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Abstract: Teleoperation robot systems can help humans perform tasks in unstructured environments.
However, non-intuitive control interfaces using only a keyboard or joystick and physiological tremor
reduce the performance of teleoperation. This paper presents an intuitive control interface based on
the wearable device gForcePro+ armband. Two gForcePro+ armbands are worn at the centroid of
the upper arm and forearm, respectively. Firstly, the kinematics model of the human arm is estab-
lished, and the inertial measurement units (IMUs) are used to capture the position and orientation
information of the end of the arm. Then, a regression model of angular transformation is developed
for the phenomenon that the rotation axis of the torsion joint is not perfectly aligned with the limb
segment during motion, which can be applied to different individuals. Finally, to attenuate the
physiological tremor, a variable gain extended Kalman filter (EKF) fusing sEMG signals is developed.
The described control interface shows good attitude estimation accuracy compared to the VICON
optical capture system, with an average angular RMSE of 4.837◦ ± 1.433◦. The performance of the
described filtering method is tested using the xMate3 Pro robot, and the results show it can improve
the tracking performance of the robot and reduce the tremor.

Keywords: IMU; regression model; physiological tremor; EKF; sEMG signal; teleoperation system

1. Introduction

Robotic manipulators can use teleoperation to interact with a wide array of objects
and scenarios in unstructured environments [1]. Through teleoperation, human cognitive
abilities can be used to assist robots in handling decisions that are particularly difficult for
autonomy [2]. Robots have a wide range of applications and are now entering the daily life
of human beings; it is becoming more likely that novices will work with robots rather than
robotic experts [3,4]. In robot teleoperation, a major area of research focuses on providing
a control interface that is intuitive and easily preserves situation awareness [5]. Hence,
teleoperation can be accessed by novices with less training time. A teleoperation control
interface can be visited with hand motions as opposed to joysticks and point-and-click
interfaces, as they are natural movements to the teleoperator [6].

The optical tracking system includes multiple cameras and depth cameras. Multi-
camera motion capture systems track active or passive markers attached to anatomical areas
of the body to measure joint motion. Multi-camera is considered the measurement standard,
providing very accurate motion estimates, and the results of other motion capture systems
are often compared and validated against the multi-camera motion capture results [7].
The depth camera can detect the depth of field distance in the shooting space. Microsoft
Kinect and Leap Motion controller are two different depth motion capture systems used
for upper limb motion estimation [8]. Both systems use the human skeleton to track 3D
motion without the use of any markers. When using a depth camera system, it is possible
for the user to be occluded by other people or objects in the system’s field of view, and
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interactions that rely on human skeletal feature detection can be affected [9]. During the
occlusion process, the system is unable to recognize the human joint position. Compared
to multiple cameras, depth camera systems are less expensive and easier to move [10]. In
general, optical tracking systems are not wearable and are not suitable for unstructured or
outdoor scenarios.

sEMG signals reflect the level of muscle activation and can thereby be used to predict
or identify human movement. Due to the nonlinear characteristics of the sEMG signal, the
prediction of a single joint angle or position is easier than a multi joint angle or position,
and better performance can be obtained [11]. Tang et al. used a back propagation neural
network (BPN) for motion estimation of the elbow joint based on sEMG signals with a root
mean square error (RMSE) of 10.93 [12]. However, it is difficult to capture multiple degrees
of freedom of motion simultaneously. Furthermore, sEMG signals can be used to determine
body stiffness and muscle activity to enhance teleoperation performance [13,14].

In contrast to the above methods, inertial measurement units (IMUs) have been widely
used for motion tracking because they offer the advantages of being of low cost and small
size and can be easily integrated with wearable devices for accurate, non-invasive and
portable motion tracking. IMU provides information captured by multi-axis accelerometers,
multi-axis gyroscopes and multi-axis magnetometers to determine the position and direc-
tion of human joints, with good accuracy for human motion estimation [15,16]. Caputo
et al. developed a modular inertial motion capture system to estimate the orientation
and posture angle trends of each body segment [17]. The great interest of researchers in
the inertial measurement unit is mainly due to the fact that, compared to optical motion
tracking systems, IMUs are not affected by occlusion and illumination conditions and allow
for tracking of the entire body in an unstructured dynamic environment [18].

The IMU-based motion capture system can obtain the position and orientation of the
arm, but since wearable devices with built-in IMUs are worn in the middle of the arm
in most cases, there is a misalignment between the axis of rotation of the distorted joint
and the limb segment during the rotational motion of the arm [19]. In addition, during
teleoperation, there is always dynamic uncertainty in the robot due to sensor noise and
physiological tremor of the arm; its tracking error increases with time and the robot jitters,
which affects the reliability, control accuracy and stability of teleoperation and therefore
requires a continuous filtering process [20,21].

