the SF-VIP-SOPLS model is de-
veloped based on few important variables for prediction. For the selection of important
variables, we used variable impotence in projection (VIP) method. VIP calculates the value
of each predictor by fitting the PLS model according to the contribution of both dependent
and independent variables. The idea behind this measure is to accumulate the importance
of each variable j reflected by w from each component [33]. The VIP for j-th variable is
defined as:

VIPj =

√
p ∑A

a=1 W2
ja × SSYa

SSYtotal
(5)

where p is the number of variables, Wja is the weight value for the j-th variable of component
a, SSYa is the sum of squares of the explained for the ath component, SSYtoal is the total sum
of square explained for the dependent variable, and A is the total number of components.

The weight value of the PLS model describes the covariance between the dependent
and independent variables. Thus, the VIP value, which is based on the PLS weight, reflects
important information about the variables contributing to the description of the dependent
variables from the independent variables. Therefore, VIP was implemented to select the
effective wavelengths that can contribute the most to predicting the soil attributes under
consideration. The average of the squared values of the VIP is equal to 1 and generally used
as the criterion for important variable selection. Therefore, in this study we implemented a
threshold value of 1 for selection of important variables. Eventually, the SOPLS model was
developed with wavebands that indicated VIP values above the threshold level.

2.9. Methods for Model Evaluation

Moreover, the choice of optimal number of latent variables for single sensor models
and spectra fusion models is important, and usually optimized during the cross-validation
(CV), by adopting the LV that result in the lowest root mean square error (RMSE) value
(Equation (1)). The prediction efficiencies of the developed models were assessed using R2,
RMSE, RPD, and RPIQ. Generally, a satisfactory regression model should have high R2,
RPD, and RPIQ values and low RMSE values. Equations (6)–(9) show the mathematical
expression of RMSE, R2, RPIQ and RPD, respectively:

RMSE=

√
1
n ∑n

i=1 (yi − ŷi)
2 (6)

R2=
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − yi)

2 (7)

RPIQ=
Q3 − Q1

RMSE
(8)

RPD =
SD

RMSE
(9)

where ŷi and yi are the predicted and measured API concentration values, respectively, n is
the number of observations in the prediction set, and yi is the mean of measured values,
Q1 and Q3 are the upper bound of first and third quartiles of the measurements, SD is the
standard deviation.

3. Results and Discussion
3.1. Spectral Characteristics of Soil Samples

Figure 3a,b displays the raw spectra of soil samples for MIR and XRF. By looking
at the MIR spectral profile (Figure 3a), it is apparent that the spectra consist of several
absorption bands related to the studied soil fertility attributes. These absorption bands
in MIR region are much stronger than the those in visible near-infrared (Vis-NIR) region
for soil constituents, where overtones and combinations of the fundamental molecular
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vibrations in the MIR can be observed. For instance, in MIR functional region the spectral
signatures between 3800–3000 cm−1 are related to the stretching vibration of H-O bonds.
The bands at 3000–2820, 1730 and 1873 cm−1 are related to the C-H and C=O bonds,
whereas the region between 1632–1530 cm−1 corresponds to the stretching and banding
vibration of both O-H and C-H groups. In addition, the MIR fingerprint regions around
1409 and 1157 cm−1 are associated to the C-H and C-O bending vibration [34]. It is worth
mentioning that the aforementioned vibrations of soil are aroused due to the primary
properties (e.g., mainly OC, and MC), which have a direct MIR spectral response whereas,
the secondary properties (e.g., pH, P, K, Mg, Ca) have an indirect correlation with the
primary properties [3,26]. Based on this hypothesis, the MIR bands corresponding with
primary properties can also be used to detect the secondary properties of the soil properties
through covariation.
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the study.

