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Abstract: Human Machine Interfaces (HMI) principles are for the development of interfaces for
assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems
is the degree of customization when applying some rehabilitation therapy or when adapting an
assistance system to the individual characteristics of the users. To solve this inconvenience, it is
proposed to implement a database of surface Electromyography (sEMG) of a channel in healthy
individuals for pattern recognition through Neural Networks of contraction in the muscular region of
the biceps brachii. Each movement is labeled using the One-Hot Encoding technique, which activates
a state machine to control the position of an anthropomorphic manipulator robot and validate the
response time of the designed HMI. Preliminary results show that the learning curve decreases when
customizing the interface. The developed system uses muscle contraction to direct the position of the
end effector of a virtual robot. The classification of Electromyography (EMG) signals is obtained to
generate trajectories in real time by designing a test platform in LabVIEW.

Keywords: EMG; pattern recognition; machine learning; robot; cyber-physical systems

1. Introduction

A person with a disability is an individual who has one or more physical or mental
deficiencies that prevent their full and effective participation in equal conditions when
interacting with different social environments. In recent years, the development of HMI
for people with motor disabilities has been oriented towards the use of systems based
on Electromyography (EMG). In [1], a review of the state of the art in EMG monitoring
is presented in terms of applications in rehabilitation and minimally invasive acquisition
devices; among the advantages that it highlights are in the fields of physiotherapy and
telemedicine. In [2], through three EMG channels, they control the position of a robot with
two degrees of freedom; the processing is done as a function of time through the amplitude
of the signal when movements are made with the elbow and the shoulder joint. Four
channels of surface electromyography acquisition are proposed in [3], where pairs of elec-
trodes are placed according to the position and orientation of the target muscles. Selecting
materials with excellent properties for devices on the skin, the fabricated electrodes achieve
low skin electrode impedance and record sEMG signals with a high signal-to-noise ratio.
In [4], a review on signal acquisition and pattern recognition through Machine Learning is
presented. In [5], a myoelectric pattern recognition-driven hand exoskeleton was designed
for stroke rehabilitation. It detects and recognizes the intention of movement based on EMG
signals, and then the exoskeleton helps the user to perform six types of hand movements
in a real way. One of the main challenges in the design of interfaces based on sEMG is the
obtention of a signal function or model that allows for the reliable control of a care system.
Due to the non-stationary signal behavior, three methods are generally used for sEMG
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analysis to extract information, which are in the time [6,7], frequency, and time–frequency
domain [8]. There are some practical factors, such as the change in arm position, that
prevent robust myoelectric control. In [9], an experiment with 14 subjects is carried out to
accurately characterize factors that alter the EMG recording. Using regression algorithms,
they obtain real-time feedback on changes in the position of the arm and displacement of
the electrodes. Pattern recognition has been studied further to develop control algorithms
for electric hand prostheses [10,11]. These works have shown excellent accuracy when
classifying different types of hand movement (>95% for 10 classes), [12–14]. Most of the
pattern recognition approaches have the limitation that only one of the functions of the
prosthetic hand can be controlled, due to its sequential and binary control. Such control
strategies make it impossible to perform natural movements of the hand that consist of the
simultaneous activation of different degrees of freedom. Some studies have introduced
new pattern recognition schemes that classify combined movements [15–19]. The disad-
vantage of the new approach is the total number of classes, as it increases drastically when
new classes are considered. Recently, regression-based approaches have been on the rise,
as they provide control information that allows for multi-degree-of-freedom control. In
this work, a regression algorithm using neural networks is proposed to obtain a model
through multiclass categorization that allows for the control of a robotic system with three
degrees of freedom of the anthropomorphic type. The analysis of a single channel of sEMG
that classifies signals with different times of muscle contraction is implemented, with the
objective that the robot moves accurately according to predetermined positions in a state
machine and demonstrates the correct operation of an HMI by reducing the learning curve.
In [20], a study of multichannel electromyography signals is carried out, which is one of
the methods used in the recognition of human movement patterns. An exoskeleton robot is
controlled and EMG signals are measured during dynamic or isometric muscle contractions.
As a result, they developed a pattern recognition model of dynamic and isometric muscle
contractions using the Short Time Fourier Transform (STFT).