Physiological tremor is a nonlinear stochastic process with amplitudes ranging from
50 to 100 µm and frequencies ranging from 6 to 15 Hz in each principal axis, with multiple
principal frequencies in a small bandwidth and tremor parameters such as amplitude,
frequency and bandwidth varying from subject to subject [22–24]. Most early techniques
used low-pass filters to attenuate physiological tremors, but they had the disadvantage of
inherent phase delays that were not conducive to real-time applications [25]. To overcome
the time delay problem, some adaptive filtering algorithms such as Fourier Linear Com-
biner (FLC), weighted-frequency FLC (WFLC) and bandlimited multiple FLC (BMFLC)
have been developed, which can adapt to the variation of vibration signal frequency and
amplitude [26]. FLC can effectively estimate and eliminate periodic interference at known
frequencies, but it cannot handle high frequency signals [27]. WFLC is a modification of
FLC for the case where only a single frequency is present in the tremor signal and relies
on the estimation of the components of a single frequency; the performance of WFLC
degrades if the signal contains multiple dominant frequencies [28]. BMFLC is very accurate
for tremor estimation with prior knowledge of the subject’s tremor parameters, yet it is
difficult to determine the network structure and search for the optimal solution [29].Thus,
tremor filtering models based on the Hilbert transform and Autoregressive (AR), which do
not require a priori knowledge, were developed separately, but the Hilbert transform-based
model is computationally expensive online, while the AR model treats the tremor signal as
a linear Gaussian stochastic process, thus weakening the characteristics of physiological
tremor [30,31]. On the other hand, neural network-based adaptive control methods have
been used to attenuate physiological tremor. Liu et al. proposed a neural network-based
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sliding mode control method for robots using a dynamic model obtained by a neural
network strategy to approximate the switching gain, which adapts to unknown dynamics
and perturbations, but the initial trajectory tracking error is significant because the ini-
tial weights of the neural network are chosen randomly [32]. Yang et al. used a broad
learning extreme learning machine for the prediction and elimination of tremor in tele-
operation, but it is prone to accuracy degradation due to over-fitting [33]. However, the
above filtering methods rarely include operator intent into the interaction with the robot
for optimal operation.

In this paper, we address the inability of the conventional EKF to cope with the
dynamic physiological tremor phenomenon and propose to integrate the sEMG signal into
the gain calculation of the EKF so that the improved EKF has the ability of variable gain
adaption, which can filter the physiological tremor as well as retain the motion details
in the smooth state and realize the personalized teleoperation in the unknown dynamic
environment. This paper describes the further development of human upper limb motion
capture using wearable sensors in the field of teleoperation. Our contributions are: (1) a
method to achieve arm motion capture using IMU in teleoperation is proposed. The
advantage of this method is that, considering the misalignment between the rotation axis
of the twisted joint and the limb segment, a regression model for the transition from the
centroid of the arm to the roll angle at the end of the arm is established to reduce the error of
roll angle and can be extended to different individuals. (2) An adaptive extended Kalman
filter (EKF) method is proposed to integrate sEMG signals into the control system so that
the telerobot can understand the intention of the operator and realize the attenuation of
physiological tremor.

2. Description of Teleoperation Robot System

A telerobot system consists of two parts: (1) the interactive side and (2) the control
terminal. The interactive side of teleoperation is composed of two gForcePro+ armbands,
the arm motion capture module and tremor attenuation module, while the control terminal
includes an xMate3 Pro robotic arm. After wearing the gForcePro+ armbands on the arm,
the arm is perpendicular to the front plane as the initial position. First, the arm joint
angles are captured using two IMUs, and the position P1 and orientation O1 of the arm’s
end are obtained by a forward kinematic model. Second, the position P2 and orientation
O2 are obtained by filtering the physiological tremor using the EKF with fused muscle
activation. Then, P2 and O2 are mapped to the robot arm through Cartesian space. Finally,
the inverse kinematics of the manipulator are solved, and the joint angles are obtained
through trajectory planning to complete the end tracking motion. The overall scheme of
the teleoperation system considered in this paper is shown in Figure 1.

In Figure 2, the gForcePro+ armband (Manufacturer: OYMotion Technology Co., Ltd.,
Shanghai, China) is employed as the interactive side device in the teleoperated robot system.
In the system, gForcePro+ armbands are worn on the operator’s upper arm and forearm to
measure arm movements. The device includes an 8-channel high-sensitivity sEMG sensor
and a 9-axis IMU sensor. Its maximum sEMG sampling frequency is 1000 Hz and IMU
sampling is 50 Hz, enabling raw data output. sEMG and IMU data are transmitted via
Bluetooth to the interactive side computer.

In Figure 3, the xMate3 Pro robot (Manufacturer: ROKAE (Beijing) Technology Co.,
Ltd., Beijing, China) is designed with seven degrees of freedom redundant motion, and the
robot can achieve the same end position in different configurations. It has a maximum load
of 3 kg, a repeatable positioning accuracy of ±0.03 mm, a control frequency of 1000 Hz,
support for position control, impedance control and direct torque control and a kinematic
and kinetic calculation interface. Motion commands are transmitted via Ethernet to the
robot controller.
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Figure 1. Principle of the teleoperated robot system.

