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Abstract: The existing electrocardiogram (ECG) biometrics do not perform well when ECG changes
after the enrollment phase because the feature extraction is not able to relate ECG collected during
enrollment and ECG collected during classification. In this research, we propose the sequence pair
feature extractor, inspired by Bidirectional Encoder Representations from Transformers (BERT)’s
sentence pair task, to obtain a dynamic representation of a pair of ECGs. We also propose using the
self-attention mechanism of the transformer to draw an inter-identity relationship when performing
ECG identification tasks. The model was trained once with datasets built from 10 ECG databases, and
then, it was applied to six other ECG databases without retraining. We emphasize the significance of
the time separation between enrollment and classification when presenting the results. The model
scored 96.20%, 100.0%, 99.91%, 96.09%, 96.35%, and 98.10% identification accuracy on MIT-BIH Atrial
Fibrillation Database (AFDB), Combined measurement of ECG, Breathing and Seismocardiograms
(CEBSDB), MIT-BIH Normal Sinus Rhythm Database (NSRDB), MIT-BIH ST Change Database (STDB),
ECG-ID Database (ECGIDDB), and PTB Diagnostic ECG Database (PTBDB), respectively, over a short
time separation. The model scored 92.70% and 64.16% identification accuracy on ECGIDDB and
PTBDB, respectively, over a long time separation, which is a significant improvement compared to
state-of-the-art methods.

Keywords: transformer; BERT; ECG biometrics; self-attention mechanism; deep learning; multi-class
classification; convolutional neural network; feature extraction; blind segmentation; artificial neural
network

1. Introduction

Identification and verification are very important concepts in surveillance and security
systems [1]. Conventional approaches, whether they are knowledge-based, or token-based,
are susceptible to loss and transfer [2–4]. Biometrics-based methods aim to sidestep these
problems by using the intrinsic characteristics of the human body, such as the finger-
print, iris, voice, face, keystroke, and gait [5,6]. Despite having their own strengths and
weaknesses [7,8], some of them have made it to real-world applications [3]. The elec-
trocardiogram (ECG) has enough interperson variability (intervariability) to be used as
biometrics [9]. As a bonus, liveness information is inherent to the ECG signal [3,4].

1.1. Electrocardiogram

The ECG is a representation of the electrical activities of the heart [10]. Electrical signals
generated by the polarization and depolarization of the cardiac tissue can be detected by
electrodes, called leads, attached to the skin surface of various body parts [8,11]. Plotting
the data against time reveals the ECG.

The obvious features in the ECG are the P wave, the QRS complex, and the T wave.
The P wave is formed from the combination of the depolarizations of the right atrium
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and then the left atrium, while the QRS complex corresponds to the depolarizations of
the right ventricles and then the left ventricles, and the T wave represents the ventricular
repolarizations [11]. The time interval between two consecutive R peaks is called the R-R
interval [12].

In a typical ECG processing application, a raw ECG signal is transformed into repre-
sentations suitable for the classifier to work on. This process is called feature extraction, and
it is performed either by conventional feature extraction algorithms or by human expert
knowledge [13]. As deep learning gains popularity, the feature extraction task is sometimes
taken over by artificial neural networks.

1.2. Identification and Verification

Since both the verification and the identification are classification problems, in this
paper, the term “classification” is used to refer to both at the same time.

Before any classification, the system needs to be informed with a set of identities to
be considered for the classification. This is done through enrollment which refers to the
process of registering a new identity into the system [14]. In terms of ECG biometrics, a
new identity enrolls by giving up a sample of its ECG. A digitized ECG signal is denoted
as G, and the data point sequence that constitutes G is denoted as (g1, g2, . . . , gn), where
n is the total number of data points. Depending on the system’s design, the G may be
processed [15] before it is stored [14] for classification later. The enrolled identities become
the scope for consideration during the classification phase. Ordinal numbers are used as
labels for the identities in a scope. Therefore, a scope is represented as S = {1, 2, . . . , h},
while the ECGs in the scope are represented as J = {G1, G2, . . . , Gh}, where h is the total
number of people.

An unknown identity that needs to be verified or identified is called a query [14–17],
and it is denoted as q with its ECG denoted as Gq. In the process of individual verification,
first, an enrolled identity, k, is claimed [3], then, the system verifies if the claim is true [14],
typically by calculating a score or probability using the equation below:

P(q = k) = fVE
(
Gq, Gk

)
(1)

where fVE is an arbitrary verification function and k ∈ S.
Individual verification can be generalized into scope verification [15,16]. In this case,

if q matches one of the identities in S, then it is considered. This probability is calculated by
the equation below:

P(q ∈ S) = fVE
(
Gq, J

)
(2)

In closed identification, q must be in S, so the identification can be expressed as a
probability mass function:

Pq(k) = f ID
(
k, Gq, J

)
(3)

where f ID is a closed identification function, k = 1, 2, . . . , h and ∑h
k=1 Pq(k) = 1.

For practical applications, open identification is needed [15–17], where P(q /∈ S) > 0.
This task can be achieved by combining the results of the closed identification and the
scope identification. The related terminologies and their descriptions are summarized in
Table 1.
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Table 1. A summary of the related terminologies.

Term Alternative Term Description

Enrollment - Registering a new ECG into the system

Classification - Referring to both verification and
identification

Query - ECG used for classification

Classification scope
Closed set [18]

Gallery [17]
Gallery set [15,16]

Collection of enrolled ECGs to be
considered during a classification

Individual verification - Classifying whether the query matches 1
claimed identity

Scope verification Identity verification [18]
Set verification [15,16]

Classifying whether the query matches
identities in the classification scope

Closed identification -
Identification with the assumption that
the query must match 1 identity within

the classification scope

Opened identification - Closed identification + scope verification

2. Related Works

This section first presents the evaluation metrics used in the ECG biometrics literature
before presenting the other related research works.

2.1. Evaluation Metrics

Metrics are used to evaluate the performance of an ECG biometric system. For some of
the metrics, different terms are used among researchers to refer to the same metrics. Table 2
shows the metrics used in this research, alternative terms used by other researchers, and
the metrics’ descriptions.