Section 2 presents the fundamentals of the EMG signal. Section 3 presents the design of
the HMI from the acquisition of the EMG signal and its analog and digital processing. The
multiclass classification model obtained using neural networks is described. The different
classes to be detected, the training algorithm and the operation of a state machine that
determines the position of the robot according to the result obtained from the model are
shown. The classification to reach the desired position is explained, obtaining the dynamics
and inverse kinematics of an anthropomorphic robot with three degrees of freedom. A
PD+ control is implemented to apply the necessary torque to each joint of the robot and
to validate the operation of the HMI. It designs a graphical user interface in LabVIEW
software by interacting a virtual robot and the EMG signal. Section 4 describes the results
obtained with the classifier, the experimental tests and the response time for each test.

2. HMI Systems Based on EMG

The neuron is the cellular unit of the central nervous system. It has two properties:
(1) Sensory, which gives it the ability to respond to physical and chemical agents with
the initiation of a nerve impulse; and (2) Conductivity, which gives it the property of
transmitting these impulses from one side to another. The dendrites that originate in the
cell body are responsible for receiving impulses from other neurons and sending them
to the soma of their own neuron. The axon is an extension from the neuronal soma that
conducts the impulse to the muscle; it is surrounded by a myelin sheath that allows for
better impulse conductivity. The neuron that originates the EMG biopotential is called a
motor neuron, which conducts the impulse through the neuromuscular junction to the
muscle fiber, as shown in Figure 1 [21].
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Figure 1. Components of the motor neuron, [21].

EMG is an electrical exploration of the peripheral nerves by the stimulation of the
muscles to achieve their contraction. The differential potential in the biceps brachii is
measured by placing two silver/silver chloride (Ag/AgCl) electrodes and a reference
electrode located at the junction of the forearm and hand, as shown in Figure 2. [20].
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Figure 2. (a) Electrode placement diagram and the AD620 instrumentation amplifier, (b) Physical
representation of the EMG signal acquisition protocol and the Silver/Silver Chloride (Ag/AgCl)
electrode implemented.

When muscle contraction is performed, there are two types: (1) Isometric contraction,
which is a static form of exercise in which a muscle contracts to produce force without
an appreciable change in muscle length; and (2) Isotonic contraction, which is without
appreciable change in the force of contraction. The distance between the origin of the
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muscle and its insertion becomes smaller. For EMG acquisition study purposes, in the
protocol carried out, isometric contractions are recorded by placing a weight in the user’s
hand with a value of 5 pounds. This process is carried out in order to avoid the acquisition
of noise due to involuntary movements and to keep the arm static while the biceps brachii
contraction is performed for short periods of time. This process is carried out in order to
avoid the acquisition of noises due to involuntary movements and to keep the arm static
while the contraction of the biceps brachii is performed for short periods of recording
time, no longer than 45 s, preventing the user from making an unwanted movement due
to fatigue. When performing the acquisition, it was observed that the muscle relaxation
periods of 5 s made it possible to accurately obtain the muscle contraction times, thus
avoiding the introduction of noise due to muscle fatigue. The goal of this work is to
demonstrate that, with a correct training of the neural network, adding dynamic muscle
contractions due to involuntary movements as an extra class of recognition allows the
system to rule out this muscle noise as a motion control command. The EMG signals
have amplitudes from 0.1 mV to 5 mV, with a bandwidth of 0 to 5 KHz [21]. With this
information, a first acquisition is made using a BIOPAC® commercial system, which allows
for the recording of the differential signal taken from two electrodes and a reference, as
indicated in Figure 3a. This system records the waveforms of the EMG signal in order to
validate the implemented acquisition protocol. Tests were performed for contraction times
of 1, 3 and 5 s. In Figure 3b, the response obtained from the EMG signal to a contraction of
5 s with rest pauses also of 5 s is presented. The inconvenience presented in the acquisition
protocol when using this system is that the record is stored in a numerical database and
cannot be read directly by any other acquisition card. Real-time implementation of the Fast
Fourier Transform (FFT) is necessary to verify the spectrum in frequency and obtain the
value of the cutoff frequency for the implementation of filters. The next section presents the
instrumentation implemented and the digital processing for the acquisition of the database.
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3. Materials and Methods

The amplifier used is the IC AD620 due to its characteristic of a common rejection
ratio of 100 dB and the gain adjustment with an external resistor. A circuit with a basal
corrector and a Common Mode Rejection (CMRR) configuration connected to the junction
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of the forearm and hand is implemented as a circuit reference. According to the amplitude
and frequency characteristics of the EMG signal, the analog processing stage is designed,
which includes amplification, isolation and filtering.