Figure 2. gForcePro+ armband.

Figure 3. xMate3 Pro robot.
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2.1. Human Arm Motion Capture

Since the gForcePro+ armband has both a built-in sEMG sensor and an IMU sensor,
the IMU motion capture algorithm can be used to capture the arm joint angle and obtain the
raw position and orientation information at the end of the arm through the arm kinematic
model. In addition, the IMU motion capture algorithm used in this paper solves the
problem of incomplete alignment of the rotation axes of the torsion joints (i.e., shoulder
internal/external and elbow internal/external rotation) with the limb segments during
rotational movements [34].

2.1.1. Kinematic Model of Human Arm

The human arm consists of three joints comprising seven degrees of freedom: the
shoulder joint comprising three DOFs, the elbow joint comprising two DOFs and the wrist
joint comprising two DOFs [35]. Using the standard D-H parameter method [36], we can
build a kinematic model representing the human arm, as shown in Figure 4. Assuming
that the human arm is a seven degrees of freedom tandem robot arm, ls represents the
length of the operator’s shoulder, lu represents the length of the operator’s upper arm and
lf represents the length of the operator’s forearm.

Figure 4. Kinematic model of the human arm.

In the standard DH representation, Ti−1
i represents the homogeneous coordinate

transformation matrix of coordinate systems i − 1 to i:

Ti−1
i =


cos θi − sin θi cos αi sin θi sin αi li cos θi
sin θi cos θi cos αi − cos θi sin αi li sin θi

0 sin αi cos αi di
0 0 0 1

 (1)

Since there are only two IMU sensors on the arm, five joint angles of the arm can
be captured, and, assuming that the sixth joint angle is 0, the homogeneous coordinate
transformation matrix from the base coordinate system to the end of the arm coordinate
system is defined as:

T0
6 = T0

1 T1
2 T2

3 T3
4 T4

5 T5
6 (2)

2.1.2. IMU Motion Capture Algorithm

Obtain the quaternion data q(w,x,y,z) from the gForcePro+ armband and transform it
into a rotation matrix R with the following equation.

R =

 1− 2y2 − 2z2 2xy− 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz− 2xw
2xz− 2yw 2yz + 2xw 1− 2x2 − 2y2

 (3)
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The rotation matrix of the first IMU (worn on the upper arm) is noted as:

Ru =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (4)

The rotation matrix of the second IMU (worn on the forearm) is noted as:

R f =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (5)

where u represents the upper arm coordinate system and f represents the forearm
coordinate system.

As shown in Figure 5, the angles of the shoulder and elbow joints of the arm are
calculated using the following equations.

∠OAB = arcsin(−r23)
∠XOB′ = atan2(r13, r33)
∠DAE = atan2(r21, r22)

∠ABC = arccos(a21 · r21 + a22 · r22 + a23 · r23)
∠FBG = arccos(a31 · r31 + a32 · r32 + a33 · r33)

(6)

where ∠OAB is the shoulder pitch angle, ∠XOB’ is the shoulder yaw angle, ∠DAE is the
shoulder roll angle, ∠ABC is the elbow updip angle and ∠FBG is the elbow roll angle.

Figure 5. Description of arm joint angle.

The motion capture theory described above is based on the assumption that the axis
of rotation of the torsion joint is perfectly aligned with the limb segment. However, the
gforcePro+ armband is worn at the centroid of the arm, which is quite different from the
roll angle at the end of the arm, so angle conversion is required. The two gForcePro+
armbands were fixed at the centroid of the arm and the end of the arm, and the roll angle
data were collected simultaneously. A polynomial fit was performed to obtain a functional
relationship between the two.
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Since the human body size varies greatly, it is not a certain definite value but is
distributed over a certain range. For individuals of different heights and weights, there
are different conversion relationship between the centroid of the arm and the end of the
arm for roll angle. To avoid experimenting with each operator, collect the roll angle data
and perform a polynomial fit. This paper proposes an empirical formula to facilitate
the conversion of the roll angle of the arm’s centroid to the end of the arm for different
individuals.

Select an individual as the benchmark individual and establish the roll angle’s con-
version relationship between the centroid of the arm and the end of the arm. In order to
improve the reusability of the regression model among different individuals, the model
should include the effects of height, weight and body mass index (BMI) and assume that
their effects on the model are linear. BMI describes the relationship between height and
weight, which is significantly correlated with total body fat content, which is calculated
as weight (kg)/height squared (m2) [37]. According to the inertial parameter standard
of the adult human body, the calculation of the body segment centroid involves height
and weight. Therefore, the centroid positions of the arm are calculated to represent the
influence of height and weight. The calculation formula of the arm’s centroid position is as
follows [38]:

Y = B0 + B1X1 + B2X2 (7)

where the values of B0, B1 and B2 refer to Table 1; X1 is weight (kg) and X2 is height (mm).