Table 2. A summary of the evaluation metrics.

Metric Alternative Term Formula/Description

True positive rate (TPR)

True acceptance rate [2]
Genuine acceptance rate

[19]
Recall [4,17]

Sensitivity [20]

TPR = TP
TP+FN [2,4]

False positive rate (FPR) False acceptance rate
[2,14,17,19] FPR = FP

FP+TN [2,4]

True negative rate (TNR) Specificity [17,20] TNR = TN
TN+FP [20]

False negative rate (FNR) False rejection rate [4] FNR = FN
FN+TP [4]

Equal error rate (EER)
[14,19,20] - Error rate when FPR = FNR [14]

Receiver operating
characteristics (ROC) - Graph of TPR against FPR [19]

Identification accuracy [5,20] Identification rate [3,17]
Recognition accuracy [6] Rate of correct identification [5]
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2.2. Related Works on ECG Biometric

Sellami et al. [11] use public databases, namely MITDB, NSRDB, ECGIDDB, and
STAFFIII, for their research. Raw ECG signals are transformed using Discrete wavelet
transform (DWT), and the features are selected and stored in the system. To verify a
person, template matching is used to find the correlation between stored features and query
features. To identify a person, template matching is performed between the query and
every enrolled person; the highest score is considered the identified person.

Ingale et al. [14] investigate and compare the performance of verification systems built
with different filters, segmentation methods, feature extraction methods, and classification
methods. For filters, the Kalman filter and infinite impulse response (IIR) filter are tested.
For segmentation, they test on R peak to R peak (R-R) and fixed window around an
R peak. For fiducial features, 30 are selected, while Symmlet and Daubechies wavelet
transformation are used for non-fiducial features. For classification, they test Euclidean
distance and dynamic time warping (DTW). All the designs are tested with five public
databases and one private database. The results of the different combinations of methods
are reported. A total of 10 ECG segments are required for enrollment. Authentication
lengths vary with different databases, but the lengths are not documented in the paper.

Pal et al. [19] use Finite Impulse Response (FIR) equiripple filters to remove baseline
wander noise, power interference noise, and high-frequency noise. They use Haar wavelet
transform to delineate the ECG signal before extracting fiducial features, which they
categorize into interval features, amplitude features, angle features, and area features. Then,
they use principal components analysis (PCA) and kernel principal components analysis
(KPCA) for dimensionality reduction and calculate Euclidean distance for matching.

Tan et al. [5] filter by first transforming the ECG signals with fast Fourier transform
(FFT), applying the bandpass filter, and then Inverse FFT to obtain the filtered signals. They
use a moving window to find local maxima to detect R-peak. To improve the feature extrac-
tion accuracy, they remove some of the outliers. From here, two sets of feature extraction
methods and classification methods are used in sequence. The first one extracts a total of
51 fiducial features and then uses the random forest classifier. The second one decomposes
the ECG using DWT and 1-to-S template matching based on wavelet coefficients, where S
is the reduced number of candidates based on the probabilities calculated from the random
forest classifier.

In the research by Li et al. [21], the ECG is segmented by detecting R-peak and taking
a fixed-length around the peak. They train a convolutional neural network which they call
F-convolutional neural network (F-CNN) to extract ECG features. The F-CNN is trained
using the FANTASIA database, where its goal is to identify 1 of the 40 people given one
heartbeat. The last two layers of the F-CNN are discarded, and the vector produced is
considered the ECG features. M-convolutional neural network (M-CNN), the second part
of their model, uses the features from two heartbeats (one from the query person and the
other from the enrolled person) to compute a matching score. The enrollment requires
100 heartbeats to generate a template for each person. Without retraining, the cascaded
CNN can work with CEBSDB, NSRDB, STDB, and AFDB.

In research by Sun et al. [6], they specifically mention the time separation between
the enrollment and classification. PTBDB and ECGIDDB are used because they have, on
average, 63 days and 9 days of time separations between multiple recording sessions,
respectively. They filter the ECG using the Butterworth filter and IIR filter. The blind
segmentation method is used. They make sure the segments are gathered from different
recording sessions that have obvious time separation. Multiple domain analysis methods
are used to extract the ECG features. The mean, standard deviation, kurtosis, and skewness
represent the features in the time domain. Mel-frequency cepstral coefficients (MFCCs),
FFT, and Discrete cosine transform (DCT) are the features from the frequency domain. As
for the features in the energy domain, they use discrete Teager energy operators. They
introduce the channel attention module (CAM) into the convolutional neural network to be
used as their classifier. They use 40 s for enrollment and 4 s for identification.
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Salloum et al. [22] use ECGIDDB and MITDB for their research. Fixed-width segmen-
tation around the R peaks is used to obtain heartbeats. They design their model using the
RNN. The enrollment and classification both require 18 heartbeats, and each heartbeat is
treated as a time step in a sequence.

Labati et al. [18] propose to use CNN for ECG biometric recognition, named Deep-
ECG. They filter the signal using an IIR filter and then segment by taking 0.125 s around
the R peak. R peaks are located using an automatic labeling tool. They train a CNN for
feature extraction and identification. Deep-ECG can also verify a person by computing the
distance between two heartbeat templates.

Zhang et al. [23] propose the HeartID. They filtered the raw ECG data with the
Butterworth bandpass filter and then scaled the data into a range of 0 to 1. They used
2 s blind segmentation and then used autocorrelation to remove phase shift from the
blind segmentation. They used DWT for feature extraction and 1D-CNN for classification.
CEBSDB, WECG, FANTASIA, NSRDB, STDB, MITDB, AFDB, and VFDB were used for
training and testing.

All the reviewed related works are summarized in Table 3.
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Table 3. A summary of the related works.