A. Amplification with basal corrector

An instrumentation amplifier CI AD620 is implemented as a preamplification system
to acquire the differential EMG signal with a gain of 500. A basal correction circuit is
conditioned to eliminate the level of direct current (DC) caused by involuntary movements
of the user or an incorrect connection of the electrodes. The circuit is a IC TL084 operational
amplifier in its integrator configuration that is connected in feedback to the Ref and Vout
outputs of the instrumentation amplifier, as shown in Figure 4, implementing a high pass
filter that eliminates the DC bias voltage and preventing op amps from reaching their
maximum power limits.
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B. Analog Filter

To filter the frequency components that are not within the bandwidth of the EMG
signal, a range from 0.5 Hz to 5 KHz, a second order bandpass filter in Butterworth
configuration with unity gain is designed, with a ratio of 40 dB per decade using high
impedance TL084 operational amplifiers, precision resistors and electrolytic capacitors; see
Figure 5.
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The output of the analog filter stage is connected to the absolute voltage input of
a DAQ6009 acquisition card connected via USB port to a laptop, with a sample rate of
10KHz. An acquisition card with a ground plane is designed to decrease inductive noise,
as indicated in Figure 6a. Figure 6b shows the response of the acquisition card in the



Sensors 2022, 22, 3424 6 of 22

Tektronix® oscilloscope. Analog noise is observed, which is subsequently eliminated by
means of a digital filter.
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C. Digital Filter

Due to the acquisition system being subject to the interference of electromagnetic noise
induced by lamps or some other external device, and in order to digitally tune the response
of the filter, the design of a digital low pass filter is implemented. First, the analog/digital
conversion is done with the National Instrument DAQ6009 card at an acquisition frequency
of 10 KHz at 9600 bauds with 11 bits of resolution. The procedure consists of obtaining
samples of the continuous signal at instants of time, defining vi[n] = vn(nT), where T is
the sampling period.

The response of the digital first order low pass filter is obtained with the aim of reduc-
ing the computational cost when applying the filter in real time. The filter configuration
is indicated in Figure 7, indicating its response in terms of the complex frequency s. In
Equation (1), the filter response is plotted as a function of the complex discrete frequency z.
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In Equation (2) the filter equation is indicated as a function of the discrete variable n by
means of difference equations when implementing the inverse z-transform of Equation (1).

vo[n] = e−2πfcT vo[n− 1] +
(

1− e−2πfcT
)

vi[n− 1] (2)

To obtain the value of the cutoff frequency (fc) and tune the digital filter, the Discrete
Fourier Transform (FFT) is implemented. First, the EMG signal is digitized by means of
a convolution with a Dirac delta pulse train as a function of time, where vi[n] is a signal
represented in an exponential Fourier series, as in Equation (3). ak represents the amplitude
of the signal energy.

vi[n] = ∑
k=N

akej 2π
N kn = a0ej 2π

N 0n + a1ej 2π
N 1n . . . + aN−1ej 2π

N (N−1)n (3)

The frequency spectrum analysis is performed by applying the Fourier Transform
on the discrete signal vi[n], obtaining as a result a train of delta functions in frequency
X
(
ejv), as indicated by Equation (4), whose amplitude is determined by the weighting

of coefficients ak, through the results of the spectrum in Frequency. The component that
provides more energy to the signal is calculated; thus, the frequency of the induced noise
is determined, and the cutoff frequency is obtained with precision (fc) for the design of
the digital filter. Figure 8 is the result of the implementation of the digital filter in the
acquisition of the EMG signal.

