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Abstract: In recent years, the IoT has emerged as the most promising technology in the key evolution
of industry 4.0/industry 5.0, smart home automation (SHA), smart cities, energy savings and many
other areas of wireless communication. There is a massively growing number of static and mobile IoT
devices with a diversified range of speed and bandwidth, along with a growing demand for high data
rates, which makes the network denser and more complicated. In this context, the next-generation
communication technology, i.e., sixth generation (6G), is trying to build up the base to meet the
imperative need of future network deployment. This article adopts the vision for 6G IoT systems and
proposes an IoT-based real-time location monitoring system using Bluetooth Low Energy (BLE) for
underground communication applications. An application-based analysis of industrial positioning
systems is also presented.

Keywords: Internet of things (IoT); 5G; beyond 5G (B5G); 6G; industry 4.0; RTLS; artificial intelligence

1. Introduction

In recent years, wireless technology has been one of the fastest-growing technologies
in the area of communication. Today, wireless technology is becoming one of the largest
carriers of digital data around the globe. According to the Cisco Visual Networking
Index (VNI) Global Mobile Data Traffic for 2016 to 2022, worldwide mobile data traffic
increased about 10-fold over these 6 years, reaching 77 exabytes (approx.) per month
by 2022 (Figure 1a [1]). According to [1], the device mix is becoming smarter (advanced
computing and multimedia competencies with at least 3G connectivity) with an increasing
number of smart devices with high computing capabilities and better network connectivity,
which creates a growing demand for smarter and more intelligent networks. The share of
smart devices and connections as a percentage of the total will increase from 46 percent
in 2016 to 85 percent by 2022, a more than two-fold increase during the figure time frame
Figure 1b [1]. It is expected that 75 billion devices will be connected by the end of 2025 [2].

Sensors 2022, 22, 3438. https://doi.org/10.3390/s22093438 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093438
https://doi.org/10.3390/s22093438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2157-3487
https://orcid.org/0000-0001-5673-1046
https://orcid.org/0000-0003-1872-7147
https://orcid.org/0000-0003-4249-577X
https://orcid.org/0000-0002-4919-3101
https://orcid.org/0000-0003-3226-5639
https://doi.org/10.3390/s22093438
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093438?type=check_update&version=2


Sensors 2022, 22, 3438 2 of 30

Service providers around the globe are busy rolling out 5G networks to meet the growing
demand of the end consumer for greater bandwidth, higher safety and quicker connectivity
on the move. Many vendors have additionally begun area trials for 6G and are getting
closer to rolling out 5G deployments in the direction of the end of the forecast length.
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Moreover, the heterogeneous nature of the next-generation communication networks
in terms of the application, communication technology used and involvement of diversified
devices brings a large variety of requirements and expectations. Today’s world is focusing
more on the IoT due to its wide range of applications from human-centric to industry
4.0/industry 5.0. Nevertheless, device-to-device (D2D), machine-to-machine (M2M) and
vehicle-to-vehicle (V2V)/V2X communication technologies constitute the real applications
showing the widespread advantages of the IoT [3–9]. Furthermore, reliable data trans-
mission with low latency is another key challenge for successful IoT applications [10].
The emergence of the Internet of Everything (IoE), which offers remarkable solutions for
massive data transmission to the edge network, and the integration of Industrial Control
Systems (ICSs) with the IoE recast it as the Industrial Internet of Everything (IIoE) [5].
Again, with the evolution of different emerging technologies such as artificial intelligence
(AI), machine learning (ML), cloud computing, cognitive computing, edge computing, fog
computing, blockchain technology, etc., various challenges are being addressed in different
IoT industrial applications. Such complex IoT networks provide substantial technological
prospects that facilitate the realization of good quality of service (QoS) and quality of experi-
ence (QoE). For example, the Internet of SpaceThings (IoST) for high speed, reduced latency
and umbrella Internet coverage; the Social Internet of Things (SIoT) for an interface between
human and social networks; the Internet of NanoThings (IoNT) for telemedicine; and the
Internet of UnderwaterThings (IoUT) for improving ocean water quality, cyclonic/tsunami
disaster management, etc. [11].

In view of this, the IoE introduces essential protection challenges due to the wide
variety of functionality and demanding situations. There is always a dependency of the IoT
on cellular networks since long-term evolution (LTE) was introduced, which is enhanced
as 5G/6G in some specific scenarios. The demand for high throughput, high energy
efficiency and better connectivity with reduced latency time can be attained beyond 5G/6G
networks [12]. The 6G system will offer a better enrollment of the IoT devices as the 5G
IoT has provided a solid foundation. The future 6G network is envisioned to be service-
oriented, where software-defined networks (SDN) and network function virtualization
(NFV) will play a vital role in the end-to-end architecture [13]. These technologies are
capable of providing better coverage with high throughput, improved spectrum efficiency,
greater bandwidth and ultra-low latency. The 6G IoT system is sustainable for high-
accuracy localization and sensing, which are necessary for most of the envisioned highly
computationally intensive applications.
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Related Work and Key Contributions

A growing number of research works focus on current advances in wireless and IoT
technology, including in-depth analysis of the advanced technology concepts, methodology
and techniques.

Specifically, [14] provides a comprehensive survey on key enabling technology for 6G,
where the emphasis is on a discussion of the operation of the individual technology with
useful statistics for industries and academic researchers on the potential for investigating
new research directions. The authors of [15] discussed the requirements of 6G and recent
research trends to enable 6G capabilities and design dimensions by employing disruptive
technologies such as artificial intelligence (AI) and driving the emergence of new use
cases and applications manifested by stringent performance requirements. A review of
6G in terms of use cases, technical requirements, usage and key performance indicators
(KPI) is presented in [16]. Here, the authors presented a preliminary definition roadmap,
specifications, standardization and regulation for 6G. A survey on wireless evolution
toward 6G networks is presented in [17], discussing the capabilities of network slicing
technology with AI to enable a multitude of services with different quality of service (QoS)
requirements for 6G networks. A comprehensive survey on the existing trends, applications,
network structure and technologies of 6G is presented in [18], with a focus on industrial
markets and use cases of 6G that take advantage of a better on-device processing and
sensing, high data rates, ultra-low latencies and advanced AI. In [19], the authors presented
an overview of 6G describing the complete evolution path from 1G networks to date and
focusing on several key technologies such as terahertz communications, optical wireless
communications (OWC) and quantum communications for improving the data rates.