Table 1. Coefficient of weight and height in men.

Body Segment Constant Term of the
Regression Equation

Regression Coefficient
of Weight

Regression Coefficient
of Height

Centroid of upper arm 15.15 0.16 0.080
Centroid of forearm 12.94 0.45 0.054

For different individuals, calculate the BMI and the position of the arm’s centroid (c)
according to the individual’s height and weight, measure the roll angle (x) of the arm’s
centroid and substitute the following formula to obtain the roll angle of the arm end.

uend =
cu

cub
ub(x) (8)

where ub(x) is the polynomial formula of the upper arm of a benchmark individual, cub is
the centroid of the upper arm of a benchmark individual, cu is the centroid of the upper
arm of other individuals and uend is the roll angle of the upper arm of other individuals.

fend =
BMI
BMIb

c f

c f b
fb(x) (9)

where fb(x) is the polynomial formula of the forearm of a benchmark individual, c f b is the
centroid of the forearm of a benchmark individual, c f is the centroid of the forearm of other
individuals, BMIb is the body mass index of a benchmark individual, BMI is the body mass
index of other individuals and fend is the roll angle of the forearm of other individuals.

2.2. Elimination of Physiological Tremor

Physiological tremor is one of the most important human factors affecting the stability
and accuracy of teleoperation systems and is unavoidable. As the system is non-linear and
the algorithm of the EKF is iterative, it has the advantage of being simple, fast and robust,
offering better prospects for real-time applications than filtering methods of neural net-
works and machine learning. The EKF for state estimation is thus used to filter the position
and orientation data. Delays of 30 ms and above may degrade the performance of human-
machine control applications [39]. There is an electromechanical delay of approximately
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57 ms between muscle activation (sensed by the sEMG) and the onset of movement [40,41].
The use of muscle activation counteracts the inherent electromechanical delays and can
provide powerful and intuitive user-driven real-time control of the robot [42]. Aiming
to reduce the effect of time delay, the surface sEMG signal of the upper arm is used to
estimate muscle activation, which is involved in the calculation of the gain coefficient of
the EKF. By introducing muscle activation, the Kalman gain varies with the operator’s
upper arm muscle activation. The control gain stabilizes around the optimal control gain
when the upper arm’s sEMG signal remains stable, and when the upper arm’s sEMG signal
changes significantly, the Kalman gain decreases before the actual tremor occurs, which
can solve the inherent time delay problem of the low-pass filter and enhance the filtering
effect to filter out the tremor accurately. In addition, the proposed filtering algorithm only
processes time-domain signals, which can solve the problem that the frequency adaptation
of the adaptive filter cannot handle high-frequency signals [27]. The filter structure of the
algorithm is shown in Figure 6.

Figure 6. Structure of the variable gain EKF fusing muscle activation.

2.2.1. Calculation of Muscle Activation

The electromyography is a common method for determining the relative effort and
neuromuscular drive of skeletal muscle [43]. Muscle activation can be defined as [44].

In Figure 6, u(k) is the sum of all channel sEMG signals at moment k. In this paper, u is
measured using an 8-channel gForcePro+ armband.

u =
N

∑
i=1

u(i), i = 1, 2, 3, ..., N (10)

where u(i) is the raw sEMG signal of the ith channel.
The raw sEMG signal u(k) exhibits different characteristics in terms of both frequency

and amplitude. This paper uses the mean RMS to determine the amplitude for the raw
sEMG signal.

u(k) =

√√√√ 1
N

N

∑
j=1

u2
j (k), j = 1, 2, 3, ..., N (11)

where k and N are the current sampling moment and channel of gForcePro+, respectively.
The exponential moving average filter adopts a form of the recursive algorithm com-

pared to the traditional sliding window averaging filter [45], which only needs to retain the
results of the previous moment’s calculation each time with a small resource consumption
for the system, smoothing and filtering the RMS feature of the sEMG signal, as follows.

û(k) = û(k− 1) +
1
G
(z(k)− û(k− 1)) (12)
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where û(k) is the posterior estimate of the RMS feature value at moment k, û(k− 1) is the
posterior estimate of the RMS feature value at moment k − 1, z(k) is the measure of the
RMS feature value at moment k and 1/G is the delay factor due to the size of the sliding
window, also known as the Kalman gain. The larger G is taken, the more pronounced the
filtering effect, and the smaller it is, the closer it is to the original signal.

Muscle activation a(k) contains the sEMG signal and is more stable than the mean RMS
feature value [46].

a(k) =
eAû(k) − 1

eA − 1
(13)

where A ∈ (−3,0) is the non-linear shape factor, A taken as −3 indicates a highly nonlin-
ear relationship between muscle contraction force and the sEMG signal and A taken as
0 indicates a linear relationship.