Author Segmentation Feature Classification Data Source Scope Size Classification
Type

Enrollment to
Classification Time Enrollment Length Classification

Length

[1] No need Fiducial SIMCA Private 20 Identification Not specified Not specified Not specified

[11] No need DWT Correlation
coefficient Public 18–48 Identification Not specified Not specified Not specified

[8] Heartbeat Fiducial Similarity
thresholding Public 73 Verification Not specified 30 s 4 s

[14]
R-R and R-peak

with fixed
length

Fiducial and
DWT

Euclidean distance
and DTW Public 20–1119 Verification Not specified 10 segments Vary depends

on database

[19] Heartbeat Fiducial PCA and Euclidean
distance Public 100 Verification Not specified 30 s 30 s

[5] R-peak with
fixed length

Fiducial and
DWT

Random forest and
wavelet distance Public 18–89 Identification Not specified 67% of extracted

heartbeats 1 heartbeat

[21] R-peak with
fixed length Learned CNN Public 18–23 Identification Not specified 100 heartbeats 3 heartbeats

[6] Blind with fixed
length

Multi-domain,
MFCC, FFT,

DCT, Teager, etc.
Channel attention

module (CNN) Public 50–89 Identification
Avg. 63 days for

PTBDB, avg. 9 days
for EDGIDDB

40 s 4 s

[2] Heartbeat DWT NEWFM Public 73 Verification Not specified 15 heartbeats 1 heartbeat

[3] Blind with fixed
length Learned CNN Private 1019 Identification maximum 6 months Not specified 5 s

[20] R-peak with
fixed length Learned Neural network Public 90 Verification 9 days for

EDGIDDB Not specified Not specified

[4] Blind with fixed
length Fiducial Random forest Public 1985 Verification Not specified 1 m 3 s

[22] R-peak with
fixed length Learned RNN Public 47–89 Identification Not specified 18 heartbeats 18 heartbeats

[23] Blind with fixed
length DWT CNN Public 18–47 Identification Not specified 250 × 2-s segments 1 × 2-s segment

[18] R-peak with
fixed length Learned CNN Public 52 Identification Not specified 10 s 10 s



Sensors 2022, 22, 3446 7 of 29

3. Problem Statement

Four problems are explored further in this research: independent feature extraction,
inability to capture inter-identity relationships, fixed enrollment scope, and insufficient
training data.

3.1. Independent Feature Extraction

ECG changes even in the same person. The ECG amplitude and heart rate can change
due to mental, emotional, physical, and health conditions [23,24] and measuring conditions
such as the placement of electrodes and devices [8,24,25]. These changes affect some of the
fiducial features [8,11]. More importantly, ECG can be different depending on the time of
measurement [2,6,24,26]. This means that the accuracy decreases as the time separation
between the enrollment and the classification increases. However, this problem is not
addressed properly. For instance, Li et al. [21] experiment with a very short time separation
between enrollment and classification, while Tan and Perkowski [5] randomly choose
heartbeats for enrollment and classification.

Sun et al. [6] show that there are time-related features in the ECG, and feature extraction
based on these features can improve the model accuracy. However, the feature extraction
methods we have seen so far work independently in the enrollment phase and classification
phase. Given an enrolled ECG as Gk and a query’s ECG as Gq, the extracted features for
these two ECGs are computed as in (4) and (5), respectively.

Lk = fFE(Gk) (4)

Lq = fFE
(
Gq
)

(5)

where Lk is the enrolled feature vector, Lq is the query feature vector and fFE is the feature
extraction function. Any time-related features between Gk and Gq are impossible to extract
by independent feature extraction.

3.2. Inability to Capture Inter-Identity Relationship

Identification is a multi-class classification problem; every enrolled identity is a class.
One approach is to reduce an identification to multiple verifications between the query
and every enrolled identity and then compare the verification probability at the end. Every
probability for the event of q matching an identity is expressed as:{

Pq(1), Pq(2), . . . , Pq(h)
}
= fP(p1, p2, . . . , ph) (6)

where each p is a verification probability against a person in the identification scope
and fP is a function that normalizes all the inputs into a probability distribution like
SoftMax. This approach is flexible to scope changes because enrolling or removing identities
does not require retraining the model. However, due to each verification only having
conditions on the corresponding enrolled ECG and the query ECG, it is unaware of the
whole identification scope (scope agnostic). This is a significant drawback due to the
inability to capture the relationship between different classes [27–29]. There are researchers
trying to turn SVM, a binary classifier by design, into a multi-class classifier [30,31], and
others are trying to improve the reduction approach by injecting extra information [32,33].
Luo [34] even suggests that introducing new subclasses in some cases can improve a
multi-class classifier.

3.3. Fixed Enrollment Scope

Another approach to the identification task is to use a compatible multi-class classifier
to compute the probability distributions over all classes internally. A classifier is trained on
a fixed enrollment scope. The ability to identify with that scope is intrinsic to the model,
thus making it scope-aware. However, this means that the design is inflexible to scope
changes as retraining is required to accommodate new identities.
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Li et al. [21] and Labati et al. [18] design and train their multi-class models and then
modify them into binary models just for the benefit of flexibility. There is a dilemma of
choosing between accuracy or flexibility.

3.4. Insufficient Training Data

Many of the publicly available ECG databases either have a low number of people
in the database, each with longer recordings, or have more people, each with shorter
recordings. As a result, attempting to split a single database into training, testing, and,
optionally, validation datasets is challenging. Some models seem to do well with larger
training sets, but that leaves only a small set of data for testing. For instance, the most
accurate model by Salloum et al. [22] uses up to 80% of the data for training. Moreover, if
the ECG is segmented by heartbeat, the data are further limited by the number of heartbeats
in the recording.

Combining multiple databases to increase the dataset is difficult because it needs
to reconcile the differences across databases, potentially having to deal with different
measuring devices, measuring conditions, sampling rate, type of noise, etc. This could be
the reason why training a single model using multiple databases is unpopular. However,
if this could be done, it would not only increase the training dataset size but could also
generalize the model by capturing a wider range of ECG variations.

4. Novelty Contributions

We propose a novel ECG pair feature extractor, fEP, to replace the independent feature
extraction described in Section 3.1. Joint feature vectors of the query and the enrolled, Lkq,
are extracted fEP by conditioning on both Gk and Gq in a single process. Since Gk and Gq
are separated by time, Lkq contains time-related features of the ECG pair. Equation (7)
summarizes the process of the ECG pair feature extractor.

