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Abstract: CO2 emissions from burning fossil fuels make a relevant contribution to atmospheric
changes and climate disruptions. In cities, the contribution by traffic of CO2 is very relevant, and the
general CO2 estimation can be computed (i) on the basis of the fuel transformation in energy using
several factors and efficiency aspects of engines and (ii) by taking into account the weight moved,
distance, time, and emissions factor of each specific vehicle. Those approaches are unsuitable for
understanding the impact of vehicles on CO2 in cities since vehicles produce CO2 depending on
their specific efficiency, producer, fuel, weight, driver style, road conditions, seasons, etc. Thanks to
today’s technologies, it is possible to collect real-time traffic data to obtain useful information that
can be used to monitor changes in carbon emissions. The research presented in this paper studied
the cause of CO2 emissions in the air with respect to different traffic conditions. In particular, we
propose a model and approach to assess CO2 emissions on the basis of traffic flow data taking into
account uncongested and congested conditions. These traffic situations contribute differently to the
amount of CO2 in the atmosphere, providing a different emissions factor. The solution was validated
in urban conditions of Florence city, where the amount of CO2 is measured by sensors at a few points
where more than 100 traffic flow sensors are present (data accessible on the Snap4City platform). The
solution allowed for the estimation of CO2 from traffic flow, estimating the changes in the emissions
factor on the basis of the seasons and in terms of precision. The identified model and solution allowed
the city’s distribution of CO2 to be computed.

Keywords: smart city; vehicle CO2 emissions factor; traffic flow; reconstruction algorithm; traffic
congestion; regression CO2 model; seasonal changing

1. Introduction

Traffic assessment and control is a central topic for intelligent transportation systems
(ITS). Thanks to today’s technologies, real-time data can be collected and used to monitor
and control vehicular traffic. The knowledge of real-time traffic information enables the
development of a relevant number of services and improvements in many areas: congestion
detection and reduction, dynamic network traffic control, improved information services
(e.g., traffic information, dynamic route guidance, road digital signage), planning for future
investments on mobility solutions, and reducing fuel consumption and pollution emissions.
Recently, regarding the latter, there has been a deeper understanding of the environmental
parameters (for example, PM10 (particulate matter), PM2.5, CO (carbon monoxide), CO2
(carbon dioxide), SO2 (sulphur dioxide), O3 (ozone), H2S (hydrogen sulphide), NO (nitric
oxide), NO2 (nitric dioxide), and NOx (nitric monoxide and dioxide)) and how much they
are influenced by a city’s structures, what the causes of high values of pollutants are, the
reasons for the registered high values from the IOT Data Network, and the dynamic of their
diffusion and propagation [1,2]. For more on this, see the normative of the European Com-
mission regarding the conformant of the environmental value with respect to the reference
values (2008/50/EC Directive on Ambient Air Quality and Cleaner Air for Europe and
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2004/107/EC Directive on Heavy Metals and Polycyclic Aromatic Hydrocarbons in Ambi-
ent Air). Greenhouse gas (GHG) emissions make a relevant contribution to atmospheric
changes and climate disruptions. Many gases contribute to global warming, and the CO2
emissions from burning fossil fuel represents the primary contribution in the transportation
field. Traffic emissions from fuel combusted in vehicles are typically estimated by multi-
plying activity data by emission factors (EFs) [3]. For example, the distance travelled by a
vehicle has a large influence on emissions, since in general more activity leads to greater
emissions. Vehicle speed is another important influence on emissions, because road traffic
EFs are strongly dependent on speed [4,5]. Emissions also depend on vehicle category.
Different vehicle categories have different EFs due to factors such as vehicle mass, fuel
specification, engine size, aerodynamics, and emissions control technology. One of the
most commonly used methodologies for fleet-wide emissions assessment is the emissions
inventorying methodology included in the EMEP/EEA guidebook [6]. A specific report
on car emissions of CO2 can be found in [7], where traffic emissions of CO2 is analysed,
identifying the typical emissions factors for different kinds of vehicles and their trends
over time. In that context, different emissions factors have been identified according to
fuel type, efficiency, producer, power, weight, etc. Therefore, almost all CO2 emissions
in vehicular traffic depend on a variety of vehicle- and traffic-related parameters, such as
vehicle characteristics and motorisation, driving behaviour, and traffic conditions. Thus,
most of the approaches for measuring CO2 are based on (i) energy models that take into
account the conversion of total consumed energy by vehicles, taking into account efficiency,
carbon content per unit of heat, carbon oxidation factor, and rate [8], or on (ii) transport
models that take into account the average distance, the emissions factor of the vehicles, and
the weight moved [7].

1.1. Literature Review

The present research studies the cause of CO2 emissions in the air, which are primarily
related to the impact of vehicular traffic emissions in uncongested and congested situations,
assuming that the population of the vehicle type depends on the city area but is stationary
over time. Roughly speaking, traffic congestion is the deterioration of smooth free-flowing
traffic conditions due to increased travel demand and/or reduced traffic movement capac-
ity [9]. It is commonly accepted that under the so-called “stop-and-go” traffic conditions
associated with congestion there is an increase in the number of accelerations and decelera-
tions performed by vehicles, which result in increased emissions [10,11]. The study in [12]
measured instantaneous speed, acceleration, travel time, fuel consumption, and exhaust
emissions in a field test to find that fuel consumption depends largely on traffic flow pat-
terns and traffic conditions. Fuel consumption under congested flow conditions is higher
than under free-flow conditions due to the frequency of operations such as acceleration,
deceleration, and “stop-and-go” driving. Various tools exist for calculating CO2 emissions
and simulating vehicle operations on a vehicle-specific level (micro-level). For example,
the European Union recently introduced a vehicle simulation model, CO2MPAS, for CO2
certification purposes [13]. Other works combined VISSIM traffic simulation software
with different fuel consumption and emissions models to study vehicle fuel consumption
and emissions at a given simulated signalized intersection [14,15]. In [16], a model for
estimating the amount CO2 in grams (briefly gCO2 from traffic has been proposed. The
model assessed a mean emissions factor of 203 gCO2/km per vehicle for an “urban slow”
pattern, for “stop-and-go A” pattern a mean emissions factor of 460 gCO2/km per vehicle,
and for “stop-and-go B” an emissions factor of 738 gCO2/km per vehicle. The driving
modalities assumed that when the number of cars is at a minimum there is no traffic
congestion and the urban slow pattern can be considered. When the traffic corresponds
to the mean observed value, the “stop-and-go A” model is applied, and when the traffic
reaches its maximum highest emissions factor, the “stop-and-go B” pattern can be used.
In [17], an approach to annual road traffic CO2 emissions estimation for an urban area with
street-level resolution was conducted. In the mentioned study, the CO2 emissions factors
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were computed by applying a TRL (Transport Research Lab) dataset [18] to the fleet vehicle
composition in an urban area, and the related modelling uncertainties, running from 6.5%
to 12%, focused on peak traffic periods, when significant emissions of CO2 occur.

