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Abstract: This paper proposes a method for the identification of kinematic parameters of multilink
series industrial robots, which does not require the use of complex and expensive equipment for
high-precision external measurements of the position and orientation of an end effector in a Cartesian
coordinate system. This method, by means of simple and affordable tools, enables us to achieve a
significantly increased accuracy of movement of end effectors in serial robots performing various
technological operations. The proposed method is experimentally verified and can be applied directly
in production lines.
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1. Introduction

In the present day, the conventional approach to industrial robots (IR) programming
is manual end effector (EE) driving to required points in a working area with the help of a
teach pendant. These points become base points of the EE movement trajectory considering
actual location of machined parts and other additional equipment. An IR controller saves
vectors of generalized coordinates (rotation angles or linear displacements of IR joints),
which correspond to these base points of trajectory. Then, depending on the problem being
solved, with help of various types of interpolation, the required trajectories of IR movement
passing through the specified base points are formed. Accuracy of EE movement along
these trajectories in automatic mode is defined by the accuracy of all actuators, which track
desired values of generalized coordinates. This problem is well known, and, today, there
are a lot of methods which can provide high-accuracy control of IR actuators [1–6].

In modern applications, IR preforms operations in uncertain working environments
and generates EE trajectories offline, or by means of information from their sensors (com-
puter vision systems, probes and other). In this case, the base points of the trajectory are
set in a base coordinate system (BCS) of IR. Real positioning accuracy of EE is defined by
the accuracy of the IR kinematic model, since the IR controller uses it for calculation of
EE position, by means of rotation angle information or linear displacements of IR joints.
This is why, if the parameters of the IR kinematic model are used in the controller differ
from their real values, then the difference between the calculated EE position and its real
position in BCS can be several millimeters. This is unacceptable for many technological
operations [7–14].
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There are many methods for improving IR kinematic model parameters, and many
classifications of these methods are offered [15–21]. Fundamentally, methods of identifica-
tion of IR kinematic (geometric) parameters can be divided into two groups. The first group
includes methods based on using external measurement devices, and the second group
doesn’t use these devices [20]. Traditionally, the most widely used methods are based on
external measuring devices [15–35]. Previously, there were various devices for tracking
EE linear movement [22], ultrasonic and infrared measurement systems [23,24], theodolite,
and stereoscopic triangulation [25]. Today there are high-precision optical sensors and
scanners, coordinate measuring machines (CMM), additional calibrated robots, ball bars
and other precision equipment [26–35].

These methods have the following disadvantages: poor usability in real production
conditions, requiring specially trained employees, requiring information about hardlyob-
tainable parameters, for example, a covariation matrix, and the high cost of measurement
equipment. This equipment is often inaccessible for system integrators. As a result, there is
the task of developing simplified procedures for the identification of IR kinematic parame-
ters that does not require the use of expensive specialized measurement equipment.

In [36], an identification method of geometric parameters for multilink manipulators
is offered. The identification process is performed by means of EE driving to the same point.
This point is a small hole on a metallic sheet. During experimental research, this point can
be reached by EE with different orientations up to 40 times. This allows us to form 20 pairs
of points and write 60 equations for the identification of IR parameters. As a result, the
improvement parameters allow us to decrease the EE positioning error from 1 sm to 1 mm.
However, experience has shown that to decrease this error to 0.1–0.3 mm, it is necessary
to use about 600 pairs of points. To get such s number of points by means of a specified
approach is difficult enough. Probably for this reason, this method has not been popular.

In [37], data for the identification of IR kinematic parameters are obtained in the
following manner. A special probe with known parameters is placed into holes in a
calibrating plate. Requirements for the production of this probe are very high as it needs
to know the position of all hole center points precisely for the forming of equations. Also,
touch sensors can be used to define the contact of the probe with the hole bottom. There
were 102 measurements obtained during experimental research. After performing the
identification procedure and applying updated parameters in the IR kinematic model, the
deviation of EE from the desired position was decreased to 0.3 mm. In the same manner,
identification of kinematic parameters for UR series robots is performed.

In [38], a method for the identification of IR kinematic parameters using a contact
probe and three spheres mounted on a platform capable of changing its orientation is
proposed. During the identification process, the probe is driven into 15 points of each
sphere for each of five fixed orientations of platform. Data for the angles of rotation of
the hinges, information about the diameter of the spheres, and the distances between
them are used to adjust IR kinematic parameters. This method does not require the use
of external measuring devices, but its disadvantage is the need to use additional precisely
manufactured equipment.

In [39], a method is proposed for the identification of parameters for manipulators,
based on minimizing the deviation of distances between points of trajectories specified in
the working area, and corresponding distances were calculated using its kinematic model.
At the same time, ref. [40] describes a variant of this approach using only one point of a
manipulator’s working area with known coordinates. A disadvantage of this approach, one
needs one or more points in the workspace, with known coordinates in the manipulator
BCS. However, this is not always possible since it involves the use of external measuring
devices and special procedures for setting these points. The disadvantages also include the
empirical selection of correction coefficients.

In [17,41,42], similar methods are offered. In these methods, data for the identification
procedure are formed by means of reaching EE to points of the same plane. In this case,
data collection for identification is simpler, and can be automated. However, the result of
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such identification is worse than previous cases. It can be explained that the equation of the
plane has four unknown parameters, and when EE reaches the point of this plane, one can
only get three coordinates. To solve this problem, we must make some assumptions that
may worsen identification accuracy. Moreover, we must use a precise production calibrated
plane. A different perspective approach is to reach EE from points of the same surface,
equation, and parameters, of which are known [43]. This surface can be produced by means
of 3D printing.