In XRF plot (Figure 3b) the heavy elements (atomic number > 16) such as Ca showed strong
peak between 3–5 KeV [35] while, emission lines for lighter elements (atomic number < 16)
such as P and Mg are too weak to be noticed in this region. Since a high resolution (SDD)
detector (165 eV) was used in this study, it is odd to observe the overlap between the K-Ka
(3314 eV) and Ca-Ka (3692 eV) emissions. However, this overlap is perhaps due to the very
low intensity in that region, and when zoomed in a clear separation can be observed (not
shown in this work), which is in line with findings by Tavares et al. (2020) [36]. In addition,
the spectral region between 5–8 KeV is associated with Fe [37]. The XRF spectra also
showed peaks between 13–17 KeV and 25–28 KeV, however for this particular study these
regions are insignificant as there is no spectral characteristics related with the studied soil
properties. Although it is expected that Rh K lines scattering peaks to appear around 20 keV,
they are not seen in this work due to very low intensity in this region. A similar spectral
pattern was observed also by Tavares et al. (2020) [36]. The peak at 2.5 keV is the noise form
the detector, which was removed during spectral preprocessing and model development.

3.2. Results of Single Sensor Modeling Based on PLS (MIR-TPLS and XRF-TPLS)

At first, prediction models were developed and validated individually for each spec-
troscopic block (MIR and XRF spectra), to investigate how efficient any of the two spectral
technique could be for allowing accurate prediction of the studied soil properties. Re-
sults of the prediction accuracy of MIR-TPLS and XRF-TPLS models for the training (for
cross-validation) and the test sets are summarized in Table 4. In all the cases, MIR-TPLS
model prediction accuracy was higher than the XRF-TPLS model in terms of R2p, RPD
and RPIQ for all studied soil attributes. Despite this, comparable results of the two tech-
niques were observed for pH and P prediction. This perhaps due to the fact that MIR
region holds plenty functional information and fingerprint regions associated with soil



Sensors 2022, 22, 3459 10 of 16

attributes investigated, while XRF is well known to be successful for the detection of
the total content of soil nutrients (e.g., Mg, Ca) [37]. Since in this study we consider the
extractable contents of the nutrients, XRF underperformed MIR. For pH, P and Ca predic-
tion, both MIR-TPLS and XRF-TPLS models exhibited the highest R2p (ranged between
0.71 and 0.89) with acceptable RPD, RPIQ, and RMSEP values. For Mg prediction, the
MIR-TPLS model yielded better accuracy (R2p = 0.74, RPD = 1.98, RPIQ = 1.76) than that
of XRF-TPLS (R2p = 0.59, RPD = 1.50, RPIQ = 0.99). MIR-TPLS prediction performance
for MC (R2p = 0.71, RPD = 1.85, RPIQ = 2.26) was also better than XRF-TPLS (R2p = 0.67,
RPD = 1.67, RPIQ = 1.57). However, XRF-TPLS completely failed to predict OC and K com-
ponents, while MIR-TPLS provided moderate prediction result to OC and MC (R2p = 0.63,
RPD = 1.63, RPIQ = 1.66), which was surprising as OC has direct spectral response due to
fundamental vibrations in MIR [38].

Table 4. Prediction results of soil pH, organic carbon (OC), phosphorous (P), potassium (K), magne-
sium (Mg), calcium (Ca), moisture content (MC) using traditional PLS model (TPLS), and spectra-
fusion (SF-PLS, SF-VIP-SOPLS and SF-SOPLS).

Soil Indicators Model Type
Training Set Test Set

R2cv RMSEC RPD R2p RMSEP RPD RPIQ Variables

pH

MIR-TPLS 0.90 0.15 3.19 0.89 0.16 3.03 3.51 908
XRF-TPLS 0.89 0.16 3.07 0.88 0.17 2.95 2.78 2048

SF-PLS 0.89 0.16 2.66 0.88 0.17 2.95 2.76 2948
SF-SOPLS 0.94 0.11 4.14 0.90 0.15 3.30 3.59 2948

SF-VIP-SOPLS 0.91 0.14 3.49 0.90 0.15 3.22 3.54 406

OC (%)

MIR-TPLS 0.76 0.14 2.05 0.63 0.17 1.63 1.66 900
XRF-TPLS 0.59 0.19 1.57 0.30 0.24 1.18 1.01 2048

SF-PLS 0.56 0.19 1.50 0.35 0.22 1.24 1.11 2948
SF-SOPLS 0.75 0.13 2.05 0.75 0.13 2.02 2.47 2948

SF-VIP-SOPLS 0.78 0.13 2.17 0.66 0.17 1.70 2.09 524

P (mg/100 g)