Lkq = fEP
(
Gk, Gq

)
(7)

The ECG pair feature extractor is inspired by the sentence pair feature extraction of
BERT. However, we do not employ the pre-training and fine-tuning technique. Instead,
two different feature vectors are produced by the ECG pair feature extractor, Lkq(VE) is used
for the identification task and Lkq(ID) is used for the verification task:

Lkq =
{

Lkq(VE), Lkq(ID)

}
(8)

We propose a novel identification encoder (ID encoder) to be used as the classifier for
the identification. It uses the encoder in the transformer to function as a true multi-class
classifier because the self-attention mechanism captures the inter-identity relationship.
This solves the problem described in Section 3.2. Since the transformer is designed for
variable-size input, the ID encoder can accept any classification scope as input, so it is
flexible to scope changes without retraining, which solves the problem in Section 3.3.

We propose a novel dataset generation procedure by using blind segmentation as a
data augmentation technique. This procedure is not limited by the number of heartbeats in
the ECG recording. We also propose combining multiple ECG databases to increase the
total number of people and to provide more ECG variations. A total of 10 databases were
used to generate the training and validation dataset, and another six databases were used
to evaluate the model. The huge amount of data with wide variations trained a generalized
model and solved the problem described in Section 3.4.

5. Materials and Methods

This section first explains the details of the data pre-processing and the dataset genera-
tion procedure. Then, it explains the details of the model design. Finally, the training specs
and metrics are documented.
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5.1. Databases

The 10 ECG databases in Table 4 are publicly available on Physionet [35] and were
chosen for the model training. These databases contain ECG recordings from healthy
people, as well as people with heart conditions.

Table 4. ECG databases used to generate training and validation datasets.

Database Name Health Condition Length Training-Validation
Split Ratio

APNEA-ECG Apnea-ECG Database Apnea 7–10 h 38:32

LTAFDB Long Term AF Database Paroxysmal or sustained
atrial fibrillation 24–25 h 48:32

MITDB MIT-BIH Arrhythmia Database Arrhythmia 0.5 h 31:16

LTDB MIT-BIH Long-Term ECG Database Unspecified 14–22 h 6:1

VFDB MIT-BIH Malignant Ventricular
Ectopy Database

Ventricular tachycardia,
ventricular flutter, and
ventricular fibrillation

0.5 h 14:8

SLPDB MIT-BIH Polysomnographic
Database Apnea 80 h 8:8

SVDB MIT-BIH Supraventricular
Arrhythmia Database Supraventricular arrhythmia 0.5 h 46:32

INCARTDB St Petersburg INCART 12-lead
Arrhythmia Database Various diagnosis 0.5 h 43:32

FANTASIA Fantasia Database Healthy 2 h 24:16

PTB-XL PTB-XL, a large publicly available
electrocardiography dataset

Mix of healthy and various
heart conditions 10 s 18,853:32

5.2. Pre-Processing

Pre-processing is important in reshaping the ECG signals into a specific format that
the model expects. The pre-processing used are resampling, segmentation, filtering, and
standardizing. Resampling and segmentation are required for datasets generation because
most databases have different sampling rates and recording lengths. In a real-world
application, if an ECG is recorded at the correct sampling rate and length, resampling
and segmentation can be omitted, but filtering is recommended, and standardizing is
always required.

• Resampling. We choose to train the model to operate on 128 Hz ECG data because
this frequency is relatively low even for most wearable devices [21].

• Segmentation. Blind segmentation is used [6,23], so no fiducial points are needed.
Moreover, blind segmentation directly reflects the data collection time, which is an
important specification to consider for a practical application. The segment length is
3 s because 3 s per classification is still practical in a real application. Each segment
has 384 data points after being multiplied with a 128 Hz sampling rate.

• Filtering. We employ a fifth-order Butterworth bandpass filter to denoise the ECG seg-
ments. 0.01 fN and 0.7 fN are the lower and upper critical frequencies of the bandpass
filter where fN = 64 Hz. It is important to segment the signal before filtering because
filtering creates distortions at both ends of the signals, which must not be ignored in
an actual classification scenario.

• Standardizing. We employ the standard score normalization, referred to as standardiz-
ing, to every ECG segment, G, including all the ECG segments in the scope and the
query ECG segment. Each point in the segment, g, is transformed to g′ by:

g′ =
g− µ

σ
(9)
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where µ and σ are the mean and standard deviation of G, respectively.

5.3. Training and Validation Datasets Generation Procedure

First, the identities in the databases are split into a training group and a validation
group according to the training–validation split ratio column specified in Table 4. Then,
the ECG recordings are resampled to 128 Hz. After that, the single example generation
(Algorithm 1) is repeated 2,580,480 times on the training group to obtain 2,580,480 training
examples. Likewise, Algorithm 1 is repeated 32,768 times on the validation group to obtain
32,768 validation examples.

The single example generator (Algorithm 1) is the proposed novel dataset generation
procedure. An example consists of J and Gq as the input and the true identity of q as the
label. In step 1, a database is randomly chosen, then, 32 identities are randomly chosen
from that database, and they are assigned as S. This step ensures that every database has an
equal chance of appearing in the dataset. If the chosen database has less than 32 identities,
step 2 through step 6 fill up the remaining identities from other random databases. Step 7
randomly selects an identity from S and assigns it as q. Step 8 through step 14 contain the
ECG segmentation. These steps ensure that Gk and Gq are not overlapping. Step 15 filters
all the ECG segments. Step 16 standardizes all the ECG segments.

Algorithm 1. Single example generator.