In order to control and reduce emissions, national and international organisations have
defined guidelines and targeted limits to be respected currently, and to be progressively
reduced over the years/months. In this regard, the European Union has set limits for the
yearly mean value of the concentration of pollution. In [19], a model and tool to compute
long-term predictions was proposed, up to 180 days in advance, for the progressive mean
value of NO2 with a precision needed to enable decision-makers to perform corrections. In
this context, the TRAFAIR project (Understanding Traffic Flows to Improve Air Quality)
has been focused on the short- and mid-term prediction of NOx on the basis of traffic flow
emissions [20].

1.2. Paper Aim and Structure

In this paper, we present a model to estimate the CO2 emissions from traffic flow data,
characterising the specific city traffic flow in terms of emissions factor, which is regarded as
the amount of CO2 produced per vehicle for unit distance (gCO2/km per car). As reported
in the above analysis, the literature on the state of the art estimates the CO2 in (i) controlled
experiments for each single vehicle type, as in [12–15], and (ii) a general approach on
the basis of the energy consumed (fuel) by taking into account of vehicle distribution, as
in [16,17]. Please note that a global measurement of CO2 could be performed by satellites,
but those measurements are affected by multiple problems, since they (1) cannot be precisely
attributed to a specific city area since they perform the measurement on the basis of the
column of air from the ground to satellite quote, and (2) are imprecise in the presence of
clouds, wind, air humidity, etc. The proposed method, unlike the approaches presented
in [12–17], allows the CO2 emissions to be estimated on city roads. In particular, the
proposed method:

• Allows the CO2 produced by vehicles in a city to be estimated, which is a relevant
contribution of CO2 produced in cities, directly measuring the impact of vehicle
population on the production of CO2, thus increasing the precision in measuring CO2.
The advantage of identifying the function from traffic flow to CO2 is that it can be
used to estimate the CO2 in city areas based on knowing the traffic flow with a certain
precision, and thus the total CO2 production of the city, which currently can only be
coarsely guessed by using a very limited number of CO2 sensors, whereas most cities
have hundreds of traffic flow sensors.

• Is based on (i) the identification of the relationships from the measured traffic flow
and determining the emissions factors, taking into account different traffic behaviours,
from fluid traffic to “stop-and-go” conditions (congested and uncongested traffic
situations); (ii) the changes in the emissions factor at different periods of the year;
(iii) an approach to statistical validation by means of the CO2 measurements taken
from specific sensors and traffic flow data, allowing for an assessment of the precision
of the indirect estimation of CO2 on the basis of traffic flow.

• Provides a solution for computing CO2 emissions locally in the city and not only for
specific vehicles or globally at city level, as mentioned above in the literature review.

Moreover, in the validation approach, a number of problems have been solved, such
as (a) the positions of traffic flow sensors typically not being aligned with those of air
quality, (b) the measurements of CO2 not being temporally aligned with those of traffic flow
sensors, and (c) different areas possibly impacting CO2 in a different manner depending
on the city. The model presented in this paper and the related results were produced and
validated by exploiting the Snap4City framework for smart cities, mobility and transport,
and data analytics, also using Km4City/Sii-Mobility models and tools. The research
was funded by the National Ministry of Research [21]. The algorithms were executed by
exploiting the Snap4City data aggregator and its semantic model [22,23] and the Snap4city
platform [24,25].
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The paper is structured as follows and is depicted in Figure 1, which describes the data
flows and algorithms put in place and the corresponding sections of the paper. In Section 2,
we present the data description and the related problems. In Section 3, the analysis of
traffic flow data is reported to pose the basis to identify the traffic flow modalities and
needed normalisations. In Section 4, the model for the identification of congested and
uncongested traffic flows is presented. In Section 5, the problems related to the different
sensor locations for measuring CO2 and traffic flow data area addressed, presenting the
traffic flow reconstruction algorithm to estimate traffic flow far from the sensor locations.
Section 6 presents the model approach to compute the amount of CO2 in the air on the basis
of the measured traffic flow in uncongested and congested situations in terms of emission
factors. The experimental results (see Section 6.4) demonstrate (i) that the emission factors
change in different periods of the year, and (ii) the precision of the indirect estimation of
CO2 on the basis of traffic flow. Conclusions are drawn in Section 7.
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tion mapping.

2. Data Description and Related Problems

As mentioned in the introduction, the main goal of the present work is to find a
relationship between vehicular traffic flow sensors and CO2, which can also be measured.
Thus, the validation of the model could be viable in specific conditions, or a more general
model has to be defined. Both air quality sensors and vehicular traffic sensors are taken
into account for the present dissertation, and a description of the measurements that are
typically performed is needed before discussing the model. Typically, CO2 measurements
are performed either by the count of the particles in the air (commonly, part per million,
ppm) or by means of the CO2 weight in a given air volume (mg/m3 or g/m3) for certain
temporal windows in a given location. In any city, the number of CO2 sensors is limited. For
example, in Florence, which is a metro city area of 1.5 million inhabitants, about 10 sensors
are present. However, in the downtown area, only four are present, denoted by their IDs:
SMART09, SMART27, SMART28, and SMART29 (Figure 2a for the respective locations
in the municipality of Florence, from [25]). Those sensors are not all in critical locations
for traffic or for pollutants. SMART28 and SMART29 are in dense traffic roads, whereas
SMAR27 and SMART09 are in mid-range traffic areas. For each air-quality sensor, the data
are registered every 2 min. In most European cities the number of CO2 sensors is not much
higher. Those sensors were chosen since they are in critical points of the city and they are
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located close to major roads. Therefore, it is reasonable to assume that the CO2 measured
by a sensor represents the measurement taken in a given area around the sensor itself.
They are calibrated in this sense. The presence of almost collocated CO2 and of traffic flow
sensors allowed us to compute the emission factors as described in the following section.
On the other hand, the absence or significant reduction of them could be overcome with
the usage of rented CO2 sensors or by using the typical values of the emission factors in the
area, diminishing the precision of the measurement.
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Typically, traffic sensor data are simultaneously registered every 10 min, and their
number is much higher than those of CO2 and in general for air quality assessments.
The data exploited refer to (about) 100 traffic flow devices located in the municipality of
Florence, as depicted on the right side of Figure 2b. They are spire and virtual spire sensors
that produce values of counting, traffic density, and thus, local traffic flows. All of them are
well calibrated and produce coherent results.