X
(

ejω
)
=

+∞

∑
k=−∞

ak2πδ
(
ω− 2π

N
k
)

(4)

Sensors 2022, 22, x FOR PEER REVIEW 7 of 22 
 

 

G(z) = 1 − 𝑒 z1 − 𝑒 z  (1)

In Equation (2) the filter equation is indicated as a function of the discrete variable n 
by means of difference equations when implementing the inverse z-transform of Equation 
(1). v [n] =  𝑒  v [n − 1] + 1 − 𝑒  v [n − 1] (2)

To obtain the value of the cutoff frequency (f )  and tune the digital filter, the 
Discrete Fourier Transform (FFT) is implemented. First, the EMG signal is digitized by 
means of a convolution with a Dirac delta pulse train as a function of time, where v [n] is 
a signal represented in an exponential Fourier series, as in Equation (3). a  represents the 
amplitude of the signal energy. 

v [n] =  a 𝑒 =  a 𝑒 + a 𝑒 … + a 𝑒 ( )   (3)

The frequency spectrum analysis is performed by applying the Fourier Transform on 
the discrete signal v [n], obtaining as a result a train of delta functions in frequency X(𝑒 ), as indicated by Equation (4), whose amplitude is determined by the weighting of 
coefficients a , through the results of the spectrum in Frequency. The component that 
provides more energy to the signal is calculated; thus, the frequency of the induced noise 
is determined, and the cutoff frequency is obtained with precision (f ) for the design of 
the digital filter. Figure 8 is the result of the implementation of the digital filter in the 
acquisition of the EMG signal. 

X(e ) = a 2πδ ω − 2πN k  (4)

 
Figure 8. Filtered EMG signal. 

D. Multiclass Classifier: One Hot Encoding 
In this section, the method used is presented so that, in real time, the movements 

determined through the EMG interface are executed on a manipulator robot. An intelli-
gent system for muscle contraction classification was implemented. Using a Multilayer 
Neural Network (MNN), a model is obtained that identifies four different classes of mus-
cle contraction. The first class is described as Sharp muscle pulse (SMP), the second class 
as Smooth muscle pulse 3 s (SMP3), the third class as Smooth Muscle Pulse 5 s (SMP5) 
and, finally, the fourth class is described as Noise Involuntary Movements (NIM). These 
signals are classified using the One-Hot Encoding technique that labels the waveform of 
each signal with an integer. Thus, the digital inputs of a state machine are obtained, which 

0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000

Am
pl

itu
de

 (V
)

Samples x(n)

EMG Signal

Figure 8. Filtered EMG signal.

D. Multiclass Classifier: One Hot Encoding

In this section, the method used is presented so that, in real time, the movements
determined through the EMG interface are executed on a manipulator robot. An intelligent
system for muscle contraction classification was implemented. Using a Multilayer Neural
Network (MNN), a model is obtained that identifies four different classes of muscle contrac-
tion. The first class is described as Sharp muscle pulse (SMP), the second class as Smooth
muscle pulse 3 s (SMP3), the third class as Smooth Muscle Pulse 5 s (SMP5) and, finally,
the fourth class is described as Noise Involuntary Movements (NIM). These signals are
classified using the One-Hot Encoding technique that labels the waveform of each signal
with an integer. Thus, the digital inputs of a state machine are obtained, which determine
the predetermined position of a manipulator robot with three degrees of freedom in the
Cartesian plane (x, y, z) inside the robot workspace. In Figure 9, the architecture of the HMI
based on EMG is presented.
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Figure 9. Architecture of the EMG signal classification method for the control of a manipulator robot.

To perform the identification of patterns in the EMG signal of a single channel, they are
divided into action potentials with different time intervals. The SMP (Sharp Muscle Pulse)
class has an instantaneous contraction interval of 1 s and muscle relaxation intervals of
5 s. The SMP3 (Smooth Muscle Pulse 3 s) class has a contraction interval of 3 s and muscle
relaxation intervals of 5 s. The SMP5 (Smooth Muscle Pulse 5 s) class has a muscle con-
traction interval of 5 s and muscle relaxation intervals of 5 s. The NIM (Noise Involuntary
Movements) class is a class that records the resting state of users as well as involuntary arm
movements recorded during acquisition. All these samples are stored in a vector called p.
Figure 10 indicates the waveform of each class. The SMP, SMP3 and SMP5 classes indicate
a position change control order in the manipulator robot, while the NIM class indicates a
total stop state, so the MNN has as inputs the different signals identified in classes stored
in the vector p1×n. An integer is assigned to each class through supervised training; this
labeling is stored in a vector called T1×n, where n is the total number of samples.
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E. Multiclass Classifier: Multilayer Neural Network

