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Abstract: Ground reaction forces (GRFs) describe how runners interact with their surroundings and
provide the basis for computing inverse dynamics. Wearable technology can predict time−continuous
GRFs during walking and running; however, the majority of GRF predictions examine level ground
locomotion. The purpose of this manuscript was to predict vertical and anterior–posterior GRFs
across different speeds and slopes. Eighteen recreationally active subjects ran on an instrumented
treadmill while we collected GRFs and plantar pressure. Subjects ran on level ground at 2.6, 3.0, 3.4,
and 3.8 m/s, six degrees inclined at 2.6, 2.8, and 3.0 m/s, and six degrees declined at 2.6, 2.8, 3.0, and
3.4 m/s. We estimated GRFs using a set of linear models and a recurrent neural network, which used
speed, slope, and plantar pressure as inputs. We also tested eliminating speed and slope as inputs.
The recurrent neural network outperformed the linear model across all conditions, especially with
the prediction of anterior–posterior GRFs. Eliminating speed and slope as model inputs had little
effect on performance. We also demonstrate that subject−specific model training can reduce errors
from 8% to 3%. With such low errors, researchers can use these wearable−based GRFs to understand
running performance or injuries in real−world settings.

Keywords: wearable technology; machine learning; recurrent neural network; statistical parametric
mapping; gait analysis

1. Introduction

Ground reaction forces (GRFs) describe how runners interact with their surroundings
and provide the basis for computing inverse dynamics for biomechanical studies. In the
laboratory, these GRFs are measured via force plates imbedded in the ground. These forces
can then be used to estimate valuable metrics, such as tibia bone loads, that can help in
understanding overuse injuries [1] or lower limb joint powers related to understanding the
performance benefits of shoes [2]. Yet, there is an increasing need to compute and track
such metrics outside of the laboratory to better understand overuse injuries and/or real−time
performance. Wearable technology can be used to quantify biomechanical metrics [3,4]
and/or provide biomechanical feedback to athletes outside of a laboratory setting (for a
review see [5]). Specifically, wearables can be utilized to predict time−continuous GRFs
during walking [6–9] and running [10–12]. However, the majority of time−continuous
GRF prediction research has been focused on level ground locomotion [4,10,11,13–20]. Yet,
during outdoor running, athletes encounter a wide variety of different speeds [21] and
slopes [22,23], which influences lower limb kinetics [24]. As such, if wearables are to be
effectively used outside of the laboratory to assess injury and performance, they need to be
able to estimate GRFs across different speeds and slopes.

This gap is starting to be filled as recently wearables have been used to compute
vertical GRFs at different speeds and slopes [12]. The vertical GRF component can provide
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valuable feedback for athletes outside the laboratory; however, if wearable−based GRFs are
to be used to compute additional kinetic metrics, multiple components of the GRF should
be estimated. For example, Center−of−Mass (COM) power [25], which is computed
from GRFs and running speed and slope, can provide insights into the contributions
of the GRF components to the total COM power that is performed by the lower limbs
(Figure 1). Note that the COM power is essentially the summation of the ankle, knee, and
hip powers [26]. The vertical component of the COM power, exclusively computed from
the vertical GRF, only provides a portion of the total power performed by the lower limbs
(Figure 1). Including the anterior–posterior (A/P) GRF into the COM power demonstrates
that the sagittal plane GRFs have the ability to account for the vast majority of the power
provided by the lower limbs. As such, wearable technology that predicts GRFs should
estimate both vertical and A/P GRFs if the aim is to compute further biomechanical metrics
outside of the laboratory.
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Figure 1. Center−of−Mass (COM) power components for running at 3.0 m/s on level ground.
The three different components of the COM power were computed respectively from the ante-
rior/posterior (A/P), medial/lateral (M/L), and vertical components of the ground reaction force.
The sagittal plane components (i.e., vertical and A/P) have the greatest contribution to the COM
power. Presented data are from one representative subject.

Another overlooked aspect of many GRF predictions is understanding where in the
step misestimates occur. Despite the time−continuous nature of the GRF, it is common
for model estimates to be validated using summary metrics (i.e., root mean squared error,
correlation, [6,7]) or discrete metrics (i.e., peak GRF, [4,14,16,20]). Furthermore, many GRF
predictions have focused on cohort level outcomes and it is currently unknown how well
GRFs can be predicted for individual subjects. Statistical parametric mapping (SPM) is
sometimes used in biomechanical analyses in order to evaluate the differences between
time−continuous curves [27] and can be used to evaluate both cohort level and individual
subject differences [28]. This methodology can be powerful on its own; however, it only
provides an estimate of when significant differences occur. Additional time−continuous
errors are needed to supplement the SPM to also understand the magnitude of difference
throughout the steps. Understanding the accuracy of time−continuous GRF predictions
would provide confidence for researchers who want to estimate GRFs outside of the
laboratory for athlete monitoring or for performing basic science research.
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Thus, the purpose of this manuscript was to predict sagittal plane GRFs across different
speeds and slopes, and to understand the time−continuous accuracy of the predictions on
both a cohort and individual subject basis.