Analysing their geo distribution (see Figure 2a,b), it can be observed that the CO2
sensor locations have one or more traffic sensors in their proximity, but they are not precisely
co-located. Thus, the actual traffic in the CO2 sensor position has to be estimated. To this
end, the so-called technique for traffic flow reconstruction [26,27] may help in this sense, as
described in the following section. The traffic flow measurements are strongly dependent
on a number of road features: road relevance (primary, secondary, etc.), number of lanes,
speed limits, presence of speed meters, distance from road crossings, etc. Moreover, a
certain class of roads (e.g., the so-called primary/main roads) may provide higher capability
with respect to local and single-lane cases. Traffic flow sensors provide at each time slot
different measurements regarding vehicular traffic flow, such as:

• Vehicular traffic flow: number of vehicles crossing the supervised location during a
given period of time (which is usually referred to in terms of hours, that is, #cars/h);

• Vehicular average speed: average speed of the vehicles crossing the supervised location
(measured in km/h);

• Vehicular density: number of vehicles in terms of road occupancy (measured in
#cars/km).

• Travel time: average time that vehicles take to transit the supervised area (reported
in s).
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Each traffic sensor datum may present a specific behaviour depending on the context.
At each traffic sensor location, the measured vehicular traffic flow (density) depends on the
number of lanes of the road where the traffic sensor is placed. In general, the measured
vehicular traffic flow (density) coming from a traffic sensor located in a multiple-lane road
is greater with respect to the traffic flow (density) value coming from a single-lane road.
Moreover, the traffic sensors often consist of optical cameras, and the related measured
data depend on specific parameters that are set up on the traffic sensor itself, that is, the
selected area to be monitored and the length of the observed road segment. For example,
when a traffic sensor is located on a long, straight road, it is set up in order to monitor a
long road segment. However, when the traffic sensor is placed in the proximity of a curve
in the road or a road junction, the supervised area is smaller.

Each traffic sensor monitors a fixed supervised area that is constituted by means
of a given road segment length. Then, each traffic sensor admits specific travel time
measurements. In the absence of traffic congestion at the traffic sensor locations, the
measured travel time (to cross the segment) is higher when the related monitored area is
greater/longer, since the vehicles need more time to travel. More precisely, in the absence
of traffic congestion, each traffic sensor admits a minimum (monitored) travel time, which
can be defined as the vehicular time needed to across the supervised area within (at most)
the speed limit occurring at the related traffic sensor location. Thus, different minimum
cross/travel time can be registered for different traffic sensors. In order to compare the
amount of traffic data coming from the whole urban network, different traffic behaviours
were considered. For example, cumulative data were collected at several timesteps and the
dataset was reordered according to increasing travel time. Figure 3 shows the monitored
data trend of about 50 traffic sensors during seven days of observation, from Monday to
Sunday (24 h for day), taking into account the relationship between the measured vehicular
traffic flow with respect to the measured travel time.
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When a large number of traffic sensors are taken into account in an urban road network,
the complexity of the problem increases, and a uniform approach is needed in order to
properly handle and compare the amount of traffic data at different traffic locations. On
this basis, it can be supposed that the increment in travel time at a given point may be due
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to the inception of crowding conditions, and that not all sensor locations may be prone
to crowding conditions. In the next section we introduce a uniform approach to formally
understand when uncongested and congested situations occur in the road network by
analysing a large amount of traffic data.

3. Traffic Flow Data Analysis

As reported in the introduction, the focus is to propose a general approach to deter-
mine a model to pass from traffic flow data to CO2 emissions, taking into account (i) a
uniform approach that allows the measurements to be compared according to the physical
context of sensor placement, (ii) the different traffic conditions (congested vs. uncongested),
and (iii) seasonal changes. To achieve the proposed scope, a traffic data alignment is
needed in order to handle the mentioned measurements by means of appropriate data
normalisation. Since all the measured traffic data are affected by the physical context of the
sensor placements, the traffic data must be compared in a specific way. In order to do that,
the following normalisation approach was conducted for each i-th traffic sensor:

• Measured vehicular traffic flow, denoted by F(t) at a given timestamp t, is normalized
with respect to the number of lanes, denoted by C, of the road of the location. Thus, the
normalized vehicular traffic flow at a given timestamp t, denoted by Fn(t), is given by
Fn(t) = F(t)/C;

• Measured travel time, denoted by T(t) at a given timestamp t, is normalized with
respect to the minimum travel time, denoted by Tm, occurring in the absence of conges-
tion in the sensor location. Tm can be defined as the travel time needed to cross the
area at the speed limit of the observed segment. Thus, the normalized travel time at a
given timestamp t, denoted by m(t), is given by m(t) = T(t)/Tm.

According to the above normalisation, the traffic flow data in Figure 3 can be compared
as depicted in Figure 4. In this way, all the curves in Figure 4 started from the origin and
the data were aligned. For example, consider two distinct road segments monitored by
means of a given traffic sensor. Suppose that the first monitored road segment is a two-lane
street 0.35 km long with a speed limit of 50 km/h and a minimum travel time of 25.2 s;
the second monitored road segment is a single-lane street 0.25 km long with a speed limit
of 30 km/h and a minimum travel time of 30 s. At a given time, the sensor located in
the first monitored road segment registers 800 vehicles/h and the related travel time is
37.8 s. The sensor in the second monitored road segment registers 400 vehicles/h and the
related travel time is 45 s. After the above normalisation, both the traffic situations in the
example admit the same behaviour: 400 vehicles/h cross the single-lane street at 1.5 times
their minimum travel times. The measurements are now aligned and comparable. The
normalised measurements are represented by means of the same point/contribution in the
traffic data alignment shown in Figure 4.