A comprehensive survey on the convergence of the IoT and 6G is presented in [20,21]
with a focus on edge intelligence, reconfigurable intelligent surfaces, space–air–ground–
underwater communications, terahertz communications, massive ultra-reliable and low-
latency communications and blockchain as the technologies that empower future IoT
networks. A comprehensive study on 6G-enabled massive IoT is presented in [22], where
ML and blockchain technologies are discussed as the primary security and privacy enablers.
In [23], the potential of the IoT and 6G for various use cases in healthcare, smart grid,
transport and Industry 4.0 have been elaborated jointly with the challenges during their
practical implementations. Several shortcomings of 5G and features of 6G related to social,
economic, technological and operational aspects such as the weakness of short packet
and sensing-based URLLC, which may limit the dependability of low-latency services
with high data rates or the lack of support of advanced IoT technologies are discussed
in [24]. Current research activities, therefore, should focus on innovative techniques such as
advanced time-stamp stream filtering combined with intelligent network slicing to support
multi-party (source) data stream synchronization in very low latency environments coupled
with distributed control (at the edge).

In [25], the author mainly focuses on the integration of blockchain technology into
6G, the IoTand IIoT networks. Blockchain technology has a strong potential to fulfill
the requirements for massive 6G-based IoT for the integrity of personal data protection,
data privacy and security and scalability. Furthermore, a sustainable ecosystem-focused
business model, driven by blockchain-empowered 6G networks is thoroughly analyzed
to deal with the cutting-edge worldwide economic disaster. Envisioning the green 6G–
IoT network, a novel joint design technique using intelligent reflective surface (IRS) and
ambient backscatter communication (ABC) is proposed in [26]. This method is primarily
based on the joint design of an iterative beamforming vector, an IRS phase shift and
reflection coefficients to decrease the AP’s transmit power without affecting the QoS. The
author in [27] addressed the three fundamental components, i.e., artificial intelligence (AI),
mobile ultra-high speed and the (IoT) for the future 6G network. The authors focused on
the recent approaches, research issues and key challenges of IoT network topology and
terahertz (Tz) frequency. A comprehensive survey of existing 6G and IoT-related works is
summarized in Table 1.
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Table 1. A Comprehensive Survey of existing 6G and IoT related works.

References Authors Year Research Topic Objectives/Key Contributions

[14] Alsabah et al. 2021 Concept on 6G Network
A comprehensive review fn 6G-enabling technologies with a short
discussion on their principle of operations, applications, current

researchand challenges.

[15] Shahraki et al. 2021 Enabling technologies and
future challenges for 6G

A brief discussion on the enabling technologies, requirementsand
trends of 6G with a focus on challenges and recent research activities,

including tactile Internet and terahertz communication.

[16] Jiang et al. 2021 Roadmap definition and Key
Performance Indicators of 6G

A comprehensive survey on 6G use cases, architecture, key drivers,
enabling technologies, etc.

[17] Nasir, et al. 2021 Evolution of intelligent 6G
network

• A review on the evolution of wireless technology toward 6G,
focusing on the key driving forces behind the shift.

• A short discussion on network slicing technology with AI to
facilitate multimode services with varying QoS.

[18] Hakeem et al. 2022 6G applications and future
research

A brief discussion on trends, regulations, industrial marketsand
analysis of 6G requirements in terms of network architecture and

hardware–software design.

[19] Qadir et al. 6G-IoT concept
A brief survey on 6G networks, research activities, key enabling
technologiesand case studies with the main focus given to the

discussion of terahertz communication and visible light communication.

[20] Nguyen et al. 2022 6G-enabled IoT networks

• A holistic review of the convergence of 6G and IoT networks with
a brief discussion on the key enabling technologies for the IoT
including terahertz communication, reconfigurable intelligent
surfaces and blockchain.

• A few research challenges and applications of the IoT are also
discussed in depth.

[21] J. H. Kim 2021 Recent trends in 6G related to
IoT technology

A short discussion on key drivers, enabling technologiesand current
research trends of 6G with a brief introduction about viable applications

of 6G to the IoT.

[22] Guo et al. 2021 6G-enabled massive IoT

• A survey on the key drivers and requirements for IoT-enabled
applications with several constraints of 5G are also highlighted.

• A case study on fully autonomous driving is presented to
manifest the support of 6G to massive IoT.

• A few key technologies such as ML and blockchain technologies
are also discussed.

[23] Barakat et al. 2021 Opportunities of 6G in IoT
technology perspective

A comprehensive review of the IoT use cases based on its wide variety
of implementations.

[24] Mahdi et al. 2021 Road map from 5G to 6G A holistic review of 5G and 6G technologies in terms of energy, he
IoTand ML.

[25] Jahid et al. 2021
Integration of blockchain

technology with 6G and Ithe
IoT

A comprehensive survey on integrity, privacyand security issues, with
the mitigation techniques encountered in blockchain-integrated 6G

cellular networks.

[26] Liu et al. 2021 6G green IoT network A novel method of minimizing the access point’s transmitting power is
introduced by implementing the ABC and IRS technique jointly.

[27] Ndiaye et al. 2022 IoT network topology and 6G
communication technology

• A brief discussion on the fundamental components of a 6G
network.