The main contributions of this work are:

• The first running study to predict multiple ground reaction force components during
running for different speeds and slopes

• We introduce a new combination of tools to understand the performance of time−
continuous model predictions during gait

• GRF predictions with plantar pressure do not need a priori knowledge of the speed or slope
• Subject−specific training can enhance GRF predictions, such that these predictions

could be confidently used outside of the laboratory

2. Materials and Methods
2.1. Participants and Protocol

Eighteen recreationally active subjects (9 males, 9 females; age: 28 ± 5 years; Height:
1.73 ± 0.11 m; mass: 65.9 ± 9.3 kg) provided written informed consent and participated
in this study. The protocol was approved by the University of Calgary’s Conjoint Health
Research Ethics Board (REB20−1734). A similar study size was previously utilized to
examine the performance of machine learning algorithms predicting GRFs [12]. Participants
ran on an instrumented treadmill while we collected GRFs (2400 Hz, Bertec, Columbus,
USA) and Pedar plantar pressure (100 Hz, Novel, Munich, DEU) from both the left and
right feet. Subjects ran on level ground at 2.6, 3.0, 3.4, and 3.8 m/s, six degrees inclined
at 2.6, 2.8, and 3.0 m/s, and six degrees declined at 2.6, 2.8, 3.0, and 3.4 m/s. Data were
collected for 75 s. Subjects were not told to conform to a certain foot−striking strategy; as
such, most participants utilized a rearfoot striking strategy while others exhibited a forefoot
striking strategy while running on level ground. At the beginning of the trial, subjects were
asked to stand quietly on the treadmill belt and then perform three jumps. These jumps
synchronized the two independent data collection modalities so that similar steps could
then be extracted post−hoc. After the jumps were performed, the subjects were brought
up to the desired running speed. To ensure only steady−state running was examined, data
were analyzed from 25 s onward in the trial. In several instances, subjects were not able to
maintain the desired running speed for the entire trial, particularly the uphill running trials.
In these cases, subjects were encouraged to run as long as possible at the desired speed
until they indicated that they could not maintain the speed. At this point, the treadmill was
stopped and data collection for the trial was terminated.

2.2. Data Processing

Ground reaction forces were first rotated such that the vertical component of the GRF
was parallel to gravity in the sloped running conditions. The GRFs were then bi−pass
filtered using a 50 Hz, third order, low−pass Butterworth filter. Next, GRF and plan-
tar pressure data were aligned based on the three data synchronizing jumps through a
cross−correlation. Both GRF and plantar pressure data were then segmented into similar
steps for both the left and right foot, based on their respective signals. The plantar pressure
data were then summed in five different regions to provide five time−continuous signals
(Figure 2). All data, for each step, were then interpolated to 101 points as inputs to the
different GRF prediction algorithms. All data processing occurred in MATLAB (Mathworks,
Nantick, USA).
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Figure 2. Vertical and anterior−posterior (A/P) ground reaction force prediction using plantar
pressure. The plantar pressure was segmented into five different regions (indicated by the different
colors). Example plantar pressure curves are shown in the same color to the right of the respective
region. Additional inputs to the machine learning algorithms include running speed, running slope,
and subject mass. Model performance was then evaluated using statistical parametric mapping, time
continuous error (study mean ± standard deviation), root mean square error (not shown here), and
correlation coefficients (not shown here).

2.3. Model Development: Linear Model

We first estimated GRFs using linear regression models to provide a baseline compari-
son for the regression style machine learning model that is outlined below.

We created a set of least square linear models to predict the vertical (Figure 3, GRFvert)
and anterior/posterior GRFs (Figure 3, GRFA/P) from five different plantar pressure regions
(PR1−PR5, Figures 2 and 3). This linear regression accounted for speed and slope by solving
for the regression constants A1−A5 and B1−B5 for each different condition. This effectively
enabled speed and slope to be independent predictors. The summed pressures from the
five regions of the Pedar insoles (PR1−PR5) were normalized by subject body mass. This
analysis was performed with these five different pressure regions in order to make the
results presented here applicable to other plantar pressure sensors that may not have as
fine a spatial resolution.
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Figure 3. Linear and recurrent neural network model architecture for computing vertical (vert) and
anterior–posterior (A/P) ground reaction forces (GRF). The linear models predicted vertical and
A/P GRFs from five different pressure regions (PR1–5) divided by subject−specific body mass (BM).
The coefficients (A1–5, B1–5) were computed using a least−square regression. The recurrent neural
network predicted GRFs based on eight different inputs: PR1–5, body mass, speed and slope. The
bidirectional long short−term memory (LSTM) layers utilized information from the current sample
(xt) and from the future (xt+1) and previous samples (xt-1). For example, the GRF at 1% of the step is
informed from the input at 0%, 1%, and 2% of the step. Both models were cross−validated using a
leave−one subject out approach.