In this section, the implementation of an intelligent system for the classification of
EMG signals is presented. The representation of the multilayer neural network is presented
in Figure 11, where p =

[
pT] is the vector of the R inputs, b =

[
bT
]

represents the

polarization of S neurons, n =
[
nT] represents the net inputs of each of the S neurons and

W =
[
WSR

T] is the matrix of synaptic weights.
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The first stage consists of data normalization because the EMG signals have different
voltage thresholds. The description of this procedure is presented in Equation (5), where p
represents the data set of the EMG signal by means of a vector of an acquisition channel.
The mean of the data is subtracted, with a standard deviation equal to 1 to minimize the
computational cost when the network performs the learning process.

p =
p− pmean
√

pvar =
p− pmean

pstd (5)

Algorithm 1 describes the pseudocode for the implementation of the Neural Network
in Python; the training consists of assigning to each sample the value of a constant that
is stored in the vector T. This vector is the desired result for each class and has the same
dimensions as the input vector p.

In Figure 12, an association between the precision of the neural network with new
data (Trian loss) and the value of the loss function (Val loss) after 3000 epochs is presented.
Both graphs have a tendency to zero as training progresses, indicating a correct functioning
of the optimizer. In [22], the authors designed multiclass classification on two channels
of electrooculography signals and controlled an omnidirectional mobile robot in the X, Y
plane. In this work, it is shown that, according to the muscle contraction time, the multiclass
classification allows for the control of robotic systems that work in space (X, Y, Z) and that
are adaptive to the individual characteristics of the user, achieving a personalization of the
Interface.
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Algorithm 1: Multilayer Perceptrón algorithm implemented for the EMG

1 p ← Input_vector
2 T ← Output_vector

3 /*** output vector T where the labeling value is stored by one-hot-encoding of each the classes***/
4 T ← [{0, 0, 0, 1}, {0, 0, 2, 0}, {0, 3, 0, 0}, {4, 0, 0, 0}]

5 scaler ← StandardScaler( ).fit(P)

6 p ← scaler.transform(P)

7 /**Divide p into a test (Ptest) and a training set (Ptrain)**/

8 one_hot_labels = to_categorial(T, num_classes← 4)
9
P_train, P_test, T_train, T_test← train_test_split(P, one_hot_labels, test_size← 0.20, random_state← 42)

10 /**Random Initialization**/
11 W ← 2× (random− 0.5)× scale

12 epochs← 3000
13 hiddenNodes← 4

14 model← Sequential( )

15 model.add(Dense(hiddenNodes, activation← relu, input_dim← 4)
16 a[1]← max(0, n) //ReLu activation function

17 model.add(Dense(4, activation← ′softmax′))
18 a[2]← en4 / ∑5

1 en4 //Softmax activation function

19 model.summary( )

20 loss← categorical_crossentropy
21 /**Loss function (categorial cross entropy**/
22 L(y, ŷ)← 1

N ∑M
j=1 ∑N

i=1

(
yijlog

(
ŷij

))
22 optimizer ← tf .keras.optimzers.Adam( )
24 W ←W − αm√

v+ε

25 model.compile(loss← loss, optimizer← optimizer, metrics← [′accuracy′])
26 history← model.fit(P_train, T_train , epochs← epochs, vebose← 1 , validation_split← 0.1 )

27 test, test ← model.evaluate(P, t, verbose← 1)
28 weights(model.layers, 3)
29 scaling(scaler, 3)
30 layers(model.layers)

The obtained values of the synaptic weights W and the polarization vector b of the
two neurons, after 3000 epochs:

W1 = [4][1] =


−0.321
1.016
1.322
1.564
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W2 = [4][4] =


−0.363 0.232 0.222 −0.123
0.543 −0.127 0.142 −0.234
0.126 −0.123 −0.118 0.233
−0.217 0.147 0.156 −0.126


b1 =

[
−0.321 0.087 0.123 0.224

]
b2 =

[
0.457 −0.121 0.789 0.389

]
Once the model recognizes each of the classes by means of integers, a comparison

system is implemented using the premise, “If the Network output is: (integer) [1–4] then
1 is enabled when the network recognizes the waveform that corresponds to each label,
otherwise it is 0”. This process allows for a combination of digital pulses for the activation
of a state machine.