The normalized travel time is a dimensionless value denoted by m, and it can be
considered a multiplier factor of a given minimum travel time. So, we set m = 1 in the
absence of traffic congestion for each traffic sensor location and the related traffic data were
comparable.

In order to describe the traffic data in the whole network, the average traffic flow value
was estimated with respect to the corresponding average travel time in the network. Since
each travel time at a given location can be expressed in terms of multiplier factor of its
minimum travel time, then an average value can be estimated by considering all the traffic
sensor locations in the network. Figure 5 shows such average behaviour by considering the
data in Figure 4. This approach allows the traffic flow to be characterized in the whole city
in a given period of time (or time slot) in which the traffic flow data are collected.
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different trends depicted in Figure 4.

Let us start to study the traffic conditions by considering the described mean traffic
behaviour in order to observe uncongested and congested traffic situations. The vehicular
traffic flow and travel time data are largely influenced by congested traffic conditions. More
precisely, congested traffic situations have a higher vehicular traffic flow in the monitored
road section. Moreover, the travel time depends on the vehicular average speed, which
comes close to 0 when traffic congestion occurs. Higher travel time reduces the vehicular
flow, and it is inversely proportional to the number of vehicles passing. The uncongested
and congested traffic situations are implicitly determined by means of the volume of
vehicular flow that passes the supervised area in the unit of time. To consider mean/typical



Sensors 2022, 22, 3382 9 of 20

behaviour of the whole network for a such value, we can take into account the average
values of the normalised vehicular flow, denoted by Fn, and the normalised travel time m.
The vehicular flow rate at time t can be defined as follows:

FR(t) =
Fn(t)
m(t)

which is, in terms of fluid dynamics, the volumetric flow rate [28] (also known as volume
flow rate, rate of fluid flow), that is, the volume of a fluid passing in the time unit. Coming
from this general definition, we introduced a similar concept in the traffic flow theory
to estimate and observe the variation of traffic flow in terms of vehicular flow rate. For
instance, the traffic situations described in the mentioned example after the normalisation
approach admit the same contribution in terms of vehicular flow rate, which is equal to
266.6 vehicles/h. Such a normalisation is necessary to compare the flow rate in each data
observation and observe the related variation.

In Figure 6, the general behaviour of the mean flow rate (MFR) is presented by taking
into account the data in Figure 5. It considers the (average) values of the normalised traffic
flow and the corresponding normalised travel time in a given period of time, where the
observations are sorted according to increasing travel time measurements in the whole
network. The flow rate can also be computed through the data coming from a single traffic
sensor in order to understand the variation in traffic modality at a specific location of
the road network. Nevertheless, the described normalisation approach has been always
conducted to compare different local traffic variations.
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increasing travel time measurements in the traffic sensors depicted in Figure 5.

MFRs can immediately provide evidence of the whole network changing, and they
allow different traffic behaviours to be determined according to the seasonal changes. In
this work, the data taken into account were those from March, May, July, and October 2021
in order to analyse different situations in different seasons. More precisely, each season
observation is represented by means of a period of 7 days, from Monday to Sunday, 24 h a
day. Figure 7 shows the seasonal changes according to the mean flow rate by considering all
of the traffic sensors in the network of Florence, where the related behaviours in March,
May, July, and October are described by means of the curves coloured blue, green, yellow,
and orange, respectively.
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Figure 7. The seasonal changing curves are shown in terms of MFR, where the behaviours of the
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As expected, the general behaviour of the MFR in March is similar to the one in October,
and the MFR in July is similar to the one in May. Of course, the meteorological conditions
influence vehicle usage in terms of driving behaviour and volume. During the cold seasons
the variation in traffic modality seems to be more emphasised with respect to the warm
seasons, during which a relevant number of city users get around with motorbikes and
bikes, which influence less or none the flow counting. Different seasonal behaviours can
also be observed numerically by means of the standard deviation of each mentioned MFR,

computed by

√
1
N

N
∑

t=1

(
MFR(t)−MFR

)2, where N is the number of observations and MFR

is the mean, which is equal to 134.52, 122.85, 114.55, and 135.92 for March, May, July, and
October, respectively, according to the values in Figure 7. The greatest difference can be
observed between the curves representing the behaviour in October and July, in orange
and yellow, respectively, in Figure 7. Table 1 shows such a deviation in terms of absolute
differences at some corresponding points.

Table 1. Numerical values coming from the seasonal changing curves in terms of mean flow rate
depicted in Figure 7.

Mean Flow Rate 100 250 400 550 700 850 950

October 7.3 45.1 178.3 289.0 320.0 340.4 353.7
July 38.0 110.9 197.3 271.4 312.2 335.6 349.4