We next created a set of linear models to understand the effect of different running
speeds and running slopes on this model type. In this case, we created two linear models
to predict the vertical and anterior–posterior GRFs, respectively, to predict all running
conditions. In this case, the regression constants A1–A5 and B1–B5 (Figure 3) were each
solved for once. Similar to the first set of linear models, only the mass normalized insole
pressures from the five different pressure regions were utilized to train the linear model.

2.4. Model Development: Recurrent Neural Network

We then designed a single regression recurrent neural network (RNN) to predict
vertical and anterior–posterior ground reaction forces (Figure 3). Recurrent neural networks
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have been used previously to estimate vertical GRFs [12]. Using such an algorithm allows
for a more flexible solution than a linear model, as the network is not restricted to one
certain type of mathematical operation. The model consisted of 11 individual layers: a
sequence input layer that processed eight predictor variables per time point (five pressure
regions, mass, speed, and slope), a bidirectional long short−term memory layer (BiLSTM)
with 400 nodes, a 30% dropout layer, a BiLSTM with 200 nodes, a 20% dropout layer, two
fully connected layers (FC) with 300 and 150 nodes, and a final FC with 2 nodes that passed
activations to a regression output layer. The BiLSTM and FC layers utilized hyperbolic
tangent activations (Figure 3). For more information regarding network training options
and hyperparameters see the supplementary data. Running speed and slope were based
on the set treadmill speed and slope. Network training was performed via the adaptive
moment estimation optimizer. Prior to any training, all input sequences were shuffled to
avoid order effects and input sequences were normalized using Z−Score normalization.
We designed and tested a similar network without the speed and slope predictors in order
to determine the effects of these predictors.

2.5. Validation

For all models, validation was performed through a leave−one−subject−out cross
validation design [29]. This validation method trains the model on 17 of the 18 subjects,
then that trained model is used to predict the ground reaction forces for the one testing
subject that was not in the training set. This process is then repeated for each subject.
For each testing subject, we report the root mean squared error (RMSE) and Pearson’s
correlation coefficient (r) to assess the model performance, similar to other models that
predict GRFs (e.g., [6,7]). Left and right foot GRFs were evaluated together.

As both the RMSE and correlation coefficient are summary metrics for time−continuous
curves, we then performed statistical parametric mapping (SPM, [27]) and estimated a
time−continuous percent error in order to understand where systematic differences be-
tween model predictions and the ground truth occurred. We first performed a SPM analysis
to determine differences between subject−averaged curves. For each condition, we per-
formed two−tailed paired SPM t−tests using spm1d (version M.0.4.7, www.spm1d.org,
accessed on 18 March 2020) comparing the GRFs from the instrumented treadmill to each
of the models. The SPM paired t−tests only provide information on whether there is a
significant difference. We also calculated the absolute error between the models and the
GRF throughout the stance phase to understand the difference magnitude. This error was
normalized, based on range of the GRF for a particular step. It is important to note that a
high percent error may not correspond to a significant difference and that a low percent
error may correspond to a significant difference. This is due to the nature of the statistical
test. For example, if a paired t−test is performed on two conditions and one condition
has a slightly higher mean because all (or almost all) participants were affected by the
condition, there would be a significant difference no matter the magnitude of the difference.
The significance only corresponds to whether there is a systematic difference. On the other
hand, if one condition had a large, but random, effect on the participants, it could result in
no statistical difference. Yet, such an effect could result in a large absolute error.

Next, we performed a similar analysis for each individual subject. For each subject
and condition, a SPM paired t−test was performed between the model predictions and
the GRFs measured from the instrumented treadmill. In this case, 18 randomly selected
steps were used to perform the SPM in order to keep the statistical power similar to the
SPM tests outlined in the previous paragraph. For these 18 steps, the absolute percent
error was calculated. As it would be overwhelming to present results from each subject,
condition and model, three subjects for the vertical GRF and three subjects for the A/P
GRF are shown to illustrate low, average, and high percent errors for a single condition for
the recurrent neural network.

www.spm1d.org
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3. Results

All subjects across all conditions contributed to the training and testing datasets. In
total, 24,882 steps were analyzed. Model performances with changes in training dataset
size can be seen in Appendix A (Figure A1).