MIR-TPLS 0.87 6.74 2.78 0.84 7.73 2.45 2.69 900
XRF-TPLS 0.85 7.04 2.66 0.83 6.36 2.45 2.34 2048

SF-PLS 0.90 5.90 3.17 0.82 6.81 2.28 2.04 2948
SF-SOPLS 0.95 4.11 4.56 0.91 4.45 3.53 4.90 2948

SF-VIP-SOPLS 0.92 5.27 3.56 0.88 5.20 2.99 2.90 387

K (mg/100 g)

MIR-TPLS 0.71 12.69 1.86 0.65 14.12 1.70 1.90 900
XRF-TPLS 0.66 13.74 1.72 0.48 15.03 1.37 1.68 2048

SF-PLS 0.67 12.31 1.74 0.48 14.90 1.39 1.56 2948
SF-SOPLS 0.72 11.82 1.78 0.67 11.67 1.77 2.13 2948

SF-VIP-SOPLS 0.76 10.51 2.04 0.64 12.27 1.68 1.67 453

Mg (mg/100 g)

MIR-TPLS 0.77 11.39 2.08 0.74 11.64 1.98 1.76 900
XRF-TPLS 0.65 13.94 1.70 0.59 15.33 1.50 0.99 2048

SF-PLS 0.78 10.18 2.16 0.61 13.78 1.59 1.48 2948
SF-SOPLS 0.80 9.54 2.26 0.78 10.65 2.17 2.13 2948

SF-VIP-SOPLS 0.79 9.93 2.21 0.76 11.13 2.07 1.87 449

Ca (mg/100 g)

MIR-TPLS 0.91 274.46 3.45 0.85 261.87 2.49 2.70 900
XRF-TPLS 0.84 372.97 2.54 0.71 466.43 1.81 2.24 2048

SF-PLS 0.87 331.82 2.85 0.73 419.32 1.89 2.34 2948
SF-SOPLS 0.96 176.73 5.36 0.92 177.11 3.66 3.22 2948

SF-VIP-SOPLS 0.96 185.57 5.11 0.92 180.73 3.60 3.20 503

MC (%)

MIR-TPLS 0.81 1.84 2.34 0.71 2.32 1.85 2.26 900
XRF-TPLS 0.76 2.09 2.07 0.64 2.57 1.67 1.57 2048

SF-PLS 0.77 2.07 2.08 0.66 2.52 1.70 2.09 2948
SF-SOPLS 0.85 1.75 2.47 0.80 1.91 2.31 2.62 2948

SF-VIP-SOPLS 0.86 1.59 2.71 0.74 2.16 2.01 2.49 466

R2cv and R2p = coefficient of determination for cross-validation and prediction; RMSEC and RMSEP = root mean
square error of cross-validation and prediction; RPD = Residual prediction deviation; RPIQ = ratio of performance
to interquartile distance; MIR-TPLS = mid-infrared-traditional partial least square; XRF-TPLS = X-ray fluorescence-
traditional partial least square; SF-PLS = spectra fusion based on partial least square; SF-SOPLS = spectra fusion
based on sequential orthogonalized partial least squares; SF-VIP-SOPLS = spectra fusion based on sequential
orthogonalized partial least squares with variable importance in projection; OC = organic carbon; P = Phosphorous;
K = Potassium; Mg = Magnesium; Ca = Calcium; MC = Moisture content.
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3.3. Results of Fusion Model Based on SF-PLS and SF-SOPLS