Figure 7 shows that the RMS feature is extracted from the blue sEMG signal and then
filtered by an exponential moving average filter to obtain the muscle activation.

Figure 7. sEMG signal and its corresponding muscle activation.

2.2.2. Variable Gain Extended Kalman Filter Algorithm

In estimation theory, the EKF is a non-linear version of the Kalman filter [47], which
linearizes the current mean and estimated covariance. In the EKF, the state transfer model
and the observation model are not required to be linear functions of the states but can be
differentiable functions [48].

In Figure 6, xk is the position and orientation data for the end of the arm, and x̌k is the
estimated value of xk.

xk =
[

P1(k) O1(k)
]

(14)

where P1(k) and O1(k) are the position and orientation data, respectively, at the end of the
arm at the kth moment.

Consider nonlinear random discrete systems:

xk = f (xk−1, uk) + wk
zk = h(xk) + vk

(15)
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where wk and vk are procedure noise and observation noise, both set to zero-mean mul-
tivariate Gaussian noise, with covariances Qk and Rk, respectively, and uk is the control
variable. As there are no control inputs, the system input matrix uk = 0.

ωk ∼ N(0, Qk)
vk ∼ N(0, Rk)

(16)

Due to the non-linear nature of f (·) and h(·), the motion and observation model needs
to be linearized by expanding at the mean of the current state estimate.

f (xk−1, vk, wk) ≈ x̌k + Fk−1(xk−1 − x̂k−1) + w′k
g(xk, nk) ≈ y̌k + Gk(xk − x̌k) + n′k

(17)

where
x̌k = f (xk−1, vk, 0), Fk−1 =

δ f (xk−1,vk ,wk)
δxk−1

∣∣∣
x̂k−1,vk ,0

ω′k =
δ f (xk−1,vk ,wk)

δxk

∣∣∣
x̂k−1,vk ,0

ωk
(18)

and
y̌k = g(x̌k, 0), Gk =

δg(xk ,nk)
δxk

∣∣∣
x̌k ,0

n′k =
δg(xk ,nk)

δxk

∣∣∣
xk ,0

nk
(19)

Given the past state and the latest input, the statistical properties of the current state
and the current observation are:

p(xk | xk−1, vk) ≈ N
(
x̌k + Fk−1(xk−1 − x̂k−1), Q′k

)
p(yk | xk) ≈ N

(
y̌k + Gk(xk − x̌k), R′k

) (20)

The prediction equations are as follows.

P̌k = Fk−1P̂k−1FT
k−1 + Q′k

x̌k = f (x̂k−1, vk, 0)
(21)

The calculation of the variable Kalman gain coefficient is as follows: as muscle acti-
vation varies, Kalman gain also varies. It is crucial to normalize the control gain within a
reasonable range influenced by the control strategy and arm stiffness [49]. To achieve filter-
ing performance that varies with muscle activation, the control gain at the kth sampling
moment can be expressed as Equation (22).

Kk = η
(amax − ak)

(amax − amin)
(Kmax − Kmin) + Kmin (22)

where η ∈ (0,1) is the amplitude factor and Kmax and Kmin are the maximum and minimum
gains that ensure a steady motion of the robot, adjusted according to experiments. ak is
the muscle activation obtained. amax and amin are the maximum and minimum values of
muscle activation, respectively. Kmax, Kmin, amax and amin can be obtained experimentally
in advance.

Kmax and Kmin have been determined experimentally and are calculated as follows.

K = P̌kGT
k

(
Gk P̌kGT

k + R′k
)−1

(23)

Since the RMS feature is calculated using the sliding window method, the calculated
Kalman gain needs to be refactored. The pre-refactoring Kalman gain is denoted by K and
the post-refactoring Kalman gain is denoted by KR. The offline process of the refactoring
Algorithm 1 is shown below.
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Algorithm 1: Refactor Kalman gain.

Input: K
Output: KR
00: initialize: Set KR = 0, u = 0
01: Set same_num = floor(length(Position_data)/length(K))
02: loop
03: for i=1, 2, . . . , length(K) do
04: for j=1, 2, . . . , same_num do
05: KR(u+j) = EMA(K(i))
06: end for
07: u = u+same_num
08: end for
09: end loop

The updated equations are:

P̂k = (1− KRkGk)P̌k
x̂k = x̌k + KRk(yk − g(x̌k, 0))

(24)

3. Experiment

The gForcePro+ armband enables motion tracking, but it is difficult to use in practical
teleoperation and has two main problems. First, the roll angle measured at the centroid
cannot be used for practical robotic arm control. Therefore, in Experiment 1, we established
polynomial equations for the reference individuals, and, in order to accommodate different
individuals, the corresponding physiological parameters were selected as the influence
factors, and a regression model of the roll angle from the centroid of the arm to the end
of the arm was established and then compared with the optical tracking system VICON
to evaluate the overall accuracy of the IMU system. Second, the position and orientation
data are affected by sensor noise and physiological tremors with instability, which are
difficult to apply directly to robotic arm control and require filtering of the data. Therefore,
in Experiment 2, we compare the EKF method of fusing sEMG with the conventional EKF
in order to verify its filtering effect and then apply it to the practical robotic arm control.