• A short overview of key challenges and research issues of IoT
network topology and terahertz frequency

The contributions to this paper can be outlined as follows:

• We present the vision of the IoT with the technologies impacting it with their key features
• We review several applications and challenges of the IoT in different domains.
• We present different connectivity standards of the IoT and a rigorous review of these

technological standards
• We present a comparative analysis between 5G and 6G.
• We present the vision and key features of 6G with its different aspects.
• We present a brief review of several challenges of 6G.
• We propose a BLE-based real-time location monitoring system by using the IoT

The remainder of this article is organized as follows. Section 2 presents the vision,
applications and challenges of the IoT, including the connectivity standards and a com-



Sensors 2022, 22, 3438 5 of 30

parative analysis of their capabilities. In Section 3, a comparative analysis of 5G and 6G
with the vision key features and the challenges of 6G is presented. Section 4 proposes
and discusses a BLE-based real-time location monitoring system by using the IoT. Finally,
we draw conclusions in Section 5. Related abbreviations are listed in the Appendix. A
schematic representation of the structure of the paper is shown in Figure 2.
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2. Visions, Applications and Challenges of the IoT

In the last few decades, the IoT has become the most promising and thriving area
of research in academia and industry. The IoT extends the existence of communication
by converging clients, businesses and industries by connecting intelligent things with
each other through the cloud. These smart connections encompass different network
applications, communication technologies and smart devices along with physical and
virtual things. The IoT paradigm is a transformation from a centralized computer-based
network to a completely distributed network of smart devices. To take the potential benefits
of the IoT and to compete globally, the IoT European Research Cluster (IERC) has focused
mainly on establishing a cooperation platform between companies and organizations for
developing more research activities on the IoT at the European level. The primary objective
of IERC is to facilitate making the research activities more ambitious and neoteric. The
International Telecom Union (ITU) was the first international agency to produce a report
on the IoT in 2005 [28]. Thereafter a new standard of the IoT was approved by the ITU
in 2012 [29]. However, the term IoT was first used by the Massachusetts Institute of
Technology’s (MIT’s) Kevin Ashton in 1999 [30].
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2.1. Vison of the IoT

The vision of the IoT has different perspectives based on the data generated by the
connected objects and the technology used. During the early stages of IoT implementation,
the vision was to identify the physical objects by using radio frequency identification
(RFID) tags. However, due to recent technological advances, the vision of the IoT has been
reformed by encapsulating varying technologies and smart sensors. The IoT leads the
way in unfolding the new generations of different compelling applications and services in
the field of Industrial IoT (IIoT), Industry 4.0 and Society 5.0. Figure 3, illustrates the key
technologies that impact the IoT.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 38 
 

 

2. Visions, Applications & Challenges of IoT 
In the last few decades, IoT has become the most promising and thriving area of re-

search in academia and industry. The IoT extends the existence of communication by con-
verging Clients, Businesses, and Industries by connecting intelligent things with each 
other through the cloud. These smart connections encompass different network applica-
tions, communication technologies, and smart devices along with physical and virtual 
things. The IoT paradigm is a transformation from a centralized computer-based network 
to a completely distributed network of smart devices. In order to take the potential bene-
fits of IoT and to compete globally, the IoT European Research Cluster (IERC) has mainly 
focused on establishing a cooperation platform between companies and organizations for 
developing more research activities on IoT at the European level. The primary objective 
of IERC is to facilitate the research activities to be more ambitious and neoteric. Interna-
tional Telecom Union (ITU) is the first international agency to produce a report on IoT in 
the year of 2005 [28], thereafter a new standard of IoT is approved by ITU in the year of 
2012 [29]. However, the term IoT was first brought into focus by Massachute Institute of 
Technology’s (MIT’s) Kevin Ashton in the year of 1999 [30].  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. Technologies Impacting IoT. 

 

Technologies 
Impacting IoT

Artificial 
Intelligence 

(AI)

B5G/6G 
Networks

Big Data

• Enhanced Mobile Broadband (eMBB) 

• Ultra-Reliable & Low Latency Communication (uRLLC) 

• High-Spectrum Efficiency 

• High data rate with Seamless Mobility 

• Massive Machine Type Communication (mMTC) 

• Improved Coverage & Capacity 

• Experienced Throughput 

• Large volume of data  

• Heterogeneity type of data from different 

connected sources 

• Data is being generated at high speed 

• Highly veracity of data 

• Intelligent Prediction & Personalization 

• Increases Operational Efficiency 

• Improves Safety Management 

• Enhanced Scalability 

• Augmented Reality (AR) / Virtual Reality 

(VR) 

Figure 3. Technologies impacting the IoT.

2.2. Applications of the IoT

IoT applications in various sectors have been assessed based on their impacts on society
and the economy along with their technology readiness level (TRL). The applications of the
IoT are diversified based on their use in different fields such as intelligent homes, healthcare,
agriculture, transportation, the environment, education, retail and logistics, industries and
many more [31–34]. Consequently, the IoT has also had an impact during the pandemic
era of COVID-19 in many aspects, e.g., contact tracing, virus detection by temperature
scanning, remote health monitoring, quarantine e-tracking, virus spread control, etc., and
also in tackling the post-COVID-19 situation [35–38]. AI-integrated IoT technology for the
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early detection of COVID-19 is discussed in [37]. This research mainly focuses on analyzing
the extracted features of cough, shortness of breath and speech difficulties by using long
short-term memory (LSTM) with recurrent neural network (RNN). In [38], an IoT-based
real-time learning system is developed to control the spread of COVID-19 infection in the
context of smart healthcare for residents. The system is used to monitor and analyze user
activities and environmental parameters which helps predict critical cases, so alerts can be
sent to the caretakers. A few applications of the IoT are briefly presented in Table 2.

Table 2. Applications of the IoT.