There are also a lot of confidential commercial solutions that are not published in
academic journals and proceedings of conferences. These solutions are widely used in
conveyers of automotive production. For example, inspection cells perform automated
inspection of car bodies with high accuracy, by means of IR. To perform inspection, they
have optical sensors with structured light or laser scanners. During work, IR has short and
long calibration phases, which can be done in automatic mode. The general idea of such a
procedure follows. Calibration artefacts are widely used. These artefacts are constructions
with precisely produced spheres, pyramids and so on. Positions of, for example, sphere
centers are measured by means of laser trackers. Then, after 10–20 measurements of
about 30–150 points of the sphere surface by robot with different sensor orientation, and
calculating its center, correction of robot parameters is proceeded by means of least mean
squares method or RANSAC. Despite automatic mode, this approach is highly dependent
on high-precision location of the equipment, requiring lengthy configuration and tuning,
and has high cost of implementation.

Therefore, to eliminate disadvantages outlined above (the need to use precise produced
calibrated equipment (plates, probes, spheres, pyramids, etc.), and external high-precision
sensors for measuring position of EE in BCS) the similar procedure to the conventional
method of calculating tool center point (TCP) can be applied. The data from sensors of
rotation angles of actuators in all joints of IR are used in the presented procedure. This
data corresponds to the rotation angles of all IR joints when EE IR reaches the same point
in space with different orientations, by using a tech pedant. The method of identification
of IR kinematic parameters, based on information about IR joints rotation angles will be
developed.

This paper presents an essential decrease in procedural cost for identification of IR
kinematic parameters, and makes it easily accessible to a wide range of specialists (sci-
entific staff, R&D offices, students, system integrators, production, etc.). This procedure
is performed only using two probes and doesn’t need expensive external measurement
devices, and additional precision equipment. These probes are used for the measurement
and generation of an abundance of data for the identification of IR kinematic parameters
with quality no worse than that of factory calibration. The relative simplicity of this proce-
dure and absence of hard requirements of equipment allow us to perform identification
directly on production lines. Note that the paper constitutes an extension of the conference
paper [44], both theoretically and experimentally.

2. Problem Definition

In the present article, IR with six revolute joints and serial kinematic schemes are
considered the most popular type of IR. But the proposed method can be used for any type
of IR with a serial kinematic scheme. The kinematic model is described by the following
equation [45]:

Tf (Φ, Q) = ∏6
k=1 Tk(ϕk, qk), (1)

where Tf =

[
R f X f
O 1

]
εR4×4 is the matrix of homogeneous transformation, describ-

ing position and orientation of IR last joint (flange) in BCS Oxyz, located in robot base;
R f εR3×3 is the orientation matrix of the IR flange in BCS; X f εR3×1 is the coordinate vector

of IR flange in BCS; OεR1×3 is the zero raw vector; Φ =
(

ϕT
1 . . . ϕT

6
)T , ϕk = (θk, ak, dk, αk),
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k =
(
1, 6
)

is the matrix of Denavit-Hartenberg parameters; k is the joint number;
Q = (q1, . . . , q6)T is the vector of generalized coordinates (rotation angles of joints);

Tk(ϕk, qk) =


cos(qk + θk) − sin(qk + θk) cos(αk) sin(qk + θk) sin(αk) ak cos(qk + θk)
sin(qk + θk) cos(qk + θk) cos(αk) − cos(qk + θk) sin(αk) ak cos(qk + θk)

0 sin(αk) cos(αk) dk
0 0 0 1

 (2)

is Denavit-Hartenberg matrix [45].
The Denavit-Hartenberg representation forms a matrix of homogeneous transforma-

tions (Equation (2)) is 4 × 4 in size, and describes the position and orientation of coordinate
system of the k-th joint respectively, the (k − 1)-th joint. For the definition of Equation (2),
the following parameters are used: dk is the distance between axis zk−1 and zk along the
common normal; θk is the rotation angle around zk−1 from xk−1 to xk; ak is the length of
common normal; αk is the rotation angle around common normal from zk−1 to zk.

The model (Equation (1)) is used for solving direct kinematic problem, i.e., for cal-
culation of position and orientation of the IR flange in BCS on the base of values, Q and
Φ. Moreover, for planning IR movement in BCS, the inverse kinematic problem must be
solved, i.e., calculation of desired vector Q∗ corresponding desired position and orientation
T∗f of IR flange:

Q∗ = FIKT

(
T∗f , Φ

)
, (3)

where FIKT() is function describing solution of inverse kinematic problem. Equation (3) can
be implemented as an analytical expression [46] or a numerical optimization algorithm [47].

Controllers of IR use (Equations (1) and (3)) for calculation of current position and
orientation of EE and desired rotation angles of IR actuators. Usually, matrix Φ̃ of nominal
geometric parameters, obtained from technical documentation, are used in these expres-
sions. However, precise kinematic parameters Φ of specific IR can be differed from their
nominal parameters Φ̃ on some small values because of inaccuracies from fabrication and
connection of mechanical parts:

Φ = Φ̃ + ∆. (4)

Using Φ̃ in Equation (3) leads us to generate vector Q̃∗ which differ from vector
Q∗ corresponding desired value T∗f on small value β = Q∗ − Q̃∗. Presence of β leads all

actuators to reach positions corresponding Q̃∗ and IR flange reaches position T̃∗f which differ

from desired position T∗f on value ε = T∗f − T̃∗f . It means that difference of IR kinematic
model parameters from real kinematic parameters of IR leads to errors in position and
orientation of IR flange and EE. This is essentially important for the case when trajectory of
IR movement is generated on the base of information receiving from external measurement
systems (laser or optical scanners, photo cameras, and other) [7–14].