1 S← 32 random identities from 1 random database
2 while size of S is less than 32:
3 db← random database
4 k← random identity from db
5 if k is not in S:
6 add identity to S
7 q← random identity from S
8 J← empty set
9 for each k in S:
10 if k is equal q:
11 Gk, Gq ← 2 random ECG segments without overlapped
12 else:
13 Gk ← random ECG segment
14 add Gk to J
15 filter J and Gq
16 standardize J and Gq
17 return J, Gq, q

5.4. The Model

The inputs of the model are the classification scope ECGs, J, and the query ECG, Gq.
The ECG pair feature extractor extracts features of J and Gq, the details are explained in
Section 5.4.1. Using the extracted features, the model performs verification and identifi-
cation at the same time. The features are processed by the verification classifier, which is
explained in Section 5.4.5, and the outputs are the probabilities of q matches each of the
enrolled identities. As for the identification, the features are processed by the ID encoder,
which is explained in Section 5.4.6 and the ID classifier, which is explained in Section 5.4.7,
and the output is a probability distribution for all the enrolled identities. Figure 1 shows
that the model consists of an ECG pair feature extractor, verification classifier, ID encoder,
and ID classifier.
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5.4.1. ECG Pair Feature Extractor

The key idea in the ECG pair feature extractor is to use BERT’s sequence pair encoder
to find information in an ECG pair. Figure 2 shows the components of the ECG pair feature
extractor and how the ECGs are processed to become the feature vectors. Every ECG is
processed by the feature space expansion into a sequence, and the details are explained in
Section 5.4.2. Then, the query sequence is paired with each enrolled sequence, added to
the segment embedding information, and concatenated with classification tokens. These
3 processes are explained in Section 5.4.3. Finally, the ECG pair encoder, explained in
Section 5.4.4, performs self-attention on the sequence to produce 2 feature vectors.
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5.4.2. Feature Space Expansion

The feature space expansion replaces the sub-word embedding in the original trans-
former to reshape an ECG into a sequence. The feature space expansion consists of a 1D
convolutional layer with Rectified Linear Unit (ReLU) activation and a 1D max-pooling
layer. The convolutional layer has 512 filters with a kernel size of 33 and operates at a stride
of 1. The max-pooling layer has a kernel size of 16 and operates at a stride of 16. An input
G ∈ R384 is expanded into X ∈ R22×512. All the enrolled ECGs and the query ECG are
expanded by the same process resulting in X1, X2, . . . , Xh and Xq.

5.4.3. Pairing, Segment Embedding, and Classification Tokens

Xq is duplicated h times so that it can be evenly paired up with Xk where k = 1, 2, . . . , h.
A trainable enrolled segment embedding vector, Ee, is added to every element in Xk. A
trainable query segment embedding vector, Eq, is added to every element in Xq. Two
trainable classification tokens, clsVE ∈ R512 and clsID ∈ R512, are prepended to the sequence.
At this point, we have h composite sequences; each sequence is Xkq ∈ R46×512. Figure 3
illustrates the process of pairing the expanded ECGs and injecting the sequence with
segment embeddings.
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Eq is added to each element in Xq =

(
Tq1, Tq2, . . . , Tq22

)
resulting in

(
T′q1, T′q2, . . . , T′q22

)
.

5.4.4. ECG Pair Encoder

The ECG pair encoder consists of 4 transformers’ encoder layers. dmodel = 512 is
used, which is the same as the base model transformer in [36]. Figure 4 shows that every
composite sequence output from the processes in Section 5.4.3 goes through the ECG pair
encoder. The final hidden vectors at positions corresponding to clsVE and clsID are the
extracted feature vectors, Lkq(VE) and Lkq(ID), where k = 1, 2, . . . , h. The self-attention
mechanism draws relationships between all tokens in the sequence, causing the feature
vectors to have a combined representation of the ECG pair.
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formers (BERT)’s sequence pair encoder. It extracts joint features from the two input ECG sequences.
T′′ k1, T′′ k2, . . . , T′′ k22 are the final hidden states that correspond to T′k1, T′k2, . . . , T′k22 respectively;
T′′ q1, T′′ q2, . . . , TT′′ q22 are the final hidden states that correspond to T′q1, T′q2, . . . , T′q22 respectively.
Lkq(VE) is the final hidden state that correspond to clsVE; Lkq(ID) is the final hidden state that corre-
spond to clsID.
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5.4.5. Verification Classifier

The input to the verification classifier is Lkq(VE) from the ECG pair encoder described
in Section 5.4.4. The verification classifier consists of four 512-unit fully connected layers,
one 256-unit fully connected layer, and one 128-unit fully connected layer. A batch normal-
ization layer and the ReLU activation layer are placed after each of these fully connected
layers. A single-unit output layer, a batch normalization layer, and the sigmoid activation
layer are used to calculate the verification probability of the query against every identity in
the classification scope, P(q = k), where k = 1, 2, . . . , h.

5.4.6. ID Encoder

The ID encoder consists of 4 transformers’ encoder layers, as shown in Figure 5.
dmodel = 512 is used, which is the same as the base model transformer in [36]. The
feature vector, Lkq(ID), from ECG pair encoder, as described in Section 5.4.4, forms the
input sequence, L1q(ID), L2q(ID), . . . , Lhq(ID) to the ID encoder. This sequence contains the
information of the query and all identities in the classification scope for the self-attention
mechanism to draw inter-identity relationships. The output sequence is B = (b1, b2, . . . , bh),
which is used by the ID classifier to calculate the identification probability distribution. The
ID encoder can process any number of enrolled identities, h, so enrolling new identities or
removing existing identities is possible without retraining.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 31 
 

 

 
Figure 5. All elements in 𝐿𝐿𝑘𝑘𝑞𝑞(ID) = (𝐿𝐿1𝑞𝑞(ID), 𝐿𝐿2𝑞𝑞(ID), … , 𝐿𝐿ℎ𝑞𝑞(ID)) form the input sequence to the ID 
encoder. The self-attention mechanism draws inter-identity relationships to produce the output 
sequence, 𝐵𝐵 = (𝑏𝑏1, 𝑏𝑏2, … ,𝑏𝑏ℎ). 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏ℎ are the final hidden states that corresponds to enrolled 
identity 1, enrolled identity 2,…, enrolled identity ℎ. 

5.4.7. ID Classifier 
ID classifier consists of a 256-unit fully connected layer, a batch normalization layer, 

and the ReLU activation layer, followed by a single-unit output layer and a batch normal-
ization layer. Every element in 𝐵𝐵 = {𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏ℎ} goes through the same layers to pro-
duce a logit. SoftMax is used to normalize the logits into the identification probability 
distribution, 𝑃𝑃𝑞𝑞(𝑘𝑘), 𝑘𝑘 = 1, 2, … , ℎ, where ∑ 𝑃𝑃𝑞𝑞(𝑘𝑘)ℎ

𝑘𝑘=1 = 1. 