Focused Area Applications References

Intelligent Home

• Facilitating comfortable lifestyle
• Helps in reducing the carbon footprint of energy

consumption
• Intrusion detection
• QoS-based services
• Design of sensitive home automation system
• Indoor monitoring

[39–46]

Smart Cities

• Analyze and predict the performance of applications used
in scalable platforms

• Location finding along with the updated location
configuration features

• Smart energy
• Smart mobility and traffic management
• Digital forensics
• Smart governance
• Smart healthcare
• Smart education

[41,43,47–53]

Medical and Health Care

• Health and fitness monitoring
• Remote medical diagnostics
• Wearable electronics gadgets
• Patient monitoring
• Disease management system to improve reliability
• Mobile medical home monitoring system to improve the

rapidity of factor measurements
• Human factor evaluation in information exchange in the

healthcare environment
• Integration of AI in clinical medicine

[35,36,50,51,54–60]

Environment

• Ecological habitat monitoring
• Weather monitoring
• CO2 Emission monitoring
• Collection of recyclable materials
• Smart disaster management system
• The revival of a rural hydrological/water monitoring

system
• Smart environment
• Water environment monitoring

[50,51,61–67]
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Table 2. Cont.

Focused Area Applications References

Agriculture

• Automated irrigation control
• Green house control
• Precision agriculture field operation and evaluation
• Smart farming
• Aquaponics farming
• Smart precision farming
• Livestock farming
• Smart decision-making system for real-time analysis
• Integration of AI in monitoring and management

[62,64,67–74]

Transport

• Optimal route finding
• Smart traffic
• Vehicular speed monitoring
• Toll fee collection
• Information about busy traffic
• Smart parking
• Surveillance monitoring
• Automated/Driverless vehicle
• ML-enabled smart transport

[48,49,75–79]

Retail and Logistics

• Smart payments through near field communication (NFC)
and Bluetooth

• Stock management
• Shipment monitoring
• Cargo handling and tracking
• Remote vehicle diagnostics
• Supply chain management

[77,78,80–85]

Industry

• Machine diagnosis and prognosis
• Indoor air quality monitoring
• Manufacturing automation
• Industrial blockchain technology
• IIoT for low-power wide-area networks (LPWANs)
• Smart factories

[33,86–92]

2.3. The IoT Challenges

With an increase in the number of smart devices and real-time applications, the
complexity of IoT networks has increased in terms of their densities and architecture.
These complexities scale down the performance competencies of the current IoT network.
There are several IoT challenges, namely, universal standardization, connectivity, cloud
computing, energy efficiency, IoT protocol and architecture in addition to security and
privacy. The IoT is still in its developing stage; so many more challenges have to be
addressed with the revolution of technologies in the future research domains of the IoT. A
few challenges of the IoT are briefly presented in Table 3.
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Table 3. Challenges of the IoT.

Focused Area Challenges References

Constrained Resources

• Limited manufacturing techniques
for small size and low-cost device
resources

• Spectrum resources scarcity for IoT
enabling technologies

• Smart antenna

[93–98]

Scalability, Reliability and
Interoperability

• Self-addressing, discovering and
classification

• Host identification and address
mapping

• Interoperability and availability
• Lack of efficient and reliable

communication by using TCP
(transmission control
protocol)/UDP (user datagram
protocol) protocol

• Unreliable packet delivery
• Lack of interoperability between

different protocols

[96,99–105]

Privacy and Security

• Integrity, validation, authentication
and trust

• Data and physical device security
• Confidentiality
• Cyclic redundancy check (CRC)
• Message authentication code (MAC)
• Limitations of symmetric

cryptography and public–key
cryptography operation

• Different IoT threats such as
fragmentation attack

• Poor encryption

[35,36,96,101,104,106–119]

Big Data and Cloud Computing

• Lack of computational resources
• Low data storage
• Loss of data packets
• Optimization of multi-objective

functions
• Edge computing
• Liability sensitization toward

redundant tasks
• Centralized data acquisition system
• Must support domain-specific

programming

[104,105,107,108,120,121]

Universal
Standardization

• For technology and other regulatory
• For communication among

heterogeneous devices
• Protocol standardization
• Spectrum harmonization

[95,96,120,122]
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Table 3. Cont.

Focused Area Challenges References

Connectivity

• Supportiveness of tactile Internet
and multimedia communications

• High data rate applications, e.g., AR
and VR

• Reduced latency for real-time
applications

• Fast and précised localization
determination

• Good QoS
• Signaling overhead on edge devices
• Seamless connectivity
• Internetworking
• Wide range of connectivity
• Gossip-based algorithm for better

connectivity for poor
communication network

[95,104,117,120,123–125]

Energy Efficiency

• Energy harvesting
• Energy efficient (EE) LPWANs
• Self-sustainability of machines due

to limited energy
• Power losses and energy

conversions
• EE MAC and cross-layer protocols
• Technologies for green IoT
• Intelligent energy management
• Energy saving solutions for network

softwarization

[95,96,107,126–132]

IoT Architecture and Protocol

• Autonomous and incremental
computation
framework/architecture

• Flexible and open architecture for
heterogeneous devices

• More intelligent self-organizing
network (SON)

• Efficient management of radio
resources, service provisions,
orchestration, etc.

• Integration with AI
• Traditional business model
• Mobility management
• Simple, light efficient security

protocol
• Efficient risk management
• Efficient radio access protocol
• Efficient tracking and protection

management in cloud environment

[95,96,104,105,107,122,133,134]

2.4. IoT Connectivity Standards

As per the IoT analytics report, there are mainly 21 IoT connectivity standards that
can be broadly classified in two ways: as cellular IoT and non-cellular IoT connectivity
standards. The cellular IoT standards are operated at a licensed spectrum, whereas the non-
cellular IoT is operated at a non-licensed spectrum. Different IoT connectivity standards
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are depicted in Figure 4 [135] [Source: IoT Analytics Report 2021]. A comparative analysis
of different IoT connectivity standards is presented in Table 4.
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Table 4. Comparison of different IoT Connectivity Standards.