ABS. DEVIATION 30.7 65.8 19.0 17.5 7.7 4.8 4.2

4. Traffic Flow Modalities: Congested and Uncongested

The present section is devoted to formally identifying traffic flow modalities: un-
congested and congested traffic situations that occur, and when we can detect being in
one of the two cases. The traffic flow data analysis reported in the previous section may
allow us to understand when a congested situation occurs at a given traffic sensor location.
In particular, by considering the MFR behaviour, two distinct situations in the diagrams
were identified. From the behaviour of FR (which is absolutely similar to the trend of
MFR), a change in concavity in the related diagram was identified. In particular, for each
traffic sensor a specific FR trend was present, and there was a point in which the FR curve
changed concavity. That point is the point in which the travel time started to decrease and
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the traffic started to congest. Such a concavity changing in each diagram can be determined
by means of the unique inflection point, and the corresponding value in the flow rate can
be identified when a reduction in the vehicles passage is taking place. More precisely, when
the concavity of the flow rate is upwards, the vehicles passage assumes a quick increase and
the traffic flow proceeds unimpeded. Then, the situation of uncongested traffic is assumed.
Otherwise, when the concavity of the flow rate is downwards, the vehicle passage reduces
to a quasi-constant condition. Such a traffic modality occurs when the flow is slowed
down, and stop-and-go situations arise since the road capability is limited. Therefore, a
congested traffic situation can be assumed for such behaviour. Such a concavity change
may be determined by identifying the inflection point in the FR trend, as detailed in the
following section. In order to formally estimate the inflection point, we analyse the function
f, which is defined by means of a given FR behaviour. More precisely, each monitored traffic
location provides an FR trend, which can be compared with other trends by performing
the traffic data alignment described in the previous sections. Therefore, it is possible to
model the FR trend with a function f—for example, for a time period of one week (7 days,
from Monday to Sunday, 24 h a day, with traffic measurements every 10 min by the traffic
sensors). In order to identify function f, we proceed to perform a polynomial approximation
to minimise the worst-case error. Thus, the polynomial approximation P of function f min-
imises |P(x)− f(x)|, where x varies over the chosen interval. Therefore, the approximation
P of function f is obtained by using a third-order polynomial form: P(x)=ax3+bx2+cx+d.
Different values of the coefficients (a, b, c, d) of P determine a different traffic behaviour
in terms of FR. For each FR(T,i) observed in a given period T at the i-th traffic location, a
unique polynomial approximation is represented by (ai(T), bi(T), ci(T), di(T)). For exam-
ple, by assuming the period T, running from 2021-05-03T00:00:00 to 2021-05-09T23:59:59,
we obtained the characterisation of the polynomial approximation, as seen in Table 2.

Table 2. An example of the coefficients related to the polynomial approximations of the MFR(Spring)
and FR(Spring,i) for 3 traffic flow sensors during the (same) selected period of time in spring.

Polynomial Approx. a b c d

MFR(Spring) −0.0000011 0.0014465 0.0686048 −17.38807
FR(Spring,1) −0.0000019 0.0027314 −0.140624 −9.454277
FR(Spring,2) −0.000001 0.0016093 −0.247455 2.96993
FR(Spring,3) −0.0000019 0.002776 −0.471167 11.87328

As is well known, since the polynomial approximation P is differentiability class C2 for
each set of finite coefficients that differs from zero (P, its first derivative P′, and its second
derivative P′′ , exist and are continuous), the condition P′′ = 0 can be used to find the
desired inflection point in the considered interval of vehicular traffic behaviour. Thus, in a
fixed period of observation, both at a given traffic sensor location and in the whole network
(by assuming average traffic behaviour), it is possible to compute the inflection point that
determines a change in the traffic modality from congested to uncongested. This allows the
different contributions of traffic flow to be taken into account in terms of CO2. Then, it is
possible to consider uncongested and congested situations, both at a given traffic location
and in the whole network (see Table 3 for the identified inflection point according to the
traffic sensors with the polynomial approximations in terms of flow rate listed in Table 2).
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Table 3. An example of the coefficients related to the polynomial approximations of the MFR(Spring)
and FR(Spring,i) for 3 traffic flow sensors during the (same) selected period of time in spring.

Traffic Flow
Sensors

Inflection Point
(T-TH OBS) on P

Flow Rate
(#Cars/h)

Traffic Flow
(#Cars/h)

Traffic
Density

(#Cars/Km)

All city sensors 438 215.8 255 7.24
S1 (near SMART27) 479 366 366.88 7.12
S2 (near SMART28) 536 186.14 216 6.35
S3 (near SMART29) 487 234.24 240 4.21

5. Traffic Flow Reconstruction into CO2 Sensor Locations

In order to identify a model that can allow us to compute CO2 values on the basis
of traffic flow data, the most effective approach could be to validate the model in specific
points for long time windows. In [16], a general model for the whole city, estimating the
amount CO2 from traffic in grams (briefly gCO2), was proposed. The model assessed
a mean emissions factor of 203 gCO2/km per vehicle for the “urban slow” pattern, for
the “stop-and-go A” pattern a mean emission factor of 460 gCO2/km per vehicle, and for
the “stop-and-go B” an emission factor of 738 gCO2/km per vehicle. The amount of CO2
measurements by an air quality sensor is related to the space/volume surrounding the
location of the sensor itself. Therefore, the measured CO2 would depend on the amount of
traffic flow passing in the road segment volume, which is of pertinence to the air-quality
sensor. In the previous section, we demonstrated that the FR function presents two main
modalities, also considering the MFR for the whole city. As highlighted in Section 2,
locations in which CO2 sensors are located typically do not present corresponding traffic
sensors in their precise proximity; they may be hundreds of meters away. Moreover, CO2
sensor SMART09 also does not present traffic sensors in the area. On the other hand, the
traffic of the road segments closest to the CO2 sensor impacts the measured CO2 directly. A
traffic reconstruction technique [26,27] can be used to estimate the traffic flow density in the
road segments closer to the CO2 sensor over time. To this end, traffic flow reconstruction
can be used. The exploitation of traffic flow data for CO2 estimation is addressed in
Section 6.

Traffic flow reconstruction [26,27] is the process of producing a value of traffic density
(flow)—e.g., vehicle per meter (vehicles per minute)—for each road (or road segment, or
a large number of road segments) by starting from a limited number of traffic sensors
measuring traffic density (flow) on the road. The measures of traffic density are typically
obtained by stationary sensors in strategic positions. The problem of traffic flow reconstruc-
tion is regarded as the solution of the LWR (Lighthill–Whitham–Richards) model [29,30],
which models the traffic density in terms of the partial differential equation (PDE). The
solution of the LWR model is not a trivial matter for large networks due to its computational
complexity and constraints [31–33]. The estimation of the traffic distribution on junctions
plays a crucial role in the effectiveness of the LWR model application in a real context in
order to have a complete description of the road segments composing the urban network
in terms of traffic density. Traffic flow reconstruction is performed by solving a nonlinear
model based on the conservation of vehicles, described by the following scalar hyperbolic
conservation law. On a single road, we have:

∂ρ(t, x)
∂t

+
∂f(ρ(t, x))