Improvement of IR kinematic parameters can be made by means of special measure-
ment systems, providing high accuracy measurement of linear and angular coordinates
of an end effector. But, using such a system is often impossible because of its high cost.
At the same time, each IR has a high accuracy measuring system for rotation angles of its
actuators that can be used for the calculation of IR kinematic parameters.

Thus, the following task is set and solved in this article. The six-degree IR, with serial
kinematic scheme, is considered. Its real kinematic parameters are described by matrix
Φ. The controller of IR uses matrix of nominal parameters Φ̃ to solve direct and inverse
kinematic tasks. This leads to an error ε of EE positioning in BCS. It is necessary to develop
the method of identification of IR kinematic parameters based on series of measurements
of its generalized coordinates to decrease this error.

3. Method of Identification of IR Kinematic Parameters

Initial data for matrix Φ estimation is n measurement series of vector Q. Each i-th
series includes mi vectors Qi, which are formed as result of EE reaching with different
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orientations of the same point Xi. All measurements are made manually by an operator
with the help of an IR teach pendant. The Xi position is set by a sharp probe arbitrarily
located in the working space. EE movement trajectory is not important as all measurements
are made in a stationary position. As a rule, for the convenience of visual inspection by the
operator, a sharp probe fixed on an IR flange is used during measurement performance
(see Figure 1).
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Figure 1. IR with serial kinematic scheme. Following notation is used: q1, . . . ,q6 are rotation angles
of IR joints; Oxyz is the base coordinate system; Of xf yf zf is flange coordinate system; X f is the
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tool,j is the coordinate vector of tool center point in BSC; XTCP is

the vector of coordinates of the tool center point in Of xf yf zf; Xi is coordinate vector of point.

Thus, as result of measurements, is the following data array:

Ξ =

 Ψ1
...

Ψn

, Ψi =
(

Qi
1, . . . , Qi

mi

)
, i =

(
1, n
)
. (5)

For each vector Qi
j, i =

(
1, n
)
, j =

(
1, mi

)
we can assign vector X̃i

tool,j of coordinates
of tool center point in BCS (see Figure 1) which calculated by means of Equation (1) and
matrix Φ̃:

Ti
j

(
Φ̃, Qi

j

)
=

[
R̃i

f ,j X̃i
tool,j

O 1

]
=
(
∏6

k=1 Ti
k,j

)
TTCP, (6)

where R̃i
f ,j ∈ R3×3 is the orientation matrix of the IR flange in BCS for j-th measurement

in i-th series; TTCP =

[
E XTCP
O 1

]
, E ∈ R3×3 is the unity matrix; XTCP is the vector of

coordinates of the tool center point in flange coordinate system Of xf yf zf.
Coordinates X̃i

tool,j, calculated by means of Equation (6), differ from coordinates of the
real position of the tool center point because of the difference between used IR parameters
and their real values. As EE in each measurement series reaches the same point with
unknown coordinates, the real values of coordinates of TCP in the same measurement
series coincided. This fact can be used for the identification of IR kinematic parameters.
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Estimation of matrix Φ̂ of IR parameters can be made by adjusting these parameters
so coordinates X̂i

tool,j calculated by Equation (6) move closer to minimal distances. For that
reason, we can use following the cost function for this estimation:

J
(
Ξ, Φ̂

)
= ∑n

i=1 ∑mi−1
j=1 ∑mi

s=j+1

(
X̂i

tool,j − X̂i
tool,s

)2
. (7)

Equation (7) doesn’t include real coordinates of points Xi in this case for estimation of
IR kinematic parameters, the high-precision measurement equipment is not needed. So,
the task of identification IR kinematic parameters is formulated as follows:

J
(
Ξ, Φ̂

)
= min

Φ
J(Ξ, Φ). (8)

The method of numerical optimization of Levenberg-Marquardt [48] is used for the
estimation of IR kinematic parameters. In this case, the initial data must be presented as
follows:

ri
p = X̂i

tool,j − X̂i
tool,s, i =

(
1, n
)
, j, s =

(
1, mi

)
, j < s, p =

(
1, li
)

,

Ri =

 ri
1
...

ri
li

, li = mi(mi − 1)/2,P =

 R1
...

Rn

 ∈ R3L, L = ∑n
i=1 li.

(9)

Cost function (Equation (7)) can be rewritten as follows:

J =
1
2

PT P. (10)

The matrix Φ of IR parameters can be presented as follows:

ϑ =


ϕ1

T

...
ϕ6

T

XTCP

 ∈ R27. (11)

From Equation (11), we can see that 27 parameters are estimated: 24 parameters
describe the IR kinematic model, and 3 parameters describe the position of TCP in the
flange coordinate system Of xf yf zf.

The initial estimate of vector X̂TCP, we can calculate using the least squares method [49]
using array Ξ. Here, we write the expression binding vector XTCP, vector X f position and
matrix R f orientation of the IR flange when the probe touches its counterpart in specific
points (for example, X1 = Xprob):

X f + R f XTCP = Xprob. (12)

Here, we rewrite Equation (12) as follows:

X f +
[

R f E
][ XTCP
−Xprob

]
= 0, (13)

where E ∈ R3×3 is unity matrix.
Equation (13) describes the model for the initial estimate of unknown vectors X̂TCP and

X̂prob. To use this model, it is necessary to substitute Φ̃ in Equation (1), calculating position
and orientation of the IR flange for each measurement and form the following arrays:
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X̃ f ,i =


X̃i

f ,j
...

X̃i
f ,mi

, Ωi =


R̃i

f ,j E
...