3.1. Environment of Experiments

In Experiment 1, the subject first performs a correction experiment for the roll angle.
As shown in Figure 8a, since the gForcePro+ armband is not very convenient to wear at
the centroid of the upper arm, choose 2 cm below the centroid to wear. The gForcePro+
armband can be worn at the centroid when worn on the forearm. The IMU data are collected
simultaneously during rotational movements to calculate the roll angle for polynomial
fitting. After completing the correction experiment for the roll angle, as shown in Figure 8b,
the gForcePro+ armbands are worn on the upper arm and forearm with five Marker points
fixed on the arm. The IMU motion capture system and VICON optical capture system
are activated simultaneously to capture the motion of the human arm in space to test the
performance of the IMU capture algorithm for arm motion capture.

As shown in Figure 9, the Experiment 2 scene is divided into two parts: the interactive
side and the control terminal. On the interactive side, the operator wears two gForcePro+
armbands on the upper arm and one on the forearm to capture the position and orientation
at the end of the arm for controlling the robot arm and a data glove on the hand to capture
the angle of the finger joints for controlling the bionic hand. On the control terminal side,
the robot consists of a seven degrees of freedom xMate3 Pro robot arm and a flexible bionic
hand, and the robot is used to perform grasping tasks. During grasping, the gForcePro+
armband simultaneously acquires position and orientation data at the end of the arm and
sEMG signals from the upper arm to verify the effectiveness of the proposed EKF with
variable gain in adaptively attenuating tremor. The object used in the experiment is a 7 cm
diameter sphere weighing 100 g.
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Figure 8. Environments of Experiment 1. (a) Correction experiment for the roll angle. (b) Angles
estimation with the two gForcePro+ systems compared to the angle estimated by the VICON.

Figure 9. Environments of Experiment 2.

3.2. Experiment 1

The IMU sampling frequency was 50 Hz, and the VICON sampling frequency was
1000 Hz. An adult male with a height of 173 cm and a weight of 63.9 kg was selected
as a benchmark. One of the gForcePro+ armbands is placed on the middle of the upper
arm/forearm and another is placed on the end of the upper arm/forearm. The roll angle
data from both gForcePro+ armbands are collected simultaneously, and a polynomial fit
is performed to obtain a functional relationship between the two. Figure 10 shows the
relationship between the order of fit and RMSE. For the forearm roll angle correction, the
RMSE reaches a small value when the polynomial order is 2, so increasing the polynomial
order is not significant at this moment; for the upper arm roll angle correction, the RMSE
reaches a small value when the polynomial order is 3, so increasing the polynomial order is
not significant at this moment.
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Figure 10. The relationship between the fitting order and RMSE of the benchmark individual.

The polynomial fit equation between the mid and end rotation angles of the upper
arm is obtained as Equation (25). The fitted curve is shown in Figure 11.

ubend(x) = 7.14× 10−4x3 − 0.068x2 + 3.566x + 1.999 (25)

where x is the roll angle in the middle of the upper arm and ubend(x) is the roll angle at the
end of the upper arm.

Figure 11. Fitting of the roll angle between the centroid and the end of the upper arm.

The polynomial fit equation between the mid and end rotation angles of the forearm
is obtained as Equation (26). The fitted curve is shown in Figure 12.

fbend(x) = 0.0155x2 + 2.665x− 0.479 (26)
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where x is the roll angle in the middle of the forearm and fbend(x) is the roll angle at the
end of the forearm.

Figure 12. Fitting of the roll angle between the centroid and the end of the forearm.

In order to evaluate the effectiveness of the regression model, validation experiments
were carried out. Ten healthy male volunteers (mean, 25.6 ± 0.8 years old) participated in
the experiment. The regression model requires two human physiological parameters: the
centroid (c) of the arm and BMI. These parameters are calculated according to the empirical
formula of China Standardization Administration [38]. Table 2 lists the experimental
participants’ physiological data involved in the experiment. Each subject substituted the
roll angle in the middle of the arm into the regression model to obtain the predicted roll
angle at the end, which was compared with the actual measured rolling angle at the end
for error analysis. The average RMSE of the roll angle regression model of the forearm is
3.52 ± 3.16, and that of the upper arm is 3.61 ± 2.29.

Table 2. Physiological data of ten experimental subjects.