F. State Machine

The combination of digital signals obtained from the pattern recognition of the neural
network by means of class classification allows for the transition change of a state machine.
A Mealy-type machine is implemented, which generates an output based on its current
state and an input. Three finite sets determined by the inputs, outputs and states are
defined.

In Figure 13, the transitions of the digital inputs are indicated and the NIM class
is represented as the most significant bit. In the next position the SMP3 class is, then
the SMP5 class and finally the SMP class, so that there is an input 4 bits for transition
change. Each of the states indicates a predetermined position of the manipulator robot
with three degrees of freedom in Cartesian coordinates

(
px, py, pz

)
. Subsequently, these

coordinates are converted to joint coordinates
(
q1, q2, q3

)
using the inverse kinematics of

the manipulator robot. There is an input IN9 that, when detecting a status at 1 of noise or
involuntary movements, completely deactivates the operation of the robot; this is taken as
a security measure to not activate the robot when this class of signals occurs.
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Figure 13. The table presents the inputs of the digital system, and the system outputs are indicated
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In Figure 14, the designed machine has eight possible states for muscle movement,
with four digital inputs corresponding to the high and low pulses of the Neural Network
recognition. Table 1 describes the position in Cartesian coordinates of each of the robot
states.
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Figure 14. Eight-state Mealy-type machine, transition indicated.

Table 1. Description of each of the desired positions of each state.

State Input EMG
Desired Value in Meters

Desired Movement
px py pz

S1 IN1 0 −0.34 0.38 Stop
S2 IN2 0 −0.11 0.46 Up
S3 IN4 0.34 −0.34 0.38 Right
S4 IN7 −0.34 −0.34 0.38 Left

DUL IN8 −0.34 −0.11 0.46 Diagonal Up Left
DUR IN3 0.34 −0.11 0.46 Diagonal Up Right
DDL IN6 −0.34 −0.34 0.28 Diagonal Down Left
DDR IN5 0.34 −0.34 0.28 Diagonal Down Right

The selected robot is an anthropomorphic robot with three degrees of freedom and
rotational joints whose operation is similar to the human arm (Figure 15), where l1, l2 and
l3 represent the total length of the links, lc1, lc2 and lc3 represent the length from the initial
end to the center of mass of each of the links that make up the robot, m1, m2 and m3 are
the values of the center of mass of each link, x0...3, y0...3, z0...3 represent the cartesian axes
indicating the orientation of the position and q1, q2 and q3 represent each degree of freedom
of each rotational joint of the robot.
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Figure 15. Virtual model of an anthropomorphic robot with three degrees of freedom.

To determine the workspace of the anthropomorphic robot, the calculation of the
forward kinematics is performed, which determines the position of the end effector
in Cartesian coordinates

(
px, py, pz

)
based on joint coordinates

(
q1, q2, q3

)
indicated in

Equation (6). These equations are fundamental for the calculation of the robot dynamics.

px = cos(q1)
(
lc3 cos

(
q2 + q3

)
+ lc2 cos(q2)

)
py = sin(q1)

(
lc3 cos

(
q2 + q3

)
+ lc2 cos(q2)

)
pz = l1 + lc3 sin

(
q2 + q3

)
+ lc2 sin(q2)

(6)

Because the state machine has the coordinates of the end effector position in meters
for each of the Cartesian axes x, y y z, the inverse kinematics of the robot defined in
Equation (7), these equations determine the value of the position in radians for each of the
degrees of freedom

(
q1, q2, q3

)
.

q1 = tan−1
(

py
px

)
q2 = 2 tan−1

(
b +

√
b2 + a2 − c2

a + c

)
(7)

where:
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c = px
2 cos2(q1) + 2 px py sen(q1) cos(q1) + pz

2 − 2 pz l1 + l12 + l22 − l32

a = 2 px l2 cos(q1) + 2 py l2 sen(q1)

b = 2 pz l2 − 2 l1 l2

q3 = tan−1
(

pz cos(q2)− l1 cos(q2)− px cos(q1) sin(q2)− py sin(q1) sin(q2)

pz cos(q2)− l1 cos(q2)− px cos(q1) sin(q2)− py sin(q1) sin(q2)