...
R̃i

f ,mi
E

, i =
(
1, n
)
, j =

(
1, mi

)
. (14)

The estimate of vectors X̂TCP and X̂prob for each measurement series, we can get by
means of arrays X̃ f ,i and Ωi and least squares methods:

Λi =
(

Ωi
TΩi

)−1
Ωi

TX̃ f ,i, (15)

where Λi =

[
X̂TCP,i
−X̂prob,i

]
. Here, X̂prob,i is an estimate of coordinates Xi.

The initial estimate of vector X̂TCP is calculated by means of expression:

X̂TCP =
1
n ∑n

i=1 X̂TCP,i. (16)

Obtained estimate of X̂TCP and Φ̃ are initial estimate of vector ϑ̂ of IR parameters
Equation (11), which was used in first iteration of Levenberg-Marquardt method. Identifi-
cation of ϑ̂ by means of this method performs by following expressions:

∆ϑ̂(τ) = −
[
GTG + µ(k)E

]−1
GT P,

ϑ̂(τ + 1) =

{
ϑ̂(τ) + ∆ϑ̂(τ), µ(τ + 1) = µ(τ)

η , if J
(
ϑ̂(τ) + ∆ϑ̂(τ)

)
< J
(
ϑ̂(τ)

)
ϑ̂(τ), µ(τ + 1) = µ(τ)η, if J

(
ϑ̂(τ) + ∆ϑ̂(τ)

)
> J
(
ϑ̂(τ)

) ,
(17)

where τ is iteration number; G = ∂P/∂ϑ ∈ R3L×27; E ∈ R27×27 is the unity diagonal matrix; µ(τ)
is a variable defined by speed of tuning; 0 < η < 1 is the step size adaptation parameter. The
condition for finishing iteration process (Equation (17)) is

∣∣J(ϑ̂(τ) + ∆ϑ̂(τ)
)
− J
(
ϑ̂(τ)

)∣∣ < δ,
where δ is a small positive constant. The vector P is updated according to Equation (9) on
each algorithm iteration considering of improved vector ϑ̂(τ).

As result of the work of Equation (17), the estimate of vector ϑ̂ is evaluated. This
vector provides convergence of points X̂ j

tool,i in the i-th measurement series to minimal
distances. Use of calculated kinematic parameters in robot controller instead its nominal
parameters allow to increase accuracy of EE positioning in BCS.

4. Analysis of IR Parameters Identifiability and Influence of Measurement Errors on
Identification Process

Further, we carry out analysis of features of identification IR parameters. Also in this
analysis, we neglect indexes corresponding number of measurement series.

Primarily, we write an expression describing dependance X̂tool from kinematic param-
eters of IR, considering that matrix of Denavit-Hartenberg transformation for the k-th join
has following form:

Tk =

[
Nk Lk
O 1

]
,

where Nk ∈ R3×3 is the orientation matrix of the k-th joint in the coordinate system of the
(k − 1)-th joint; Lk ∈ R3 is the position vector of the k-th joint in the coordinate system of
the (k − 1)-th joint.

This dependence with considering of Equation (1) has following view:

X̂tool = L1 + N1L2 + N1N2L3 + . . .+ N1N2N3N4N5N6L7 = L1 +∑7
k=2

(
∏k−1

t=1 Nt

)
Lk. (18)
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Considering Equation (17), we can write:

X̂ j
tool − X̂s

tool = Lj
1 − Ls

1 + ∑7
k=2

(
∏k−1

t=1 N j
t

)
Lj

k −∑7
k=2

(
∏k−1

t=1 Ns
t

)
Ls

k, (19)

where indexes j and s correspond to different measurements in one series.
Considering Equation (2), the term (Lj

1 − Ls
1) in Equation (19) has the following view:

Lj
1 − Ls

1 =

 a1(cos (θ1 + qj
1)− cos (θ1 + qs

1))

a1(sin (θ1 + qj
1)− sin (θ1 + qs

1))
0

. (20)

Parameter d1 is absent in Equation (20) and, therefore, it is absent in Equations (19) and (7).
As a result, this parameter cannot be identified by the offered method. It should be noted that
using an incorrect value of d1 leads to the movement of the position of TCP along the z axis
of BCS (see Figure 1) calculated with using this parameter, compared to its real position. In
other words, the IR controller will work in coordinate systems which shifted relatively real
BCS positions by small values along the z axis. As coordinates of points of the working area
model received from the computer vision system, are recomputed to the coordinates system of
the controller, then, the presence of the noted shift doesn’t influence the accuracy of reaching
EE to the desired point in this coordinate system and form of EE trajectory movement. So,
impossibility identification of parameter d1 doesn’t influence accuracy in the performance of
technological operations.

Further, we consider features of parameter θ1 identification. Orientation matrix N1
presents as a multiplication of rotation matrixes on angles θ1, q1 and α1:

N1 = Nθ1Nq1Nα1 = Nθ1N′1, (21)

where Nθ1, Nq1 are matrixes of rotation about axis z of the first joint on angles θ1 and q1
respectively; Nα1 is rotation matrix around axis x of the first joint on angle α1.