Standards Range of
Communication Max. Data Rate Frequency

Spectrum Used
Power

Consumption Standardization Modulation Multiplexing/
MAC Scheme

Security
Algorithm

NFC 0.1 m [136] 106–848 Kbps [136] 13.56 MHz
[34,136] Low (<40 mA) [136]

ISO/IEC 14443,
18092 JIS X6319-4

[136]
ASK, BPSK [136] TDMA [137]

Encryption
Cryptographic,

Secure Channel, Key
Agreements [136]

Bluetooth 0–10 m [138] 24 Mbps [138] 2.4 Ghz [138] 10 mw [12], 2.5–100
mW [139]

IEEE
802.15.1 [140]

GFSK, DQPSK,
8DPSK [138,140]

TDD [138], FHSS
[140]

E0, E1, E21,
E22, E3,

56–128 bit [140]

BLE 50 m [89], 70 m [136] 1 Mbps [136,140] 2.4 Ghz [140] Low
(<12.5 mA) [140]

IEEE
802.15.1 [140]

GFSK, FHSS Star
[136] FHSS [140] AES-128 [140]

ANT <30 m [140] 1 Mbps [140] 2.4 Ghz [140] Low (<16 mA) [140] Proprietary [140] GFSK [140] TDMA [140] AES-128,
64 bit [140]

Zigbee 10–300 m [138] 20–250 Kbps [138]

ISM Bands 2.4
GHz/915 MHz

(USA)/868 MHz
(EU) [138]

Medium (1 mw-100
mw) [141]

IEEE
802.15.4 [140]

BPSK (868–915 MHz)
O-QPSK (2.4 GHz)

[138,140]

DSSS [89],
CSMA/CA TDMA +

CSMA/CA [138]
AES-128 [138,140]

Zwave 100 m [136],
0–30 m [138]

9–100 Kbps [136], 40
kbps [138]

2.4 GHz 908.4 MHz
(USA) 868.4 MHz

(EU) [138]

Medium (1 mW)
[141]

Proprietary [140],
ITU G.9959 [142]

FSK, GFSK
[136,137,140]

FHSS [89],
CSMA/CA [138] AES-128 [138,140]

WiFi 10–100 m [138] 65 Mbps [138] ISM Bands
2.4–5 Ghz [138]

Low to Medium
(32–200 mW)

[138,139]
IEEE 802.11 [143]

BPSK, QPSK,
COFDM, CCK,
M-QAM [138]

CSMA/CA + PCF
[138] CCMP 128 [138]

LoRaWAN 5–20 km [144] 50 kbps [144]

Unlicensed ISM
bands (868 MHz in

Europe, 915
MHz in North

America and 433
MHz in Asia) [144]

Low
(10.5–28 mA) [145] LoRa Alliance [143] LoRa CSS

[143,146–148]
Pure—ALOHA

[146,147,149]
AES-128 encryption

[146,147]

NB-IoT 1–10 km [144] 204.7–234.8 Kbps
[136], 200 kbps [144]

Licensed LTE
frequency

Bands [136,144]
Low (46 mA) [150] 3GPP [136,143]

QPSK [143], BPSK
[147], GFSK, BPSK

[136]

OFDMA for
downlink and

SC-FDMA for uplink
[151]

3GPP 128–256 bit
[136,144,146]

Sigfox 10–40 km [136,144] 100–600 bps [136],
100 bps [144]

Unlicensed ISM
bands (868 MHz in

Europe, 915
MHz in North

America and 433
MHz in Asia)

[136,144]

Low (10–50 mA)
[145] Sigfox [143]

BPSK [92], DBPSK
for Uplink and

Gaussian frequency
shift keying (GFSK)

for downlink
[136,147,148]

R-FDMA [152,153] AES-128 encryption
[147,148]

3. Vision, Key Features and Challenges of 6G

With the standardization of 5G about to complete and its commenced global deploy-
ment, several latent limitations to meet the necessary requirements of IoT systems still
remain. These impediments mainly relate to the high computation, security, wireless
brain-computer interface (WBCI) intelligent communication in terms of more autonomous
human-to-machine (H2M) communication, holographic communication (augmented real-
ity/virtual reality) and AI. These data-hungry applications require more spectrum band-
width (e.g., mm-wave) and high spectral efficiency which can be realized at the sub-
terahertz (sub-THz) and THz bands [154]. Furthermore, due to the incorporation of a wide
variety of mobile applications, there are some more challenges (beyond uRLLC, coverage,
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localization, privacy, power consumption, better quality-of-service, etc.) that need to be
addressed in the future B5G wireless communication standards. In this context, the 6G is
attracting more researchers from academia and industries towards itself. A comparative
analysis between 5G and 6G is presented in Table 5.

Table 5. A comparative analysis between 5G and 6G.

Parameters
Technological Standards

5G 6G

Frequency Band Sub 6 GHz, 30–300 GHz [155] Sub 6 GHz, 30–300 GHz, 0.3–3 THz [155]

Average Data Rate 100 Mbps [155] 1 Gbps [155]

Latency 1 ms [155] <1 ms [155]

Mobility ≥500 kmph [155,156] ≥1000 kmph [155,156]

Maximum Channel Bandwidth 1 GHz [156] 100 GHz [156]

Connection Density 106 devices/km2 [156] 107 devices/km2 [156]

Reliability (Packet Error Rate) 10−5 [156] 10−9 [156]

Area Traffic Capacity 10 Mbps/m2 [155,156] 10 Gbps/m2 [155,156]

Service Types eMBB, mMTC, uRLLC [155] mbRLLC, muRLLC, HCS, MPS [155]

Multiplexing
CDMA [157,158], OFDM, GFDM [158],

FBMC [159], Adaptive
Time–Frequency Multiplexing [160]

Smart OFDMA + Index Modulation,
OMA [161], NOMA [161], OAM [162],

Spatial Multiplexing [163]

Power Consumption Low to Medium Ultra-low [164]

Downlink Spectral Efficiency 30 bps/Hz [165] 100 bps/Hz [165]

Energy Efficiency Gains in Comparison With
4G 10× [165] 1000× [165]

Network Architecture Centralized [155] Decentralized [155,166]

3.1. Vision and Key Features of 6G

Despite the dramatic revolution of IoT–5G application in today’s wireless networks,
6G is anticipated to excel 5G in many ways, not only in daily life, but also in Society 5.0.
Even though 6G is not a talking point of global harmony so far, some additional features
with more potential and capabilities are being discussed. In this section, a comprehensive
vision of a 6G network is presented from multiple perspectives as shown in Figure 5.