)
To implement the PD+ position tracking control algorithm, use the dynamic model

defined in Equation (8).
Inertia Matrix (M(q))




I1 + I2 + I3 +

l22 m3
2 + lc2

2 m2
2 + lc3

2 m3
2

+
l22 m2 cos(2q2)

2 +
l22 m3 cos(2q2)

2

+
lc3

2 m3 cos(2q2 + 2q3)
2

+ l2 lc3 m3 cos
(
2q2 + q3

)
+ l2 lc3 m3 cos

(
q3
)

 (I2 + I3) I3

(I2 + I3)

 I2 + I3 + lc2
2 m2

+ lc3
2 + 2 l2 lc3 m3 cos

(
q3
)

+l22 m3

 (
I3 + lc3

2 m3
+l2 lc3 m3 cos

(
q3
) )

I3

(
I3 + lc3

2 m3
+l2 lc3 m3 cos

(
q3
) ) (

I3 + lc3
2 m3

)


Coriolis Matrix

(
C
(
q,

.
q
))



 − .
q2l22 m2 sin(2q2)

− .
q2l22m3 sin(2q2)

− .
q2lc3

2m3 sin
(
2q2 + 2q3

)
 (

−2
.

q1 l2 lc3 m3 sin
(
2q2 + q3

))  − .
q1 lc3

2 m3 sin
(
2q2 + 2q3

)
− .

q1 l2 lc3 m3 sin
(
q3
)

− .
q1 l2 lc3 m3 sin

(
2q2 + q3

)



.

q1 l22m3 sin(2q2)
2

+
− .

q1lc2
2 m2 sin(2q2)

2

+
.

q1 lc32 m3 sin(2q2+2q3)
2

+
.

q1 l2lc3 m3 sin
(
2q2 + q3

)

 (
−2

.
q3 l2 lc3 m3 sin

(
q3
)) (

− .
q3 l2 lc3 m3 sin

(
q3
))


.

q1 lc3
2 m3 sin(2q2+2q3)

2

+
.

q1 l2 lc3 m3 sin(q3)
2

+
.

q1 l2 lc3 m3 sin(2q2+q3)
2

 ( .
q2 l2 lc3 m3 sin

(
q3
))

0


Gravity Vector (g(q)) 0

− g lc3 m3 cos
(
q2 + q3

)
− g l2 m3 cos(q2)− g lc2 m2 cos(q2)

− g lc3 m3 cos
(
q2 + q3

)


Viscous friction vector (B)

B
.
q =

 B1
.

q1
B2

.
q2

B3
.

q3


Torque Vector

τ =

 τ1
τ2
τ3


τ = M(q)

..
q + C

(
q,

.
q
) .
q + g(q) + B

.
q (8)
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where M(q) is a positive definite symmetric matrix of n x n called the inertia matrix, with
I1, I2, I3 being the moments of inertia of the rigid links of the mechanical structure of the
robot, C

(
q,

.
q
)

is an n x 1 vector called the vector of centrifugal and Coriolis forces, B
.
q is

an n x 1 vector that determines the viscous friction, g(q) is an n x 1 vector of gravitational
forces and τ is the n x 1 vector that determines the torques and forces applied by the
actuators at the joints.

G. Position Control

As a result of the cartesian coordinates (px, py, pz) obtained from the classifier by
means of a Multilayer Neural Network and assigned to a discrete event by means of a
state machine, the desired Cartesian coordinates for the robot are obtained, which are
transformed to joint coordinates

(
q1, q2, q3

)
from inverse kinematics. These values are the

inputs for the PD+ type position control system. [15].
The PD+ control with gravity compensation, defined in Equation (9) by τPD+, is an

algorithm that includes proportional control of the position error q̃ and velocity error
proportional control

.
q̃, where Kp, Kv ∈ Rnxn are the proportional and derivative gains,

respectively, both are positive definite matrices, and the full dynamics of the robot are
added. In the structure of this scheme, the trajectory of position, velocity and desired
acceleration is involved, qd(t),

.
qd(t),

..
qd(t) ∈ Rn.