Let us suppose that longitudinal axis of the first link is parallel of z axis of BCS, i.e.,
α1 = 0. This situation is typical for most types of IR. So, the variable L1 considering this
supposal and Equations (2) and (21) can be presented as follows:

L1 = Nθ1N′q1 A1,

where A1 = [a1, a1, d1]T (see Equation (2)), and Xtool , therefore, in form:

Xtool = Nθ1N′1 A1 + Nθ1N′1 ∑7
k=2 (∏

k−1
t=2 Nt)Lk. (22)

Considering Equation (22), Equation (19) can be represented as follows:

X̂ j
tool − X̂s

tool = Nθ1

(
N′ j1(A1 + ∑7

k=2 (∏
k−1
t=2 N j

t )Lj
k)− N′s1(A1 + ∑7

k=2 (∏
k−1
t=2 Ns

t )Ls
k)
)

. (23)

From Equation (23), we see that turning on θ1 does not affect value
∣∣∣∣∣∣X̂ j

tool − X̂s
tool

∣∣∣∣∣∣ as

multiplication by the matrix Nθ1 provides only rotation of coordinates of all points of X̂tool
on angle θ1 along the z-axis. This rotation will not affect value of the Equation (7), which
makes it impractical to tune specified parameter by proposed method.

Next, consider situation when parameter αk = 0, that is, two joints k and k + 1 have axes
of rotation located parallel to each other. In this case, orientation matrices of coordinate
systems of these joints in BCS will be described as follows:
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Uk = ∏k
t=1 Nt =

 u11 u12 u13
u21 u22 u23
u31 u32 u33

,

Uk+1 = Uk Nk+1 =

 u11 u12 u13
u21 u22 u23
u31 u32 u33

 ck −sk 0
sk ck 0
0 0 1

 =

 cku11 + sku12 cku12 − sku11 u13
cku21 + sku22 cku22 − sku21 u23
cku31 + sku32 cku32 − sku31 u33

,

(24)

where ck = cos(θk + qk), sk = sin(θk + qk).
The coordinate vectors of position of k and k + 1 joints are determined by the expressions:

Lk = Uk

 akck
aksk
dk

, Lk+1 = Uk+1

 ak+1ck+1
ak+1sk+1

dk+1

. (25)

From Equation (17), it can be seen that partial derivatives of the vector P against dk
and dk+1, taking into account Equations (19) and (24), will have the form:

∂(X̂ j
tool−X̂s

tool)
∂dk

= U j
k

∂Lj
k

∂dk
−Us

k
∂Ls

k
∂dk

= (U j
k −Us

k)

 0
0
1

 =

 uj
13 − us

13
uj

23 − us
23

uj
33 − us

33

,

∂(X̂ j
tool−X̂s

tool)
∂dk+1

= U j
k+1

∂Lj
k+1

∂dk+1
−Us

k+1
∂Ls

k+1
∂dk+1

= (U j
k+1 −Us

k+1)

 0
0
1

 =

 uj
13 − us

13
uj

23 − us
23

uj
33 − us

33

.

(26)

As it can be seen from Equation (26), the partial derivatives for parameters dk and
dk+1 for case αk = 0 have the same values. This means that, in this case, it is not possible to
separate these parameters, since they will change in the same manner regardless of their
actual values. This situation occurs when calculating parameters d2 and d3 for PUMA type
IR, as well as for a flange with a tool attached to it.

Next, we will consider the effect on the identification process of tool driving errors to
the same point in space with different orientations. These errors appear due to physiological
characteristics of the human operator, who cannot visually determine approach TCP to
a given point, with an error of less than 0.1 mm. In this case, additional errors will be
present in the set of measurements, which do not depend on accuracy of kinematic model
adjustment. That is, Equation (7) can be rewritten as:

J(Ξ, Φ̂) = ∑n
i=1 ∑mi−1

j=1 ∑mi
s=j+1 (X̂i

tool,j + ζ i
j − (X̂i

tool,s + ζ i
s))

2
, (27)

where the indices j and s correspond to different measurements in the i-th series; ζ i
j is the

tool driving errors to a given point during the j-th measurement in the i-th series; X̂i
tool,j

are the coordinates of the tool calculated by Equation (6) using vector Q̂i
j, corresponding

to the angles of IR joints rotation when it is accurately driven to a given point in the j-th
measurement in the i-th series. That is, vector Qi

j can be represented as Qi
j = Q̂i

j + Ei
j,

and the occurrence of errors ζ i
j are due to the presence of the value Ei

j. Obviously, in the

presence of ζ i
j, Equation (27) will not be equal to 0, even with the fine-tuning of the IR

parameters, when ||X̂i
tool,j − X̂i

tool,s|| = 0. Next, we consider how tool driving errors will
affect the process of identification of IR parameters.

Taking E into account, leading to tool driving errors to a given point, and Equation (2),
it is possible to write:

Lk =

 ak cos(qk + θk + ek)
ak cos(qk + θk + ek)

dk

, (28)

where ek is corresponding entry of vector E.
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It can be seen from Equation (19) that it is possible to reduce the difference between
measurements at the presence of the tool driving errors only if the values Lk will be reduced.
That is, if this will be possible by means of reducing modulus of IR linear parameters (see
Equation (28)). Thus, after the initial reduction of Equation (27) due to turning of the
majority (except described above, see Equations (20), (23) and (26)) IR parameters, further
reduction of its value, which includes ζ i

j, is possible by reducing the linear parameters ak
and dk. As a result, if the specified process is not limited, then parameters obtained during
the identification parameters will no longer correspond to real ones.

To reduce the influence of ζ i
j on the process of identification in vector P (see Equation (9)),

it is necessary to include only those measurements that satisfy the condition
∣∣∣∣∣∣ri

p

∣∣∣∣∣∣≥ Y, where
Y is an estimate of the tool driven accuracy to a given point. The value of Y is chosen
empirically, and its value, in most cases, can be assumed to be 0.1 mm.

5. Simulation Results

Numerical simulation was carried out to verify the proposed method for identification
of IR kinematic parameters. In the simulation, the Mitsubishi RV-2FB robot was considered,
with a PUMA kinematic scheme (see Figure 1).