3.1.1. Intelligent Network

As 6G is envisioned as a fully automated and smart network, the incorporation of AI,
MLand quantum machine learning (QML) makes the future wireless networks more intelli-
gent and predictive by limiting human efforts [176,187]. AI and ML are the transforming
technologies and data analytics tools in the modern era of wireless communication that
bring new research challenges in the field of 6G IoT [186]. By using big data and ML, a
more precise performance prediction model can be implemented in a 6G IoT network to
make smart decisions for security, optimization, resource allocation, network management,
self-organization, etc., [155–165,188]. Due to the high veracity/volume data and complex
6G IoT network structure, it is necessary to instigate more futuristic learning/training
frameworks for high-dimension neural networks (HDNN) [165].
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3.1.2. Decentralized Network

Due to the emergence of multi-access edge computing (MEC) in the 5G network, there
are several limitations in the centralized network, e.g., privacy, security, trust, incompati-
bility of the existing protocol to the dynamic connectivity and distributed and ubiquitous
computing [166]. Thus, it is necessary to prepare a blueprint of decentralized architecture
to support such a dynamic and autonomous network. In this regard, blockchain is a promis-
ing technology for the future 6G network and is capable of dealing with these challenges.
Blockchain technology can provide a decentralized network management framework that
can be used for resource management, data sharing/storage, spectrum sharing and other
challenges [172–175,189].

3.1.3. Green Network

The 6G network is expected to meet the essential requirements for energy-efficient
wireless communication globally. The green 6G network enables minimum energy utiliza-
tion and helps achieve a peak data rate (THz) during signal transmission. A significant
improvement in the energy efficiency of a network can be greatly experienced by in-
corporating different energy-harvesting techniques [154,190]. This also helps facilitate
green communication by reducing CO2 emission. In addition, several communication
techniques, e.g., D2D communication, massive multiuser multiple-input-multiple-output
(MIMO), heterogeneous network (HetNet), green IoT, non-orthogonal multiple access,
energy-harvesting communications, etc., may be adopted to facilitate green communication
for future wireless networks [191–193].

3.1.4. Superfast Network

With reference to the data analysis shown in Figure 1, the ever-increasing demand
for high data rate and seamless connectivity to such ultra-dense networks can be pro-
vided by integrating terahertz (THz) (ranges from 0.1–10 THz) communication in 6G
networks [168,177,178]. A vast amount of unused radio spectra which can be efficiently
used to increase network capacity is available in the THz band. THz is additionally reason-
able for high data rate transmission and short-range communication by empowering the
ultra-high bandwidth and uLLC paradigms. An extensive review of THz communication
with its future scope and challenges is presented in [194].

3.1.5. Human-Centric

It is believed that human-centric communication is a key feature of the 6G network.
With the help of this technology, sharing and/or accessing different physical features
can be possible by humans. To accelerate human-centric communication rather than
technology/machine-centric communication, the principal means of human perception
must be incorporated into the communication system module [195]. A human-centric com-
munication framework needs two fundamental aspects—technology and user experience
(UE). The latter includes human behavior as well as psychological and socioeconomic con-
texts and needs to be considered during the modeling and analysis of the communication
system [183,184,195].

In 2016, Society 5.0 was initiated by the Japanese cabinet in its Fifth Science and Tech-
nology with a vision to build a “Super Smart Society” [196]. Later, the vision was revised
and presented by the Keidanren Business Federation with the prime focus of delivering
sustainable development goals (SDGs) through the creation of Society 5.0 [183,184,197].
Society 5.0 is designed to solve different social issues by taking advantage of technological
advancements. Considering different aspects of economic growth, social and environmen-
tal conditions, 17 primary objectives and 167 goals are listed in the Agenda 2030 by the
United Nations to address several global challenges [198,199].
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3.2. Challenges of 6G

Even though several advanced features have been added to 6G networks to enhance
the performance matrices in comparison with 5G networks, there are still some key chal-
lenges that must be addressed further. These challenges are broadly classified into two
categories: (i) technological challenges that include high throughput, EE, connectivity flexi-
bility, more intelligent optimization techniques, etc., and (ii) non-technological challenges
including industry barriers, spectrum allocation, regulatory policies and standardization,
etc. [200]. A few key challenges of the future 6G networks are summarized in Figure 6.
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In addition, due to the integration of the IoE, terrestrial and non-terrestrial commu-
nication networks in 6G, their different heterogeneous highlights must be considered to
productively coordinate them. Heterogeneity is likewise present in the protocol that those
communication networks will comply with. Thus, 6G is taking on the massive task of
integrating a number of heterogeneous aspects [203]. Furthermore, due to the inclusion
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of mm-Wave and THz communication, 6G networks are facing several more open chal-
lenges, e.g., more sensitive low-power transmitter, new model architecture, advanced
propagation techniques for better coverage and directional communication. The networks
must also deal with system noise, channel fading and fluctuations [169,203–205]. Several
more challenges such as computational and processing resources due to the application of
AI [206], a few ML application-related challenges [207], training issues and interoperability
challenges [208], challenges in estimating the channel information by using reconfigurable
intelligent surfaces (RIS) [209,210] and computational and trade-off challenges due to the
application of artificial neural networks (ANN) in the IoT [211] have been recognized for
the future 6G networks.