∂x
= 0,

where ρ(t, x) is the traffic density of vehicles, which admits values from 0 to ρmax, where
ρmax > 0 is the maximum traffic density; the f(ρ(t, x)) function is the vehicular flow, which
is defined by means of the product ρ(t, x) v(t, x), where v(t, x) is the vehicle speed, and
the boundary conditions are ρ(t, h) = ρh(t), ρ(t, k) = ρk(t) and the initial values are
ρ(0, x) = ρ0(x), where x ∈(h, k). In the case of first-order approximation, we assume
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that v(t, x) is a decreasing function, depending on the density, and then the correspond-
ing flux is a concave function. Thus, we consider the local speed of the vehicles to be
v(ρ) = vmax

(
1− ρ

ρmax

)
and then f(ρ) = vmax

(
1− ρ

ρmax

)
ρ, where vmax is the speed limit

on a given road segment (these assumptions are referred to in the literature as Greenshield’s
Model). The solution is obtained by an iterative process at finite differences on the basis of
the traffic flow data in the sensor points. For each timestep, the traffic flow reconstruction
is performed by producing a value of traffic density in each city road segment of the graph,
which are typically 20 mt.

The accuracy of the described solution primarily depends on the computation of
the so-called traffic distribution matrices (TDM), that is, the traffic flow distribution at
junctions. In order to model the traffic distribution at junctions, a distribution matrix can
be used to describe the percentage of vehicles leaving each outcoming road with respect
to those entering each incoming road. Thus, the traffic distribution matrix is defined as

TDM =
{

wji
}

j=n+1,...,n+m,i=1,...,n, so 0 < wji < 1 and
n+m
∑

j=n+1
wji = 1, for i = 1, . . . , n and

j = n+ 1, . . . , n+m, where wji is the percentage of vehicles arriving from the i-th incoming
road and taking the j-th outcoming road (assuming that, at each junction, the incoming
flux coincides with the outcoming flux). The real values of wji may depend on the time
of the day, the road size, the crossing light settings, etc., and thus, are unknown a priori.
The values of wji are estimated by giving the lower mean error by means of the stochastic
relaxation technique as described in [26]. The traffic flow reconstruction algorithm has to
be computed progressively and in a parallel architecture, since the estimation of traffic
flow density for the city (in Florence there are about 30,000 segments) at time instant t
would depend on traffic flow at time t − 1 and on the new measurements coming from
the sensors. For each traffic sensor update, we have a complete description of the road
segments composing the urban network in terms of traffic density.

6. Computing CO2 Emissions Factors from Traffic Flow Data and Modalities

In this section, we are going to identify how uncongested and congested traffic situa-
tions each contribute to the amount of CO2 measured. The amount of CO2 measured by
a sensor is related to the area surrounding the sensor. The idea is to consider the amount
of traffic contained in the road segments in which the CO2 sensors are located. The traffic
flow reconstruction algorithm allows the amount of traffic to be computed in terms of
vehicular density in each road segment with a length of 20 m every 10 min. By choosing,
from the total number of reconstructed road segments, the closest one to each air-quality
sensor, we can analyse the impact of traffic on the CO2 measurements in different zones
of the city. In substance, we identified a model (see Section 6, Equation (1)) with which
the computation of CO2 from traffic would be possible. The computation of CO2 depends
on the traffic flow and of the emissions factors, which are different for congested and
uncongested traffic flow cases. Therefore, we found a way to detect the conditions to
compute the number of vehicles passing close to the CO2 control point in the different
conditions (Section 4). This approach allows us to demonstrate (validate) the model by
computing the emissions factors.

The measurements of CO2 and traffic flow refer to different systems of measurement,
different time intervals, and different acquisition methods.

6.1. Time Alignment of Traffic Flow and Measured CO2 Data

Traffic flow data are available every 10 min, and CO2 data every 2 min. In order to
align and compare the data coming from the air-quality sensors with the traffic data sensors,
the CO2 measurements were carried over to the timesteps of the traffic sensors. Thus, the
average of the CO2 data over the interval considered by the traffic sensors was taken into
account (see the left side of Figure 8). Moreover, the standard traffic flow measurements
are expressed in terms of #cars/h. Thus, we need to divide by 6 to get #cars/10 min; see an
example on the right side of Figure 8.
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6.2. Pollutant Data Type

CO2 measurements are typically estimated either by the percentage of its particles in
the total amount of the gasses in the air (commonly, part per million) or by means of the
CO2 weight in a given volume of air (commonly, mg/m3 or g/m3). These standard units
of measurement admit a direct conversion of one into the other and vice-versa, taking into
account certain parameters such as the mole of the particulate matter under consideration.

6.3. From Traffic Flow Data to CO2

In order to related the amount of CO2 in a given road segment with the vehicle density
in its proximity, it is necessary to associate the CO2 measurement with a volumetric section
of road segment. The measured emissions of CO2 in the volume should be equivalent to
the CO2 produced by vehicles according to the traffic behaviour, which can be identified
according to what was presented in Section 4. Therefore, we can assume to have two
different contributions of emissions according to a classification of traffic behaviours. Thus,
the following equation holds:

S(z)G(t, z) = K1(z)F1(t, z)L(z) + K2(z) F2(t, z)L(z) (1)

where t is the time interval and z is the CO2 sensor ID.

• S(z)G(t, z) is the amount of gCO2 in a volumetric section of the road segment at a
given time t, where:

# G(t, z) is the measurement of CO2 from the sensor in gCO2/m3 in the time
interval (these values are measured by the CO2 sensors);

# S(z) is the area in which the sensor collects the values in m3 and it is estimated
on the road segments close to the CO2 sensor location. More precisely, we have:

S(z) = L(z) C(z) W(z) H(z) (2)

where C(z) is the number of lanes, W(z) is the width of the road lane, and H(z)
is the height of the volume, which depends on the position of the CO2 sensor
(typically at 3 m).