The matrix of nominal parameters of Dennavit-Hartenberg and the matrix of devia-
tions of these parameters from the nominal ones had the form:

Φ̃ =



θ, ◦ a, mm d, mm α, ◦

0 0 295 −90
−90 230 0 0
−90

0
0

180

50
0
0
0

0
270
0
70

−90
90
−90

0


,

∆ =



θ, ◦ a, mm d, mm α, ◦

0 0.4 0 0.115
0.115 −0.4 0.4 −0.17

0
−0.17
0.115

0

0.3
0.2
0.3
0.2

0
0.3
0.2
0.3

0.23
0.17
−0.115

0


.

To test the proposed method, two arrays of data, Ξ0 and Ξζ , containing four series
of measurements were generated. They correspond to the approach of the EE XTCP = [10,
20, 109]T with different orientation to points X1 = [7, −317, 106]T, X2 = [−366, 10, 106]T,
X3 = [20, 300, 106]T, and X4 = [200, 200, 106]T. The first array Ξ0, corresponded to the case
when there were no errors ζ i

j, and the second array corresponded to the case when these
errors were formed randomly, while their amplitude did not exceed 0.16 mm (see Figure 2).

Next, using the matrix of nominal parameters Φ̃ and arrays Ξ0, Ξζ according to
Equations (14)–(16), the vector X̂TCP was calculated. For the first case, when there are no
errors: X̂0

TCP = [10.25, 19.77, 109.25]T, for the second case X̂ζ
TCP = [10.26, 19.78, 109.25]T.

The calculated data was used to identify kinematic parameters by the proposed
method. An initial value of J for the array Ξ0 was 728, and the final value after nine
iterations of tuning was 2.5 × 10−4. For the array Ξξ , the initial value was 732, and the final
value after four iterations of tuning was 8.16.
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As a result of tuning, the following IR parameter values were obtained:

Φ̂0 =



θ, ◦ a, mm d, mm α, ◦

0 0.399 295 −89.89
−89.88 239.61 0.2 −0.17
−90 50.3 0.2 −89.77
0.172 0.2 270.31 90.17
0.115 0.3 0.2 −90.115
180.22 0.005 69.95 −0.078


, Φ̂ζ =



θ, ◦ a, mm d, mm α, ◦

0 0.47 295 −89.89
−89.87 239.6 0.17 −0.166
−90.00 50.21 0.17 −89.77
−0.17 0.2 270.28 90.17
0.124 0.33 0.16 −90.03
180.2 0 69.97 −0.05


X̂0

TCP = [10.28, 19.81, 109.38]T , X̂ζ
TCP = [10.28, 19.82, 109.38]T .

As can be seen from the presented results, without tool driving errors at a given point,
the proposed method provides a high accuracy for parameter identification (the error in
identifying linear parameters does not exceed 0.01 mm, and angular parameters 0.001◦).
At the same time, if there are specified errors in the measurement array, the accuracy of
parameter identification decreases (the error in identification of linear parameters does not
exceed 0.07 mm, and angular parameters 0.02◦).

In addition, from the presented results it can be seen that the parameters d2 and d3
have the same value, and their sum corresponds to the real value of the parameter d2.
Also, the parameters of TCP and the sixth link of the robot are identified together and
are not separated. At the same time, the obtained parameters X̂TCP and ϕ̂6 differ from
the reference ones, but they allow us to accurately determine the position of the tool. The
z coordinate of the tool, relative to the sixth link, is determined by the sum of d6 and
the zTCP coordinate in the XTCP vector, and the x and y coordinates by the expressions:
x = a6c6 + xTCP, y = a6s6 + yTCP. In the real case, when working tools will be installed
instead of a probe after identification, it is recommended to carry out a standard procedure
for determining TCP, considering the identified parameters.

Figure 3 shows the deviation of the TCP coordinates calculated according to the model,
Equation (6), using the identified parameters Φ̂ from their true values (solid black line is
the deviation when using parameters Φ̂0, gray is when using parameters Φ̂ζ , and dotted
when using nominal parameters Φ̃).

It can be seen from Figure 3 that identified parameters allow for the calculating posi-
tion of EE with an accuracy of 0.016 mm, if the measurements were carried out without
errors, and with an accuracy of 0.16 mm, if the measurements were carried out with errors,
as shown in Figure 2. This accuracy is sufficient to perform most of basic technological
operations. Figure 3 shows that when using nominal parameters of IR, accuracy of deter-
mining the position of the tool drops sharply, and the error can reach 2.4 mm, which is
unacceptable when performing critical technological operations.
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using various sets of parameters, from the real position Xi.

Thus, the results of the simulation confirmed operability and effectiveness of the
proposed method for identification of IR kinematic parameters. It should be noted that use
of criterion, Equation (7), makes it possible to obtain 628 differences for the parameter iden-
tification from four series of measurements at four stationary points mi = (21, 21, 18, 11).
This explains its high accuracy.

6. Experimental Research
6.1. Experiment Description

The purpose of the experiment is to verify the method described above. During the
verification process, it was necessary to evaluate the accuracy of the calculating position
of IR flange center using kinematic parameters obtained during the identification process.
For this purpose, a laser tracker was used. It allows us to determine the coordinates of the
center of spherically mounted rertroreflectors (SMR) with high accuracy in the associated
coordinate system OTxTyTzT . The laboratory setup is shown in Figure 4.
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Figure 4. Experimental setup.

When using a tracker to verify this method, there are two main problems. The first
is the mismatch of the coordinate systems Oxyz and OTxTyTzT , which does not allow
direct comparison of the coordinates measured by tracker with calculated coordinates of
the IR flange position. The second is the mismatch of the center of the SMR, that is, the
point whose position tracker measures, with the center of IR flange (see Figure 4), whose
coordinates are calculated according to Equation (1) using the identified parameters.