τPD+ = Kpq̃ + Kv
.
q̃ + M(q)

..
qd + C

(
q,

.
q
) .
qd + B

.
qd + g(q) (9)

The objective of this control is to find a torque value, τ, such that it satisfies the
expression indicated in Equation (10).

lim
t→∞

[
q̃
.
q̃

]
=

[
0
0

]
∈ R2n (10)

where q̃ ∈ Rn is the following error and is defined as q̃ = qd(t)− q(t), and
.
q̃ ∈ Rn is

the velocity error, given by
.
q̃ =

.
qd(t)−

.
q(t). Figure 16 indicates the block diagram of the

implemented PD+ control.
Figure 17a shows the behavior of the zero-position error trend in each joint coordinate

of the robot whose Cartesian coordinate is assigned by the state machine. The operation of
the control when reaching the desired joint position is also presented. Figure 17b shows the
virtual simulation of the robot applying the PD+ control for the generation of trajectories
through the interaction of the EMG signal.

A graphical user interface is designed as indicated in Figure 18b with visual feedback
of the EMG signal, the result of the state machine by means of a green indicator that
indicates the position detected of the MNN’s classification, the control curves resulting
from the implemented PD+ and a simulation of the virtual robot that indicates the position
of the end effector. In Figure 18b, the user connection and the operation of the interface to
calculate the response time metrics are indicated.
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Figure 18. (a) Implementation of the real-time acquisition system interacting with the virtual robot
simulation, (b) Graphical interface designed to record response time metrics.

4. Results and Discussions

The EMG signal classification method that allows for the generation of coordinates
for the trajectory control of a manipulator robot has been developed. The user’s ability to
follow a series of point-to-point coordinates previously determined by colors is measured
according to the time of sustained contraction. The yellow dot indicates the starting point
of the test, the green dots indicate the path to be followed and the blue dot indicates the
end point to which the robot’s end effector must reach. Two trajectories are proposed
that increase the difficulty indicating a penalty each time the user enters a contraction
command other than the one indicated. The time in which the user generates the trajectory
is also recorded. The test ends when the user generates the trajectory without penalties. In
Figure 19a, the first proposed trajectory is indicated, in Figure 19b, the time and the number
of penalties for each test performed by the user are presented and in Figure 19c, a graph of
the response time for trajectory 1 is indicated.
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Figure 19. (a) Point-to-point trajectories (Trajectory 1 and Trajectory 2), (b) The time and the number
of penalties (Trajectory 1 and Trajectory 2) and (c) Plot of trend response for each trajectory (Trajectory
1 and Trajectory 2).

A downward trend is observed in this first trajectory in the response time when
completing the test with zero penalties. It is shown that 11 repetitions are enough to
successfully complete the proposed trajectory. At the beginning, it indicates an initial time
of 118.52 s, and, at the end, it indicates an initial time of 77.54 s, which corresponds to a
decrease in the response time by 34.58%. In Figure 19a, the second proposed trajectory is
indicated. Figure 19b shows the time and the number of penalties for each test performed
by the user. Figure 19c indicates a graph of the response time for trajectory 2.

In the second trajectory, a behavior similar to the first trajectory is observed. With
11 repetitions, it is enough to successfully complete the test. At the beginning, an initial
time of 188.64 s is indicated, and, at the end, an initial time of 111.99 s is indicated, which
corresponds to a decrease in the response time by 40.64%. When performing the test
with different points, the same trend is observed in the decrease in response time. By
around 11 repetitions, the user has mastery of the HMI. It should be noted that the model
is customized for each user according to individual characteristics and muscle contraction
time in addition to adding a recognition class for involuntary movements that blocks the
operation of the robot and takes it to a “home” state.

5. Conclusions

An HMI that allows for the classification of muscular signals according to the contrac-
tion time has been designed. The model implemented through a neural network allows
for the personalization and classification in real time for the generation of movement com-
mands of a virtual robot. The HMI can be implemented with inexperienced users who



Sensors 2022, 22, 3424 21 of 22

need only 11 repetitions to master the operation of the system, reducing the learning curve.
The future work of this project is to implement the classification of multiclass signals in
a physical robotic system. In assistive systems or bionic prostheses, although there is the
limitation that, being a discrete system, the movement command is determined by a state
machine, the improvement consists of implementing neurofuzzy systems that allow for the
generation of continuous trajectories in the robot. The development of assistance systems
through physiological signals is important for people with disabilities since it allows them
to better adapt to their work or personal environment.
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