4. An IoT-Based Real-Time Location Monitoring System by Using BLE

Mining is one of the most speculative businesses around the globe. Most of the mines
all over the world are lagging in different safety measures causing many casualties and
deaths. The basic causes of death in underground mines are gas accidents, rock falling,
ventilator accidents, fire, explosions, etc. Considering the safety issues of the employ-
ees/workers inside the mines, real-time location tracing of those employees becomes a
major concern. Effective underground communication is necessary to collect more informa-
tion about the mines or workers. However, there are various constraints while collecting
the real-time data inside the mines such as restricted transmitting power, large attenuation
of the transmitted signal from the rock wall and low penetration of the electromagnetic
signal. In this regard, it is always beneficial to take the potential advantages of low-power
and short-range communication technologies such as, RFID, Zigbee, Bluetooth, Bluetooth
low energy (BLE), etc.

In this section, a scenario for a Bluetooth low energy (BLE) beacon-based real-time
location monitoring of employees/workers by using the IoT is presented. A BLE beacon and
microcontroller are used to design this asset-tracking product and have been implemented
in the IoT here by connecting this device to the cloud.

4.1. State-of-Art

Underground communication inside mines is a major factor for the safety and security
concerns of the mineworkers. The advent of IoT technology and its usefulness can be
beneficial for the mining industry. It is believed that a robust communication infrastructure
using IoT technology inside the mines may enhance the safety of the workers and is
also capable of providing real-time information resulting in quick action to avoid lethal
situations. Several researchers have proposed various frameworks and ideas for efficient
communication inside the mines based on IoT technology, which includes low-power and
short-range communication.

The authors of [212,213] proposed a wireless sensor network (WSN)-based monitoring
system for underground mines. In this proposed technique, various sensors are placed at
different locations to collect activities and positions of the employees, and the collected data
are transferred to the end user or the central server via BS. Nageswari et al. [214], proposed
an IoT-based smart mine monitoring system that uses radio frequency (RF) technology for
communication purposes inside the mines. With this proposed technique the real-time
location and real-time sensing of the dynamically varying environment can be achieved by
using RF technology and WSN network, respectively. The major drawback of this proposed
model is that large-signal transmission loss occurs through the walls of underground mines.
An IoT-based mine safety system using WSN was proposed in [215,216]. In these proposed
techniques, the authors used a Zigbee module for information collection from the cloud
and measured the surrounding parameters of underground mines with the help of various
sensors. A mine safety system using WSN was proposed in [217], where the authors
constructed a prototype by using Zigbee and WSN to monitor safety issues and to measure
the ambient properties, e.g., temperature, humidity, airflow, etc., inside the underground
mines. A Zigbee compliant RFID-based safety system for underground coal mines was
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proposed in [218], where a unified wireless mesh-network infrastructure was used to
monitor and locate the workers and measure the different environmental parameters inside
the coal mines. Similarly, an IoT-based system for underground coal mines that uses a
microcontroller, a node MCU and various sensors to measure the environmental conditions
and safety measures of workers was proposed in [219]. A LoRaWAN-based coal safety and
health monitoring system was proposed in [220]. In this proposed methodology, LoRaWAN
uses low-power RF with a wide communication range and IoT technology for monitoring
the workers’ health and observing the status of the circumstances in the coal mines.

There are several existing technologies used for communication purposes in under-
ground mines. The most common approaches are RFID, Zigbee, Bluetooth, GPS, etc. Table 6
presents a comparative analysis of some existing technologies in terms of their pros and
cons [214–221].

Table 6. A comparative analysis of some existing technologies.

Technology Advantages Disadvantages

GPS Large coverage area Inefficient for underground
mines

GSM Large coverage area Communication delay exists

RFID
Non line-of-sight

Communication, High
Penetration, Compact Size

High maintenance of RFID tags,
Low Security

RF TECHNOLOGY Non line-of-sight
Communication

High penetration loss/ Signal
attenuation is very high

RADAR Accurate and High Penetration High CapEx and OpEx

ZIGBEE Low Power Consumption, Low
Latency Time, Cheap

Low Penetration, Poor
non-interference

BLUETOOTH Low Power Consumption, Low
Latency Time

High CapEx and OpEx, Small
coverage area

4.2. Proposed System Architecture and Workflow

To overcome these issues, our proposed technique uses BLE, which is a low-power
and low-cost technology. This proposed methodology reduces the deployment cost and
complexities by using the BSs of the existing cellular network infrastructure for the com-
munication process. The system architecture of BLE-based real-time location monitoring in
mines by using the IoT is shown in Figure 7. In this scenario, two base stations (BS) are
deployed to provide necessary services (uplink/downlink) to the BLE devices through
the central office server as shown in Figure 7a, and the complete workflow is shown in
Figure 7b.
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Workflow Process.

Figure 7a shows the coverage area of BLE and cell towers based on their transmitted
power. The blue and green colored portion shows the energy region of BLE devices and cell
towers, respectively. As can be seen, cell tower 0 transmits more power compared to cell
tower 1. All the BLE devices are wearable or are attached to the employee working inside
the mines. In this proposed method, beacons are considered because they can be easily
identified by single board computers (SBC) as shown in Figure 8. Different beacons are
accessed by the nearest SBC based on their coverage area. The blue-colored region indicates
the transmitted energy by the beacon signal as shown in Figure 8a. The system contains
beacons that are small and inexpensive, which emit signals in the same fashion as BLE. The
used beacons have a short-range and can triangulate position in the same way that a phone
uses cell towers with an assisted global positioning system (AGPS). These transmitters
are deployed at known points inside the mines, and they permit the device to obtain area
fixes. This data can be utilized to make new client encounters, for example, turn-by-divert
headings for indoor situating from gateways/applications that read the guide signals.
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Figure 8. Position of SBC and random distribution of BLE devices inside the mine area (a,b).