These problems were solved as follows.
To perform the comparison of coordinates XFARO measured by tracker with coordi-

nates X̂UR of flange calculated by model, Equation (1), using parameters identified by the
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proposed method, it is necessary to make a series of measurements, after which, using the
ICP (Iterative Closest Points) algorithm, set of coordinates X̂UR (cloud of points) should
be aligned with cloud XFARO. This will provide an alignment of IR coordinate system
with the tracker. Accuracy of the IR kinematic model containing identified parameters
will be estimated by the standard deviation between the points of these clouds after their
alignment. The smaller this value, the more precisely the kinematic parameters of the IR
are estimated.

In order to exclude the influence of mismatch of SMR and flange central point, all
movements of the IR during the measurement were carried out with the same flange
orientation. In this case, the measured coordinates of SMR will always be shifted by the
same value, relative to the center of flange.

Thus, experimental studies of the method of identification for IR kinematic model
parameters consisted of the following stages.

At the first stage, data was collected. Twenty-one measurements were performed
manually at three fixed points in space X1–X3 (see Figure 5) and array Ξ. At the second
stage, the kinematic parameters of the considered robot were identified based on obtained
data. That is, the matrix Φ̂ was evaluated.
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At the third stage, positions of SMR XFARO, mounted on IR flange, were measured
in OTxTyTzT by means of a laser tracker (see Figure 4). Then, the flange was moved, and
measurements were performed again. Since SMR was not fixed in the geometric center of
flange, its orientation remained unchanged, that is, only linear movements of flange were
performed.

Simultaneously with recording positions of SMR, the following data was also stored:
positions of flange center XUR in BCS Oxyz, position calculated by IR controller, and
corresponding values of generalized coordinates QUR. Based on the QUR, according to
Equation (1), coordinates X̃UR of flange center in BCS Oxyz were calculated with the help
of parameters from the technical documentation Φ̃, as well as coordinates X̂UR evaluated
using parameters Φ̂, identified by the proposed method. Thus, during the measurement
process, four point clouds XFARO, XUR, X̃UR, X̂UR were obtained.

At the fourth stage, for the convenience of further analysis and simplification of the
procedure of coordinate system alignment using the ICP algorithm, all geometric centers of
point clouds were transferred to the beginning of the coordinate system. To do this, the
coordinates of all points in each cloud were recalculated using formula

xp = xp −
1
Px

∑Px
p=1 xp, p =

(
1, Px

)
,
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where xp is the coordinates of a specific point in the point cloud; Px is the number of points
in this cloud.

Finally, at the fifth stage, point clouds were aligned using the well-known ICP algo-
rithm. Moreover, clouds XUR, X̃UR and X̂UR were moved to XFARO. Then, by the deviation
of points of three clouds XUR, X̃UR and X̂UR from points XFARO closest to them and by
the total standard deviation, one can indirectly conclude quality of identified parameters.
The smaller standard deviation of points after the aligning procedure, the less these points
deviate from accurately measured XFARO and the more accurate the kinematic parameters
of model, Equation (1), were identified.

6.2. Results of Experimental Research

During experimental studies, six degrees-of-freedom IR UR10e with serial kinematic
scheme, other than PUMA scheme, and FARO Vantage laser tracker were used. Measure-
ment accuracy of the tracker is up to 0.015 mm (see Figure 4).

In the first stage, data was collected to identify parameters of IR. The probe was driven
manually using a teach pendant, and accuracy of this probe driving to given point was
inspected visually (see Figure 5). Twenty-one (m1 = m2 = m3 = 21) measurements were
performed at three fixed points in space (i = 3). At the same time, vectors Qi

j were stored,
and thereby, data set Ξ was formed.

At the second stage, identification of IR parameters was performed. The initial value
of J, calculated using Equation (7), was 1120, and, after three iterations, it was 28.7. The
matrices of identified and nominal parameters had following form:

Φ̂ =



θ, ◦ a, mm d, mm α, ◦

0 0.0015 180.7 90.0193
0.0047 −612.7056 −0.0002 −0.0682
0.0015 −571.3064 −0.0002 −0.2073
0.0017 −0.0756 174.1 89.9643
0.0467 0.1869 120.2671 −90.0688
−0.0253 0.0356 115.8641 −0.0102


, Φ̃ =



θ, ◦ a, mm d, mm α, ◦

0 0 180.7 90
0 −612.7 0 0
0 −571.5 0 0
0 0 174.1 90
0 0 119.8 −90
0 0 116.5 0


.

Figure 6 shows distances between all pairs of points (there were 630 of them), whose
coordinates were calculated based on Ξ using Equation (1), and matrices Φ̃ (gray graph)
and Φ̂ (blue graph), respectively. From this Figure, it can be seen that use of Φ̂, estimated as
proposed in this paper, makes it possible to reduce the distances in each of pairs of points
in the X1–X3 measurement series by more than ten times.
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At the third stage, coordinates of all point clouds (XFARO, XUR, X̃UR, X̂UR) were
obtained. Their values are given in Table 1. All of 13 points were measured by the tracker,
shown as red dots in Figure 7. For clarity, in the same coordinate system, calculated
points are shown: X̂UR are indicated by blue crosses, X̃UR are gray circles, XUR are orange
plus signs.

Table 1. Coordinates for all points in clouds.