# L(z) is the road length corresponding to the amount of m or Km performed by
the vehicles in that specific area of the CO2 sensor, supposing that the vehicles
change neither road nor behaviour in the segment.
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• Contribution coming from vehicles/cars moving in uncongested conditions:

# F1(t, z) is the traffic count in uncongested conditions in terms of #cars in the
time interval. This can be measured on the basis of traffic sensors and/or
estimated as solutions of the above-presented LWR PDE via the traffic recon-
struction model (Section 5);

# K1(z) is an emissions factor to be determined, which is the amount of gCO2/km
per car in uncongested conditions.

• Contribution coming from vehicles/cars moving in congested conditions:

# F2(t, z) is the traffic count in congested conditions in terms of #cars in the time
interval. This can be measured on the basis of traffic sensors and/or estimated
as solutions of the above-presented LWR PDE via the traffic reconstruction
model);

# K2(z) is an emissions factor to be determined, which is the amount of gCO2/km
per car in congested conditions.

In Equation (1), for a certain time interval and sensors (CO2 and traffic), K1(z) and
K2(z) are unknowns. They can be estimated by means of a multilinear regression providing
a large number of measurements for both CO2 and traffic in the same contextual conditions:
location, traffic, season, etc. Once K1(z) and K2(z) are determined, it is possible to apply
Equation (1) to estimate CO2 emissions (i.e., G(t, z)) in other parts of the city provided that
the other factors are known. Among them are the typical traffic behaviour, the distribution
of vehicle types, etc., which can be estimated to be very similar in the same city and in
closed areas/roads.

Moreover, in Equation (1), F1(t, z) and F2(t, z) are obtained by classifying the vehicles
passing in the road segment closest to the z-th CO2 sensor location according to the general
condition of congested or uncongested. Thus, they are computed as the product between
the traffic density (#cars/km) and the vehicular speed (km per time interval):

F1(t, z) =D1(t, z) V1(z) (3a)

F2(t, z) = D2(t, z) V2(z) (3b)

According to the following cases of congested and uncongested:

• If ρ(t,z)
C(z) ≤ q(z), then D1(t, z) = ρ(t, z) and D2(t, z) = 0;

• If ρ(t,z)
C(z) > q(z), then D1(t, z) = 0 and D2(t, z) = ρ(t, z).

where:

• ρ(t, z) is the traffic density (#cars/km) as observed on the traffic sensors and/or
estimated as solutions of the above-presented LWR PDE via traffic flow reconstruction;

• q(z) is the value on the inflection point of traffic density in the proximity of the z-th
air-quality sensor location to detect congested and uncongested cases, as described in
Section 4, Table 3;

• C(z) is the number of road lanes;
• V1(z) and V2(z) are the average vehicular speeds in z-th location in the cases of

uncongested and congested situations, respectively, if the specific velocity cannot be
measured or reconstructed. For example, V2(z) is the vehicular speed in the case of
a traffic congestion situation, and we assume that the value of V2(z) varies from 0 to
5 km/h in accordance with the road characteristics at the z-th location.

Therefore, according to Equation (1), for each time instant, it is possible to classify the
traffic as congested or uncongested and thus to compute the contributions of CO2. This
approach may lead to computing the whole city’s traffic flow CO2 production over the day,
as well its distribution on the map.
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6.4. Assessing Seasonal Changes of Estimations: Experimental Results

Equation (1) should be satisfied for each observation of traffic flow and CO2 in each
segment. It is possible to estimate the unknowns K1(z) and K2(z) for each location in
which CO2 and traffic flow data are known. The estimation can be performed by means
of a multilinear regression in which the dependent variable is the amount of gCO2 in a
volumetric section of the road segment at a given time t, and the explanatory variables are
the traffic count in each condition (congested and uncongested): Fi(t, z)L(z).

To this end, we estimated K1(z) and K2(z) for a number of sensors, and in all of
them the multilinear regression turned out to be significant, producing values for the
coefficients with a p-value in the range of p-value = 2 × 10−16 and a t-value > 19 in all cases
for all coefficients. The R-squared of the models was also statistically significant, typically
greater than 0.7 in most cases, which means that the models typically explained 70% of
the variability of the response data around their mean at each hour of the day. The mean

absolute percentage error (MAPE), computed as 1
n

n
∑

i=1

∣∣∣∣ obsi−predi
obsi

∣∣∣∣, is commonly used as a

loss function for regression problems by means of its interpretation in terms of relative
error.

The proposed method, unlike the approaches presented in [12–17], allows the CO2
emission to be estimated on city roads. Following the same argument of [17], but with
the aim of computing values over time and precisely in space, the results of the present
work were validated in the peak traffic periods and, unlike [17], the related unknown
CO2 emissions factors K1(z), K2(z) were computed for each timestamp, estimating the
relationship between CO2 sensor measurements and actual traffic flow data in specific
segments according to Equation (1). Figure 9 shows the model results in terms of MAPE at
CO2 sensor locations in traffic periods when uncongested and congested traffic situations
arose. The mean absolute percentage error was close to 10% for each sensor location and
season. Annually, the related uncertainty was 9.1%, admitting a minimum of 5%.
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Figure 9. Multilinear regression model results in terms of MAPE according to each sensor location and
each period of the year. The results were obtained during the peak traffic periods when uncongested
and congested traffic situations arise and significant CO2 emissions occur.

The unknown emission factors K1(z) and K2(z) for each sensor location and for each
period turned out to have different values in different seasons. Thus, the regressions results
were computed in different seasons, taking a range of days to collect different behaviours,
as described above. The summary of results in terms of emissions factor coefficients and
vehicular speeds is reported in Table 4 for a number of control points. As a result, the
maximum value of K2 (amount of gCO2/km per car, in congested conditions) was obtained
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during the cold seasons, whereas the minimum value of K1 (amount of gCO2/km per car
in uncongested conditions) occurred during the warm seasons. This makes sense, since in
winter cars tend to consume more due to the heating needs, whereas in warm conditions
heating is needed less. Generally, the average use of cars increases in the cold season
compared to the warm season, as in the latter citizens can choose other means of transport
such as bicycles, scooters, motorbikes, etc., which reduce the polluting impact. The mean
value reported in Table 4 can be considered a characterisation of traffic emissions in the
network during an uncongested and congested traffic situation for the seasons.

Table 4. Summarising numerical results by means of the applied model to identify the desired
emissions factors in case of uncongested and congested traffic situations in different periods of the
year for different sensor locations.