5.5. Training 
We train on the training dataset with 2,580,480 training examples. The dataset is re-

peated when all training examples are iterated. Each training epoch contains 256 training 
steps, and each training step uses a batch size of 512. The model’s loss and accuracy are 
evaluated after each epoch with the validation dataset. The training stops when the vali-
dation loss is not improved for 3 consecutive epochs because stopping too early causes 
undertraining, and training for too many epochs causes overtraining. In our experiment, 
the training stops at epoch 45. Figure 6a shows the losses, and Figure 6b shows the com-
bined accuracies. A combined accuracy is the mean of the verification TPR, verification 
FPR, and the identification accuracy. 

Figure 5. All elements in Lkq(ID) =
(

L1q(ID), L2q(ID), . . . , Lhq(ID)

)
form the input sequence to the ID

encoder. The self-attention mechanism draws inter-identity relationships to produce the output
sequence, B = (b1, b2, . . . , bh). b1, b2, . . . , bh are the final hidden states that corresponds to enrolled
identity 1, enrolled identity 2, . . . , enrolled identity h.

5.4.7. ID Classifier

ID classifier consists of a 256-unit fully connected layer, a batch normalization layer,
and the ReLU activation layer, followed by a single-unit output layer and a batch nor-
malization layer. Every element in B = {b1, b2, . . . , bh} goes through the same layers to
produce a logit. SoftMax is used to normalize the logits into the identification probability
distribution, Pq(k), k = 1, 2, . . . , h, where ∑h

k=1 Pq(k) = 1.

5.5. Training

We train on the training dataset with 2,580,480 training examples. The dataset is
repeated when all training examples are iterated. Each training epoch contains 256 training
steps, and each training step uses a batch size of 512. The model’s loss and accuracy
are evaluated after each epoch with the validation dataset. The training stops when the
validation loss is not improved for 3 consecutive epochs because stopping too early causes
undertraining, and training for too many epochs causes overtraining. In our experiment, the
training stops at epoch 45. Figure 6a shows the losses, and Figure 6b shows the combined
accuracies. A combined accuracy is the mean of the verification TPR, verification FPR, and
the identification accuracy.
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5.5.1. Optimizer

We use the Adam optimizer [37] with β1 = 0.9, β2 = 0.98 and ε = 10−9. We vary
the learning rate over the course of training with respect to epoch number, according to
Formula (10):

0.000012e2−0.03epoch + 0.00008 (10)

5.5.2. Regularization Techniques

During training, we apply dropout to the output of each sublayer of the ECG pair
encoder and identification encoder same as the original transformer with Pdrop = 0.1. We
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also smooth [38] all our target labels by εls = 0.1. For the verification task, true label = 0.95
and f alse label = 0.05. For identification, true label = 0.903125 and f alse label = 0.003125.

5.6. Post-Processing
5.6.1. Voting System

Although the model is designed and trained to process 3 s ECG segments, we can
fully utilize enrollment ECGs longer than 3 s with a voting system. Enrollment ECGs are
split into a v number of 3 s segments, allowing overlaps, to produce v classification results
(votes). For closed identification, the most voted identity is considered the final identified.
Likewise, the final individual verification also depends on votes. In the case of equal votes,
the largest mean probability wins.

5.6.2. Scope Verification

After the final closed identification and individual verification are obtained through
the voting system, the scope verification is determined by checking the final individual
verification of the final identified position.

5.7. Experiment Setup
5.7.1. Enrollment Length, Time Separation, and Classification Window

Time separation between enrollment and classification cannot be ignored when evalu-
ating ECG biometrics because the time separations are real, and they affect the accuracy in
practical applications.

For the experiment, a long continuous ECG recording is divided into enrollment and
the classification window, as shown in Figure 7. The length of the ECG recording for
enrollment is called the enrollment length, r, and it is measured in seconds. The time
separation, t, is the time passed from the enrollment phase until the classification phase.
The classification window is a portion of the ECG recording where n classification ECG
segments are sampled. The length of the classification window is denoted as p, and it is
also measured in seconds. This method of dividing the ECG recording allows the same
enrollment to be tested at the same t for n times.
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5.7.2. Test Databases

A total of 6 databases (Table 5) are selected to test our model. The data have neither
appeared in the training dataset nor in the validation dataset. AFDB, NSRDB, and STDB all
have a long continuous ECG recording for every person. CEBSDB has 3 recordings recorded
in 3 different positions for each person, but they are measured consecutively, so we treat
them as long recordings and process them the same way as the other 3 databases. The
enrollment, time separation, and classification window are defined, as shown in Figure 7.

For PTBDB and ECGIDDB, only the people with multiple recordings and valid time
of measurement are considered in our test. The average time separations are 83.9 days and
5.5 days for PTBDB and ECGIDDB, respectively. Although recordings in PTBDB are at least
32 s, we limit r = 32 s. All recordings in ECGIDDB are 20 s, so we use r = 20 s.
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Table 5. ECG databases used for testing.

Database Name Total People Description

AFDB MIT-BIH Atrial Fibrillation Database [39] 23 Each person has 1 recording. Each
recording is at least 8 h long.

NSRDB MIT-BIH Normal Sinus Rhythm
Database [35] 18 Each person has 1 recording. Each

recording is at least 8 h long.

STDB MIT-BIH ST Change Database [40] 28 Each person has 1 recording. Each
recording is at least 12 min long.

CEBSDB Combined measurement of ECG,
Breathing, and Seismocardiography [41] 20

Each person has 3 recordings measured
in different positions which sum up to at

least 55 min long.

PTBDB PTB Diagnostic ECG Database 290 112 people have 2 or more recordings
with valid time label

ECGIDDB ECG-ID Database 90 89 people have 2 or more recordings with
valid time label

5.7.3. Short Time Separation Test

Since most of the research in this literature either use very short time separations
or completely ignore this variable, this test allows us to fairly compare the results. For
AFDB, NSRDB, STDB, and CEBSDB, t = 0 is used. For PTBDB and ECGIDDB, the earliest
recording is the enrollment, and the second earliest recording is the classification window.
The other variables are in Table 6.