To improve the prediction performance, spectral fusion models were built by con-
catenating spectra of MIR and XRF sensors. The performance of SF-SOPLS models was
presented in Table 4. It can be observed from Table 4 that SF-SOPLS model prediction
accuracy was higher compared with both individual models (MIR-PLS and MIR-XRF)
and SF models (SF-PLS and SF-VIP-SOPLS). More specifically, the model developed with
SF-SOPLS greatly improved the prediction of all soil attributes in the test sets (Figure 4 and
Table 4). Moreover, the SF-SOPLS accuracy was also higher than the results reported by
the earlier researchers (based on the data fusion for Vis-NIR and XRF data) for soil quality
prediction [22,39]. The higher accuracy might be due to the more efficient data fusion
steps involved during SOPLS model in the current work to improve the prediction. Apart
from the advantage of SOPLS model, the MIR region (4000–650 cm−1) also contributes in
improvement of prediction accuracy as this region provided more detailed information
(based on fundamental vibrational bands related to the functional groups of the soil) than
the Vis-NIR region used by the earlier researchers.
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Among all the studied soil properties, SF-PLS and SF-SOPLS models for pH, P and Ca
generally had the highest R2p, RPD, RPIQ and lowest RMSEP values. For soil pH prediction,
the spectra fusion models (SP1 and SP2) exhibited the highest R2p of 0.88–0.90, RPD of
2.95–3.30, and RPIQ of 2.76–3.59, and lowest RMSEP of 0.15–0.17. For soil P prediction,
the second highest R2p of 0.82–0.91, RPD of 2.28–3.53, and RPIQ of 2.04–4.90 and the
second lowest RMSEP of 4.45–6.81 mg/100 g were observed. For Ca prediction, the high
accuracies were recorded (R2p of 0.73–0.92, RPD of 1.89–3.66, RPIQ of 2.34–3.22 and RMSEP
of 177.11–419.32 mg/100g), but not as good as those of pH and P. The prediction of Mg and
MC contents was in the moderate category. For Mg prediction R2p of 0.61–0.78, RPD of
1.59–2.17, RPIQ of 1.48–2.13 and RMSEP of 10.65–13.78 mg/100 g were calculated, whereas
for soil MC prediction R2p of 0.66–0.80, RPD of 1.70–2.31, RPIQ of 2.09–2.62 and RMSEP
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of 1.91–2.52% were recorded. However, the SF-PLS model performance was limited for
soil K prediction, and only SF-SOPLS model was able to provide maximum values of R2p
of 0.67, RPD of 1.77, RPIQ of 2.13 and RMSEP of 11.67 mg/100 g. A similar case was
also observed for soil OC prediction, for which SF-PLS model completely failed, while SF-
SOPLS model provided good prediction results (R2p = 0.75, RPD = 2.02, RPIQ = 2.47). The
prediction accuracy of SF-SOPLS for OC outperformed those obtained by the corresponding
individual models. Figure 4 depicts the SF-SOPLS based scatterplots between measured vs
predicted soil attributes based on the R2p and RMSEP values listed in Table 4. The slopes
for the pH, P and Ca using the test dataset are very well distributed along the 1:1 linear
line indicating a best validation, the slopes for the OC, Mg and MC showed moderate
distribution, whereas the slops for the K with the test dataset are slightly far from the 1:1
linear line indicating under-estimation of soil property [34].

3.4. Results of Fusion Model Based on SF-VIP-SOPLS

Figure 5 displays the VIP score plots of soil attributes used for variable selection
step (during SF-VIP-SOPLS model development), and scatter plots of measured against
predicted soil attributes using the SF-VIP-SOPLS model using the selected variables as
input to PLS. The prediction results of the SF-VIP-SOPLS models are better than those of
the SF-PLS models, although only few numbers of variables were used. While SF-PLS and
SF-SOPLS models used the entire spectral variables of 2048, the SF-VIP-SOPLS model uses
only 387–524 variables (from MIR and XRF data), providing comparable prediction results
to those by SF-SOPLS. The SF-SOPLS model slightly outperformed the corresponding
models of SF-VIP-SOPLS (Table 4). Similar to the SF-SOPLS model, once again more
accurate results were obtained by the SF-VIP-SOPLS model for pH (R2p = 0.90, RPD = 3.22),
P (R2p = 0.88, RPD = 2.99), and Ca (R2p = 0.92, RPD = 3.60) prediction, compared to the
individual sensor models. The performance of SF-VIP-SOPLS was also found satisfactory
for Mg (R2p = 0.76, RPD = 2.07) and MC (R2p = 0.74, RPD = 2.07) prediction. On the other
hand, the model accuracy was dropped for prediction of OC and K contents (R2p < 0.70).
However, it is worth mentioning that with only 387–524 selected variables the SF-VIP-
SOPLS model was capable to provide satisfactory prediction, that was not possible with
SF-PLS, MIR-PLS and XRF-PLS models. This is due to fact that most of picked variables
(by VIP method) in SF-VIP-SOPLS model comprise chemical and elemental information
that contribute to the correct model prediction.