XFARO XUR

x, mm y, mm z, mm x, mm y, mm z, mm

1541.2800 349.3100 −78.6300 −300.0089 599.9986 749.9492
1534.1100 49.1100 −80.9600 −299.9971 300.0101 749.9022
1527.0700 −250.9700 −83.5100 −299.9978 0.0120 749.9403
1520.3200 −550.8800 −86.2700 −299.9792 −299.9835 749.9475
1523.4300 −548.3200 −386.0500 −300.0052 −299.9906 450.0485
1530.0900 −248.4840 −383.4900 −299.9870 0.0142 450.0200
1537.1500 51.05500 −380.8400 −299.9926 299.9972 450.0468
1544.3600 351.6540 −378.4650 −299.9857 599.9974 450.0407
1396.0000 356.5200 −530.1600 −449.9603 600.0080 300.0284
1388.8600 56.5600 −532.4400 −449.9826 300.1623 300.0306
1381.8900 −243.3700 −534.9800 −449.9776 0.2605 300.0453
1376.7600 −466.1520 −536.9800 −449.9721 −222.6143 300.0191
1374.9600 −542.8600 −537.7000 −449.9723 −299.3827 300.0141

X̃UR X̂UR

x, mm y, mm z, mm x, mm y, mm z, mm

−299.1941 600.6059 748.8994 −299.4489 600.5320 749.7033
−299.5745 300.5496 749.0396 −299.8734 300.2792 749.6301
−299.5501 1.1412 749.3286 −299.9692 0.0865 749.4284
−301.7034 −298.4790 749.5021 −300.1888 −299.7125 749.3410
−301.2012 −298.9596 449.4663 −300.1222 −299.8256 449.4001
−299.9751 0.5753 449.0687 −300.0666 −0.0251 449.3135
−300.2272 299.8920 449.0341 −299.9672 300.2473 449.6485
−299.6391 600.0386 448.9144 −299.4983 600.5386 449.6498
−449.1337 600.5285 298.7817 −449.3979 600.7467 299.3194
−449.7079 300.5363 298.9477 −449.8548 300.5789 299.3242
−450.0987 0.8905 299.1044 −450.0003 0.48914 299.3347
−450.6372 −221.6012 299.28724 −450.1226 −222.2956 299.3356
−450.8788 −298.2697 299.33644 −450.2056 −299.0152 299.3373
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Figure 7. Point clouds: XFARO are the positions of SMR measured in 𝑂 𝑥 𝑦 𝑧  by means of laser 
tracker (red dots), XUR are positions of flange center in Oxyz, calculated by IR controller (orange plus 
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Figure 7. Point clouds: XFARO are the positions of SMR measured in OT xTyTzT by means of laser
tracker (red dots), XUR are positions of flange center in Oxyz, calculated by IR controller (orange plus
signs), X̃UR are coordinates of flange center in Oxyz, calculated with help of parameters from the
technical documentation Φ̃ (gray circles), X̂UR are coordinates of flange center in Oxyz, evaluated
using parameters Φ̂ (blue crosses).
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In the fourth stage, geometric centers of all point clouds were calculated, and clouds
were moved to the beginning of the coordinate system. The result of this transfer is shown
in Figure 8. This figure shows a mismatch of axes of coordinate systems of IR Oxyz and
tracker OTxTyTzT , as well as differences caused by use of different sets of IR parameters.
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Figure 8. Initial position of point clouds before registration. XFARO are red dots, X̂UR are blue crosses,
X̃UR are gray circles, XUR are orange plus signs.

In the last stage, point clouds were aligned by their initial position shown in Figure 8.
Its result is shown in Figure 9. This alignment was performed in CloudCompare program,
which uses an open PLC library. As a result, standard deviation took the following values:
when aligning XFARO and X̂UR, it was 0.2262 mm, XFARO and XUR was 0.2562 mm, and
XFARO and X̃UR was 0.6715 mm.
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Figure 9. Position of point clouds after registration. XFARO are red dots, X̂UR are blue crosses, X̃UR are
gray circles, XUR are orange plus signs.

Deviation of each of the cloud points, XUR, and X̃UR from corresponding points XFARO

is shown in Figure 10. Blue in Figure 10 indicates deviation from XFARO points of cloud
X̂UR, orange is XUR, gray is X̃UR.
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Thus, parameters identified by the proposed method best approximate the coordinates
of points calculated with their help to ones obtained by means of the high-precision laser
tracker. That is, the proposed method provided result no worse, and even a little better,
than calibration of UR10e robot performed in factory conditions with the help of special
precision tools (calibration plate or another calibrated robot). As a result, performed
experimental studies have fully confirmed the operability and effectiveness of this method
for the identification of IR parameters without use of external measuring devices.

7. Conclusions

The paper proposes a method for the identification of kinematic parameters of IR
with a series kinematic scheme, which does not require use of external high-precision
measuring systems. The proposed method consists of two stages. At the first stage, this is
done manually by means of a teach pendant, driven at different orientations to the same
fixed point in space and data on the rotation angles of actuators is recorded. At the second
stage, using the Levenberg-Marquardt method, the IR model kinematic parameters are
tuned in such way as to reduce distances between pairs of tool positions calculated based
on mathematical model of this IR. As a result of proposed procedure, it is possible to refine
kinematic parameters and, as the research results have shown, significantly increase the
accuracy of IR movement in BCS. Experimental studies of the proposed method were
carried out and they confirmed its operability and effectiveness.

The proposed method has the following restrictions: it can be used for IR with a
serial kinematic scheme, it needs a teach pendant, and an operator, automatization is
hardly implemented. However, it can also be used to solve the problem of identifying
the elastostatic parameters of IR, which is still relevant. In [50], the results of its use are
described, simulation is performed. Experimental research is currently being carried out.
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