Winter Autumn

Air Sensor K1 K2 V1 V2 K1 K2 V1 V2

SMART09 230.0 681.3 37.4 3.9 317.7 791.5 36.5 3.9
SMART27 160.8 349.7 46.0 1.0 161.7 321.7 44.0 1.0
SMART28 219.6 386.7 36.0 1.0 253.1 352.3 35.0 1.0
SMART29 296.0 732.0 35.1 1.5 355.5 520.0 53.9 1.5

MEAN 226.6 537.4 38.6 1.8 272.0 496.3 42.3 1.8

Summer Spring

Air Sensor K1 K2 V1 V2 K1 K2 V1 V2

SMART09 184.0 709.4 39.8 3.9 217.8 619.2 35.2 3.9
SMART27 133.6 323.3 53.2 1.0 150.4 317.5 51.5 1.0
SMART28 290.3 383.2 36 1.0 274.0 381.5 34.0 1.0
SMART29 264.5 643.7 46.9 1.5 315.3 589.6 57.0 1.5

MEAN 218.1 514.9 43.9 1.8 239.3 476.9 44.4 1.8

Moreover, the present work takes into account only traffic emissions for the purpose
of the CO2 measured in the air. It is known that, in a real-world context, other emissions
influence the total amount of CO2 in the air, such as, for example, natural gas consumption
for domestic heating and cooking. The relationship between traffic emissions and the
amount of CO2 is considered the net of other influences in terms of emissions. Hence, the
present work should be seen as an upper boundary or the worst case of the influence of
the amount of CO2 in the context of the transport sector in the city of Florence, where the
measured CO2 emissions are only related to the vehicular burning of fossil fuels. From an
initial comparison, it seems that the study in [14], conducted about a decade ago in the same
observation area or in the immediate proximity, defined higher CO2 contributions in terms
of emissions factors under high congested conditions with respect to the ones estimated in
the present paper. This bodes well for policies to reduce the impact environmental CO2
combined with the evolution of vehicle engine technologies and the incremental use of
electric vehicles allowing air quality to be improved gradually.

From Equation (1), the estimated (mean) values of K2 and K1 can be also used to
compute the amount of CO2 at the traffic sensor locations, which are far from the air-quality
sensors. This allows the amount of CO2 emissions to be estimated in locations where
air-quality sensors are not placed. More precisely, the CO2 data at a given timestamp in a
given period of the year can be computed by means of both the (mean) emissions factors
estimated in that period (see Table 4) and the traffic data measured in that timestamp
according to Equation (1). Since Florence Municipality admits many traffic sensors in
scattered positions, the CO2 data can also be estimated in the whole area by applying
interpolation methods. For example, Figure 10 shows the estimated CO2 emissions in
the area of Florence at 8 a.m. on a spring workday by using the related traffic data at the
sensors’ locations depicted in Figure 2b.
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Figure 10. An example of a CO2 heatmap in Florence Municipality. An interpolation method
is applied to the CO2 data, which are estimated in accordance with Equation (1) at the traffic
sensor locations depicted in Figure 2b. The traffic data are simultaneously measured in sparse
locations at 8 a.m. on a spring workday. Accessible on Snap4city.org https://www.snap4city.org/
dashboardSmartCity/view/index.php?iddasboard=MTUzMg== (accessed on 27 April 2022).

7. Conclusions

The emission of CO2 is mainly due to fossil combustion, and therefore from traffic flow
(vehicle population, season, traffic behaviour, etc.), but the contribution from household
heating produces a lower impact at ground level where the CO2 sensors are placed and
where people walk. In most medium and large cities, traffic’s contribution to CO2 is very
relevant. The total CO2 production of a city could be computed by taking into account
the total fuel transformation in energy using several factors and efficiency aspects of the
population of vehicle engines, heating, industries, etc. Moreover, the amount of CO2
produced by vehicles can be more specifically estimated by taking into account the weights
moved, the distances, the duration of the trips and emissions factor of each specific vehicle
or category, or by taking into account the distribution of vehicle types in the region or
city without enabling a detailed computation of the CO2 in the city areas. These approaches
are unsuitable for estimating and understanding the impact of vehicles in terms of CO2 in the
city area, since the vehicles produce CO2 depending on their specific efficiency, producer,
fuel, weight, driver style, road conditions, etc., which are typically different in different
areas of the city, and thus also in different manners in different seasons of the year. Most
cities have a large number of traffic flow sensors, whereas the number of CO2 sensors is
limited. In the proposed model, we identified a method to determine whether vehicular
traffic behaviour is congested or uncongested. This was the first step, since these two traffic
situations contribute differently to the amount of CO2 emitted into the atmosphere.

Therefore, we identified a method for estimating the emissions factor in different
traffic conditions. This allowed us to identify a new model and method for computing
CO2 on the basis of traffic flow data with respect to the state of the art. Therefore, the
approach presented in the paper proposed, as basic elements of the solution, (i) a method
for determining the emission factors, taking into account different traffic behaviours, from
fluid traffic to “stop-and-go” (uncongested and congested, respectively); (ii) an analysis of
changes in the emissions factors in different periods of the year; and (iii) a validation of
the estimation of CO2 from traffic flow data. The validation was performed in the City of
Florence, where a number of CO2 sensors and traffic flow sensors are located. In some cases,
they were collocated, thus creating good conditions for validation. In order to understand
the actual impact of traffic density in such locations, a traffic flow reconstruction algorithm
was applied to estimate the traffic volume in certain road segments of the network, which

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTUzMg==
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTUzMg==
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were the closest ones to the identified air-quality sensors for validation. The proposed
approach can be easily replicated in other cities to compute their emissions factors according
to the characterisation of the traffic, vehicle population, and behaviour in different parts of
the city and moment in time. From a long-term perspective, the assessment of emissions
factors can provide useful information to verify the effective reduction of CO2 emissions
and the impact of traffic flow due to the push towards electric vehicles. The approach
should also be tested for the estimation of other pollutants produced by vehicles, first
by identifying their corresponding emissions factor with the method presented in this
paper. Moreover, the study could also evolve by taking into account the weather conditions,
which could influence the propagation of emissions based on the wind and humidity. In
the proposed model, those aspects are included in some measure in the seasonal changes
of the emissions factors.
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