In the VIP score plot for pH (Figure 5), 406 variables in the range from 2580–2306,
2137–2098, 1709–1689 and 1556–1400 cm−1 related to the O-H stretching vibration, O-H
deformation vibration and C=O groups, respectively [40] are found to be significant. For
OC prediction, 524 variables in range of 1220–1530, 1700–1880 and 3600–3700 cm−1 re-
lated to the C-H, C-O and O-H groups, respectively are found to be significant [7,34]. For
P prediction, 387 significant variables were observed in the spectral bands of 800–900,
1100–1200, 1300–1400, 1500–1600, 1800–2000 and 3600 cm−1 For K prediction, 453 vari-
ables are significant in the range of 1100–1200 and 1400–2000 cm−1. For Mg prediction,
449 variables are found significant in the range of 800–900, 1100–1200, 1300–1500, 1800–2000
and 3600 cm−1. For Ca prediction, 503 variables are significant in the range of 800–900,
1100–1200, 1400–2000 and 2300–2500 cm−1. Finally, for the MC, 503 variables are found
to be significant in the range of 800–900, 1300–1700, 1900, 2580–2306, and 3600 cm−1. The
results suggested that SF-VIP-SOPLS models are preferable, as they reduce the data dimen-
sionality by selecting the important variables while preserving the relevant information
related to studied soil fertility parameters. Comparing among the five different models,
the XRF-PLS and SF-PLS is the lowest performing models, whereas SF-SOPLS followed by
SF-VIP-SOPLS are the best performing models for the prediction of all soil parameters.
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Figure 5. Variable impotence in projection (VIP) score plots for pH, organic carbon (OC), phosphorus
(P), potassium (K), magnesium (Mg), calcium (Ca) and moisture content (MC) with corresponding
scatter plots of measured against predicted values using the SF-VIP-SOPLS model developed based
on selected variables. Units of root mean square error of prediction (RMSEP) are the same as units of
respective soil properties. In VIP score plots the solid horizontal lines indicate the threshold values
(value = 1) used for variable selection, and the vertical highlighted region is the significant range
selected for prediction.
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4. Conclusions

This study adopted a SOPLS based spectra fusion (SF) technique of MIR and XRF data
for the first time in soil analysis for the prediction of soil pH, OC, P, K, Mg, Ca and MC.
Both MIR and XRF data were concatenated in the spectra fusion analysis, and the results of
the output models were compared with corresponding models developed with individual
(MIR or XRF) spectra. Results achieved in this work support the following conclusions:

• The individual MIR-PLS model exhibited a better prediction accuracy than the indi-
vidual XRF-PLS model.

• For SF-PLS model no improvement in prediction accuracy was observed for all studied
soil properties.

• The SF-SOPLS model showed the highest improvement in the prediction accuracy,
compared with other models for all studied soil properties, with the largest improve-
ment obtained for pH, P, and Ca prediction.

• The SF-VIP-SOPLS models’ prediction accuracy was higher than those of the MIR-
PLS, XRF-PLS and SF-PLS models, while slightly lower than the corresponding
SF-SOPLS models.

While SF-SOPLS models outperformed compared with the traditional PLS SF and the
individual models for improving the prediction performance of all studied soil attributes.
The VIP based SOPLS SF models can be recommended as the best modelling option to
be used. The advantage of VIP based SOPLS models (SF-VIP-SOPLS) is that the resulted
models can discard the redundant variables from the data set, hence, minimize the risk
of overfitting, noise, and nonlinearities in the model. Ultimately, since smaller number of
variables are used, this makes these models fast and easy computations while maintaining
the model accuracy. However, further work can be considered to test SOPLS model by
spectra fusion of other types of sensor data (e.g., vis-NIR, MIR and XRF) to improve
prediction of soil parameters. In addition, the results presented in this paper confirms the
potential of SF, especially the SOPLS and VIP model, in improvement of the prediction
performance of the studied soil properties. This improvement can be applied in precision
agriculture for accurate estimations of key fertility attributes necessary for making accurate
and advanced decisions.
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