Table 6. Variables used for short time separation test.

Database r (s) v t (s) p (s) n h

APNEA-ECG 32 12 0 256 64 23

LTAFDB 32 12 0 256 64 20

MITDB 32 12 0 256 64 18

LTDB 32 12 0 256 64 28

VFDB 20 8 - 20 4 89

SLPDB 32 12 - 32 8 112

5.7.4. Long Time Separation Test

Only PTBDB and ECGIDDB are used for this test. The earliest recording is the enroll-
ment, whereas the latest recording is the classification window. The other variables are in
Table 7.

Table 7. Variables used for long time separation test.

Database r (s) v p (s) n h r (s)

ECGIDDB 20 8 20 4 89 20

PTBDB 32 12 32–56 8 112 32

5.7.5. All Time Separations Test

We also test the model by varying t for an insight into its performance against time.
Only AFDB, NSRDB, STDB, and CEBSDB are used for this test because they have contin-
uous recordings for each identity. Other variables are in Table 8. The performance of the
model is presented as a graph of the metrics in Table 9 against t.
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Table 8. Variables used for all time separation test.

Database r (s) v p (s) n h

AFDB 32 12 256 8 23

CEBSDB 32 12 32 4 20

NSRDB 32 12 256 8 18

STDB 32 12 32 4 28

Table 9. Metrics used to evaluate the model performance.

Performance Metrics

Individual verification

TPR when FPR is at 1%, 5%, and 10%

EER

Area under ROC curve

Scope verification

TPR when FPR is at 10%, 20%, and 30%

EER

Area under ROC curve

Closed identification Accuracy

5.7.6. Metrics

When evaluating the model’s individual verification performance, the TPR when
FPR is at 1%, 5%, and 10%, the EER, and the area under ROC curve are observed. When
evaluating the model’s scope verification performance, the TPR when FPR is at 10%, 20%,
and 30%, the EER, and the area under ROC curve are observed. When evaluating the
model’s closed identification, the accuracy is observed.

6. Results and Discussion

The results from the short time separation test, long time separation test, and all time
separation test are described in Sections 5.7.3–5.7.5 are documented and discussed. These
results are then compared with the results from other state-of-the-art methods in Section 6.4.

6.1. Short Time Separation Test

The model is tested over short time separation, and the results are summarized in
Table 10. Not all the results presented have comparable state-of-the-art results, but they
could be used in future research comparisons.

Table 10. Performance over short time separation. h: total number of people, TPR: true positive
rate, FPR: false positive rate, EER: equal error rate, ID: identification, ROC: receiver operating
characteristics.

Database h

Individual Verification Scope Verification
ID Accuracy

(%)TPR (%) When FPR Is at EER
(%)

Area
under
ROC

TPR (%) When FPR Is at EER
(%)

Area
under
ROC1% 5% 10% 10% 20% 30%

AFDB 23 91.17 97.35 98.70 3.44 0.9926 87.09 91.85 94.70 12.06 0.9454 96.20

CEBSDB 20 100.00 100.00 100.00 0.29 0.9989 100.00 100.00 100.00 6.41 0.9794 100.00

NSRDB 18 99.74 100.00 100.00 0.87 0.9979 97.83 99.74 100.00 6.38 0.9654 99.91

STDB 28 92.80 98.60 99.27 3.00 0.9956 90.90 92.97 95.20 9.32 0.9640 96.09

ECGIDDB 89 97.75 98.88 99.72 1.97 0.9966 83.15 95.22 97.19 15.03 0.9226 96.35

PTBDB 112 98.33 99.42 99.78 1.56 0.9984 95.31 98.21 98.77 8.54 0.9689 98.10



Sensors 2022, 22, 3446 18 of 29

The results in Table 10 show that the model performs well in verification and identifi-
cation even though it is trained once and applied to six databases with different measuring
conditions, heart conditions, and number of people.

For individual verification, the model achieves more than 90% TPR at 1% FPR. Prac-
tically, this means that it is user-friendly to use at an acceptable FPR. The model also has
low EER at less than 4% and a high area under ROC curve at more than 0.9926 in all the
databases, which shows its potential to perform under these conditions. The results show
that scope verification is more difficult compared to individual verification. However,
it is still achieving more than 80% TPR at 10% FPR, less than 16% EER, and more than
0.9226 area under ROC curve across all the databases. The model also achieves higher than
96% identification accuracy across all the databases. We provide the ROC curves for these
verification tests in Appendix A to support the results in Table 10, as well as provide all
TPR against FPR for future research comparison.

6.2. Long Time Separation Test

The model is tested over a long time separation, and the results are summarized in
Table 11. Only the identification accuracies have their equivalent state-of-the-art comparison,
but individual and scope verification results are documented for future research comparison.

Table 11. Performance over long time separation.

Database h

Individual Verification Scope Verification
ID Accuracy

(%)TPR (%) When FPR Is at EER
(%)

Area
Uder
ROC

TPR (%) When FPR Is at EER
(%)

Area
Under
ROC1% 5% 10% 10% 20% 30%

ECGIDDB 89 94.94 98.60 98.88 1.97 0.9885 64.89 89.89 93.54 17.56 0.9009 92.70

PTBDB 112 69.47 81.86 90.27 10.19 0.9460 49.78 63.94 74.34 27.43 0.7852 64.16

The model performance drops significantly when the time separation between the
enrollment and classification increases. However, the model is still able to achieve more
than 69% for TPR when FPR is at 1%, and less than 11% EER for individual verification.
For scope verification, the model obtains more than 49% TPR at 10% FPR, and less than
28% EER. The model identifies at more than 64% accuracy. We provide the ROC curves
for these verification tests in Appendix A to support the results in Table 11, and they also
provide all TPR against FPR for future research comparison.