The scenario presented in Figure 8a,b shows the position of the SBC (fixed position)
and a random distribution of BLE devices, as the position of BLE device (wearable) depends
on the position of the employee working inside the mine. The BLE receivers/gateway
receives the universally unique identifier (UUID) transmitted by the beacons in a repetitive
manner as shown in Figure 8a,b. These signals can be utilized to differentiate between
subgroups and individual ones in the subgroups. It is modified to check the accessible BLE
signals “on the air” and the received signals contain the accompanying snippets of data in
a bundle size of 60 bits, with 10 bits specifying major and minor values. The received signal
strength indicator (RSSI) values can be utilized to decide the distance of the receiver to
every one of the reference points. As those region statistics are stored inside the database,
navigation of the receiver also can be tracked, and alerts can be generated if certain rules
are violated. All the beacon data are stored in a local server through the gateway and then
transferred to the central office server through cell towers as shown in Figure 8a,b. The
central office server is continuously updated based on the real-time information sent by
the BLE beacon through the gateway. This information can be used to find the real-time
location of the employees/workers inside the mines.

4.3. Simulation Result and Discussion

The simulation result in Figure 9 shows the discovery time of the BLE devices. It can
be seen that the visibility time of the BLE device is constant, and the delay time is also
very small. Hence, it helps to find the real-time location of the employees/workers inside
the mines within a short time. Due to the small visibility time, the rescue process can be
improved for the employees/workers (real-time locations) inside the underground mines
during any hazardous situation.
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5. Conclusions

This paper summarizes and relates the future direction of IoT applications to current
6G trends, development sand challenges. The study looked at the vision and different
technologies impacting the IoT as outcomes of international research. The paper considered
the applications in various sectors and provided a summary of the different IoT technologies.
The various IoT connectivity standards and a few challenges remaining open for IoT
integration with cellular systems were outlined. The IoT is a basic building block for
next-generation industrial standard 4.0/5.0 smart applications in home, city, agriculture,
healthcare and many more uses, but this requires a major upgrade of the physical and
network layers of upcoming cellular wireless networks. In this paper, a brief comparison
between 5G and 6G was presented in terms of the technical features. The vision and key
features of 6G along with the implementation challenges were discussed. This paper also
includes a case study related to the real-time application of the IoT to locate the employees
in underground mines using BLE technology. The system architecture and workflow for
the given application were presented. This article might assist the researcher apprehend
various challenges with their applications of the IoT and 6G to the real world.
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Abbreviations

3GPP 3rd Generation Partnership Project
ABC Ambient Backscatter Communication
AGPS Assisted Global Positioning System
AI Artificial Intelligence
ANN Artificial Neural Networks
AR Augmented Reality
BS Base Stations
BLE Bluetooth Low Energy
CapEX Capital Expenditure
CDMA Code-Division Multiple Access
CRC Cyclic Redundancy Check
D2D Device-to-Device
EE Energy efficient
eMBB Enhanced Mobile Broadband
FBMC Filter-bank Multicarrier
GFDM Generalized Frequency-Division Multiplexing
GPS Global Positioning System
GSM Global System for Mobile Communication
H2M Human-to-Machine
HCS Human-Centric Service
HDNN High Dimension Neural Networks
HetNet Heterogeneous Network
ICS Industrial Control System
IERC IoT European Research Cluster
IIoT Industrial Internet of Things
IoE Internet of Everything
IoNT Internet of NanoThings
IoST Internet of SpaceThings
IoT Internet of Things
IoUT Internet of UnderwaterThings
IRS Reflective Surface
ITU International Telecom Union
KPI Key Performance Indicator
LoRaWAN Long Range Wide Area Network
LPWA Low-Power Wide-Area
LPWAN Low-Power Wide-Area Networks
LSTM Long Short-Term Memory
LTE Long Term Evolution
M2M Machine-to-Machine
MAC Message Authentication Code
mbRLLC Mobile broadband RLLC
MEC Mobile Edge Computing
MIMO Multiple-Input-Multiple-Output
MIT Massachute Institute of Technology
ML Machine Learning
mMTC Massive Machine Type Communication
MPS Multipurpose 3CLS and energy services
MTC Machine-type Communicaiton
muRLLC Massive uRLLC
NFC Near Field Communication
NOMA Non-Orthogonal Multiple Access
OAM Orbital Angular Momentum
OMA Orthogonal Multiple Access
OFDM Orthogonal Frequency-Division Multiplexing
OpEX Operational Expenditure
OWC Optical Wireless Communications
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QML Quantum Machine Learning
QoE Quality of Experience
QoS Quality of Service
RADAR Radio Detection And Ranging
SBC Single Board Computer
RF Radio Frequency
RFID Radio Frequency Identification
RIS Reconfigurable Intelligent Surfaces
RNN Recurrent Neural Network
RSSI received signal strength indicator
RTLS Real-Time Location monitoring System
SDGs Sustainable Development Goals
SIoT Social Internet of Things
SON Self-Organizing Network
SWIPT Simultaneous Wireless and Information Power Transfer
TCP Transmission Control Protocol
THz Terahertz
TRL Technology Readiness Level
UDP User Datagram Protocol
uRLLC Ultra-Reliable Low Latency Communication
UUID Universally Unique Identifier
V2V Vehicle-to-Vehicle
VR Virtual Reality
VNI Visual Networking Index
VLC Visible Light Communication
WBCI Wireless Brain-Computer Interface
WLAN Wireless Local Area Network
WMMI Wireless Mind-Machine Interface
WNAN Wireless Neighborhood Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network
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