Subjects Height
/cm

Weight
/kg

c of Forearm
/cm

c of
Upper Arm/cm BMI/kg/m2

RMSE of
Roll Angle of

Forearm

RMSE of Roll
Angle of

Upper Arm

Benchmark 173 63.9 135.115 163.774 21.4 1.07 1.39
S1 171 77.0 139.930 164.270 26.3 2.05 0.27
S2 175 74.9 141.145 167.134 24.5 3.00 6.32
S3 177 70.8 140.380 168.078 22.6 0.35 1.74
S4 173 72.0 138.760 165.070 24.1 2.96 5.34
S5 176 81.0 144.430 168.910 26.1 3.55 2.82
S6 174 66.1 136.645 164.926 21.8 1.59 3.40
S7 189 76.3 149.335 178.558 21.4 9.87 2.65
S8 178 67.0 139.210 168.270 21.1 0.17 3.69
S9 167 59.5 129.895 158.270 21.3 3.48 7.86
S10 168 67.5 134.035 160.350 23.9 8.18 2.03

Mean ± SD 174.80 ± 6.18 71.21 ± 6.36 139.38 ± 5.33 166.384 ± 5.499 23.3 ± 2.0 3.52 ± 3.16 3.61 ± 2.29

After correction of the roll angle, the modified arm motion capture method needs to
be compared with the VICON optical capture system to assess the capture accuracy. The
right arm is placed in front of the body and kept horizontal, two gForcePro+ armbands are
connected separately, marker points are fixed on the arm, the IMU is calibrated, the VICON
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optical capture system is activated to start the motion and the motion data is collected
simultaneously. RMSE and R2 are used to quantify performance.

The arm joint angles captured by the gForcePro+ armband are compared to those
captured by the VICON optical capture system. Figure 13 shows the angles measured by
the system and the angles measured by VICON, with close trajectories between the two. In
particular, the shoulder and elbow joints were captured with the expected accuracy for the
roll angle, indicating that the roll angle correction is effective. The error results are shown
in Table 3, with a system RMSE of 4.837 ± 1.433 and an R2 of 0.834 ± 0.073.

Figure 13. Comparison of gForcePro+ and VICON.

Table 3. Arm estimation accuracy using our approach versus the VICON system.

Sh.Yaw Sh.Pitch Sh.Roll EL.Updip EL.Roll Mean ± SD

RMSE 4.079 6.264 6.501 3.437 3.905 4.837 ± 1.433
R2 0.920 0.869 0.745 0.772 0.865 0.834 ± 0.073

3.3. Experiment 2

The IMU sampling frequency was 50 Hz, the sEMG signal sampling frequency was
500 Hz and the non-linear shape factor A was−0.01. The filter delay factor G of exponential
moving average filter was 5, the Kmax of EKF was 0.618 and the Kmin of EKF was 0.068.

To verify the effectiveness of the proposed variable gain filtering method, we collected
position and orientation data at the end of the arm during the experiment. Using the
Z-direction movement as an example, the same segment of data is tested for tremor attenu-
ation in three modes: (1) fixed high-gain mode; (2) fixed low-gain mode; and (3) variable
gain mode.

Figure 14 shows the arm trajectory tracking in the Z direction at high gain mode,
indicating that the EKF with fixed high gain can capture the motion details well but cannot
effectively filter the tremor. Figure 15 shows the arm trajectory tracking in the Z-direction
at low gain mode. It can be shown that the EKF with a fixed low gain can filter the tremor
well, but the capture of motion details is weak, and there is a delay effect. This is because
physiological tremor is generated randomly and unpredictably, and a fixed gain cannot
switch the operating intensity of the filter between non-tremors and tremors.
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Figure 14. Motion filtering in high gain mode.

Figure 15. Motion filtering in low gain mode.

As shown in Figure 16, in the case of trajectory tracking in the Z-direction, the proposed
variable gain-based EKF method performs best compared to the other two modes. The
variable gain filtering mode can capture motion details well in the case of smoothness and
adaptively adjust the gain in the presence of tremor according to the change in muscle
activation, achieving an excellent filtering effect on tremor and preservation of motion
details. The results show that the proposed filtering algorithm effectively counters the
uncertain dynamics during teleoperation. The reason is that the Kalman gain is constantly
changing due to muscle activation and is pre-sensed by the sEMG signal before the onset
of tremor, and the filter enables dynamic switching of filter performance in both tremor
and non-tremor situations.
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Figure 16. Motion filtering in variable gain mode.

Teleoperation experiments with tremor and tremor attenuation are carried out sepa-
rately to verify the effectiveness of the algorithm for real-time applications.

Teleoperation with tremor: the reference trajectory is generated by the gForcePro+
armband worn by the operator and the actual trajectory is captured by the xMate3 Pro
robotic arm. The experimental results are shown in Figure 17. The results show a sig-
nificant tremor effect throughout the tracking process (0–5 s), and the trajectory tracking
performance of the robot is degraded by the tremor, which is not conducive to the smooth
operation of the robotic arm.

Figure 17. Operator and robot’s trajectory with tremor.