6.3. All Time Separation Test

The model performance for all time separation tests is presented as a metric against
the time separation graph in Appendix A. This research is the first in the literature to
present results in this format, and it could be used for future research comparison. It is
important to evaluate a model against all the time separations instead of choosing the
best-performing time separation only. Generally, the model’s performance decreases as the
time separation increases.

6.4. Performance Comparison with Other Methods

In this section, the model performance in this research is compared with the state-of-
the-art methods. The results are grouped by test databases for more meaningful compar-
isons instead of aggregating results from multiple databases as in [21,23].

6.4.1. Individual Verification over Short Time Separation

Table 12 shows the performance of individual verification over short time separation
performed using various methods.
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Table 12. Performance comparison of individual verification over short time separation.

Database Methods h FPR (%) FNR (%) EER (%)

CEBSDB
Ingale et al. [14] 20 0.00 0.00 0.00

Ours 20 0.92 0.00 0.29

ECGIDDB

Ingale et al. [14] 89 1.86 0.00 2.00

Salloum et al. [22] 18 - - 0.00

Ours 89 2.50 1.69 1.97

PTBDB

Ingale et al. [14] 290 0.59 0.00 0.50

Pal et al. [19] 100 1.63 10.00 2.88

Ours 112 0.85 1.79 1.56

Our design underperforms specialized designs of Ingale et al. at CEBSDB, ECGIDDB,
and PTBDB. Since Ingale et al. test different combinations of segmentation, filter, and feature
extraction, we choose the best results for comparison. The best combination for CEBSDB
is fixed-width segmentation, IIR filter, and fiducial features; for ECGIDDB, there is fixed-
width segmentation, IIR filter, and DTW features; for PTBDB, there is R-R segmentation,
Kalman filter, and fiducial features. It is also worth noting that, for PTBDB, we use different
ECG recordings for enrollment and classification, but Ingale et al. use the same recording
sessions for both.

Our design underperforms the RNN design of Salloum et al. [22] at ECGIDDB in
terms of EER. However, to achieve 0% EER, they use up to 80% of the 89 subjects in the
database for training, leaving 20% for testing. Our design outperforms the PCA design of
A. Pal and Y. N. Singh at PTBDB.

6.4.2. Closed Identification over Short Time Separation

Table 13 shows the performance comparison of closed identification over short time
separation using various methods.

Table 13. Performance comparison of individual verification over short time separation.

Database Methods h FPR (%)

CEBSDB

Zhang et al. [23] 23 93.90

Li et al. [21] 23 90.90

Ours 23 96.20

ECGIDDB

Zhang et al. [23] 20 99.00

Li et al. [21] 20 95.00

Ours 20 100.00

NSRDB

Tan et al. [5] 18 99.98

Zhang et al. [23] 18 95.10

Li et al. [21] 18 96.10

Ours 18 99.91

STDB

Zhang et al. [23] 28 90.30

Li et al. [21] 28 95.20

Ours 28 96.09
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Table 13. Cont.

Database Methods h FPR (%)

ECGIDDB

Sellami et al. [11] 40 92.50

Salloum et al. [22] 89 97.00

Tan et al. [5] 89 98.79

Ours 89 96.35

PTBDB
Labati et al. [18] 52 100.00

Ours 112 98.10

Our design outperforms HeartID of Zhang et al. and cascaded CNN of Li et al. at
AFDB, CEBSDB, NSRDB, and STDB. HeartID is a specialized design, i.e., one model is
trained for one database. However, the cascaded CNN is a generalized design in that the
testing databases are completely separated from the training databases, which is closer to
our design.

The random forest design of Tan et al. [5] performs the best at NSRDB and ECGIDDB.
However, they randomly select 67% of the extracted heartbeats for enrollment. This means
that some of the enrollment lengths could span a long period of time. For instance, some
of the recordings in ECGIDDB are 6 months apart, which means that randomly selected
heartbeats from these recordings may spread over 6 months.

Our design outperforms the DWT design of Sellami et al. [11] at ECGIDDB, but they
only select 40 subjects for testing. Our design slightly underperforms compared with the
RNN design of Salloum et al. [22] at ECGIDDB, which also uses different ECG recordings
for enrollment and classification.

Our design underperforms compared with the Deep-ECG of R. D. Labati at PTBDB,
which they only tested on 52 healthy subjects, and it is not clear if they use the same or
different recordings for enrollment and classification.

6.4.3. Closed Identification over Long Time Separation

Table 14 shows a performance comparison of the closed identification over a long time
separation with the CNN design of Sun et al.

Table 14. Performance comparison of individual verification over long time separation.

Database Methods h ID Accuracy (%)

ECGIDDB
Sun et al. [6] 89 85.94

Ours 89 92.70

PTBDB
Sun et al. [6] 50+ 56.93

Ours 112 64.16

Our design shows a 6.76% increase in identification accuracy for ECGIDDB and a
7.23% increase for PTBDB. Although the models are trained specific to databases, they are
multi-class classification designs like ours. Therefore, the significant performance increase
supports the fact that our ECG pair feature extractor can extract time-related features from
the query ECG and enrolled ECG and that these features are necessary when the time
separation is long.

7. Conclusions

In this work, we have adapted the transformer to perform identification and verifica-
tion using ECG as biometrics. Using BERT’s sequence pair training concept, the ECG pair
feature extractor can extract dynamic features from an ECG pair. Using the transformer’s
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encoder as a multi-class classifier, this design analyzes the entire identification scope, and
at the same time, it is also flexible to the scope changes without retraining.

We have also proposed a dataset generation method based on blind segmentation
that is not restricted by the number of heartbeats in a recording. Using this method on
10 publicly available ECG databases, a huge training dataset is generated. This satisfies the
demand for a large training dataset for the deep learning method.

Since our model is “train once, apply everywhere”, we test it on ECG recordings
from 6 test databases that are not included in the training and validation dataset. In our
experiments, we stress the time separation between enrollment and classification because
it is an important factor in a practical application that many researchers overlooked. We
improve the identification accuracy over long time separation when compared to one
published result. We also present the performance of the model against different time
separations to compare with future research.

When compared to other state-of-the-art methods, our design slightly underperforms
some of the specialized designs under their most favorable test conditions. However, our
design is the best among the generalized methods.
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