Teleoperation with tremor attenuation: In this experiment, a variable gain EKF is used
to process the trajectory data. Figure 18 shows how the filter’s performance varies with mus-
cle activation and the advantage of the variable gain EKF in response to uncertainty tremor.
Subplot a shows that, in the case of a smooth state, the gain coefficient KR is at a high value
and the filter only plays a smoothing role. Subplot b shows that, in the case of significant
tremor, the gain coefficient KR decreases rapidly, the filter performance is enhanced, the
tremor is attenuated and the trajectory becomes smooth without delay. The actual trajectory
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of the robot follows the change of the reference trajectory well, which reflects the better
performance of the proposed method in terms of real-time tremor attenuation.

Figure 18. Operator and robot’s trajectory after tremor attenuation. Subplot (a) is the case of filtering
in the smooth state and subplot (b) is the case of filtering in the tremor state.

Table 4 shows the error analysis of the teleoperation in the case of tremor and tremor
attenuation, with RMSE and goodness of fit (R2) as the analysis metrics. Using the pro-
posed filtering algorithm, the trajectory error between the operator and robot decreased,
where RMSE decreased by 0.0009 m, R2 improved by 1.50% and the trajectory tracking
performance was enhanced. The reason for this is that the physiological tremor is filtered
out, the motor of the robotic arm does not have to start and stop frequently and the motor
motion is smooth.

Table 4. Error analysis of teleoperation in the case of tremor and tremor attenuation.

Mode Direction RMSE R2

With tremor z-Direction 0.0015 0.9819
With tremor
attenuation z-Direction 0.0006 0.9969

4. Discussion

In Experiment 1, we corrected the roll angle during the rotational movement of the
arm in the process of capturing the position and orientation at the end of the arm using the
IMU sensor. Table 2 shows the RMSEs of the ten subjects who participated in the cross-roll
angle correction experiment. The mean RMSEs of the upper arm and forearm were 3.52 and
3.61, respectively, indicating that the regression model was accurate, but the performance
was poorer in some individuals due to human variability, reaching more than 9◦, indicating
that the model has room for improvement. A comparison with the VICON optical capture
system shows that the proposed IMU system is able to estimate the angle of the arm joint
stably for the precise operation of teleoperation tasks.

In Experiment 2, the position and orientation at the end of the arm calculated by the
IMU sensor can be unstable due to the inherent noise of the sensor and the occasional tremor
of the human arm. This can affect the accuracy of the teleoperated robot’s operation. In this
paper, an EKF fusing sEMG is used to attenuate physiological tremor. A comparison was
made between the traditional fixed-gain EKF and the variable-gain EKF on the performance
of arm trajectory tracking. From Figures 14 and 15, it can be seen that neither fixed high-gain
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nor fixed low-gain can handle dynamic uncertainty tremors well and they both have their
drawbacks. Therefore, a variable gain filtering method is essential for robotic teleoperation.
From Figure 16, we can observe that the Kalman gain of the proposed method varies with
muscle activation. Compared to a fixed low-gain or high-gain, the method can adaptively
filter the steady-state and tremor state, achieving good tremor filtering while retaining
motion details. Figure 17 shows the raw, unfiltered data with multiple jumps and tremors
that are detrimental to the operation of the robot arm motor and are prone to excessive
acceleration and emergency stops. Figure 18 shows the filtering process of the variable-gain
EKF. Subplots a and b show the filtering of the tremor with different muscle activation,
which indicates different filtering performance. These present the benefits of variable gain
filtering. Table 4 shows the real-time tracking performance in the presence of tremor and
tremor attenuation. Compared to the condition of having tremors, the RMSE for tremor
attenuation is smaller, indicating that the method can reduce the error caused by the tremor.
Moreover, R2 closer to 1 represents better tracking performance of the robot in the case of
tremor attenuation.

5. Conclusions

This paper presents a method of IMU motion capture with adaptive filtering in the
teleoperation system. The method captures the motion of the human upper limbs and
provides the position and direction information of the end of the arm, which can be
mapped onto the end of the robot after adaptive filtering to complete the control. The main
conclusions are summarized below:

1. The end of arm positioning in motion capture was completed by using two gForcePro+
armbands. A regression model was developed for the roll angle transition between
the centroid of the arm and the end of the arm. This model can be generalized to
different individuals.

2. Based on the changes in muscle activity during human arm movements, a variable
gain extended Kalman filtering method is proposed to filter physiological tremors and
device noise. Furthermore, it retains smooth state details to facilitate precision operations.

3. A comparison experiment with an optical tracking system was designed to verify the
accuracy of IMU motion capture. The results show that the roll angle error is at the
same level as the other angles, with an average error of 4.837◦ for all angles, indicating
that the IMU system can be used for teleoperation.

4. A teleoperation experiment of tremor attenuation was conducted to test the effective-
ness of the proposed adaptive filtering method. The results show that the proposed
filtering method can reduce the trajectory error between the operator and robot, in
which the RMSE is reduced by 0.0009 m.
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