3.1. Model Ability to Predict Average Ground Reaction Forces

Across all speeds, slopes, and GRF components, the recurrent neural network had
lower RMSE and equal or higher correlations (Figure 4). Additionally, linear models
exhibited more significant differences throughout the stance phase than the recurrent
neural network, when comparing subject−average curves (Figure 5).
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Figure 5. Average (N = 18) ground reaction forces (GRFs), model predictions, and model errors for
running at 3.0 m/s. Top row shows average vertical GRF from the force platform (FP) along with
average linear model (LM) and recurrent neural network (RNN) predictions. Areas shaded red are
where there were significant differences between the FP and LM (p < 0.05). There were no significant
differences between the FP and the RNN (p > 0.05). The second row shows the mean absolute percent
error plus/minus one standard deviation for each model in the vertical direction. The third row
shows average anterior/posterior (A/P) GRF from the FP along with LM and RNN predictions.
Areas shaded red are where there were significant differences between the FP and LM (p < 0.05).
There were no significant differences between the FP and the RNN (p > 0.05). The last row shows the
mean absolute percent error plus/minus one standard deviation for each model in the A/P direction.
Downhill and uphill running was performed at 6◦ (10.5% grade).

The linear models exhibited a systematic (or significant) increase in the vertical GRF
in late stance (p < 0.05, generally between 75 and 100% stance, Figure 5). The average error
in this region across all subjects and conditions was 5.6% for the linear model and 4.0%
for the recurrent neural network. In the first 20% of stance, both models exhibited higher
errors in the vertical GRF (linear models: 6.7%, recurrent neural network: 5.5%), but they
were not significantly different.

For the A/P GRF, the linear model exhibited significant differences in both early
(p < 0.05, generally between 20 and 30% of stance) and late stance (p < 0.05, 70–100% of
stance Figure 6, middle row) as this model was unable to predict peak breaking nor peak
propulsive A/P GRFs. The average error across all subjects and conditions in the linear
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model between 20% and 30% of stance was 6.7% and the recurrent neural network was
5.0%. This region also represented where there were some of the greatest errors in the linear
model for A/P GRF prediction. The average error across all subjects and conditions in the
linear model between 70 and 100% of stance was 5.8% and the recurrent neural network
was 4.2%. The recurrent neural network had the highest errors (though non−significant,
p > 0.05) between 0 and 20% of stance where the average error was 5.5%.
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Figure 6. Subject−averaged (N = 18) ground reaction forces (GRFs), model predictions, and model
errors for running at 3.0 m/s on level ground. The top row shows average vertical GRF from
the force platform (FP) along with average recurrent neural network (RNN) predictions. Each
column represents a different subject that either had the lowest, near average, and highest average
errors in the RNN prediction of vertical GRF. Areas shaded green are where there were significant
differences between the FP and RNN (p < 0.05). The second row shows the mean absolute percent
error plus/minus one standard deviation for the RNN in the vertical direction. The third row
shows average anterior/posterior (A/P) GRF from the FP and average RNN predictions. Each
column represents a different subject that either had the lowest, near average, and highest average
errors in the RNN prediction of A/P GRF. Areas shaded green are where there were significant
differences between the FP and RNN (p < 0.05). The bottom row shows the mean absolute percent
error plus/minus one standard deviation for the RNN in the A/P direction.
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3.2. Model Ability to Predict Step−Average Ground Reaction Forces

Across all speeds and slopes, both the recurrent neural network and the linear models
exhibited significant differences between the predicted and true vertical and A/P GRFs
for individual subjects (p < 0.05, see Figure 6 for recurrent neural network performance).
These areas of significant difference varied from subject to subject (Figure 6); however,
generally, there were significant differences at the peak vertical GRF and the peak breaking
and propulsion peaks in the A/P GRF. The peak vertical GRF also corresponded to the
largest percent error across all subjects. The largest error in the A/P GRF occurred in the
first 20% of stance for the recurrent neural network (Figure 6).

3.3. Effect of Speed and Slope

Removing speed and slope as predictors from the models had very little effect on
RMSE and correlation (Figure 4) between the models and the true GRFs. Removing these
two predictors did not increase the number of significant regions for the recurrent neural
network nor for the linear models.

4. Discussion

This was the first running study to predict both the vertical and A/P GRFs during
running over different speeds and slopes. Such predictions can be harnessed to bet-
ter understand lower limb biomechanics outside of the laboratory. For instance, these
wearable−based GRFs could compute tibia bone loads [1] to inform athletes of poten-
tial overuse injuries. Similarly, these GRFs could be paired with other wearables, such
as inertial measurement units that estimate joint angles [3], to estimate lower limb joint
powers. These joint powers could provide runners with real−time performance metrics
or allow running researchers to understand the effects of high−performance footwear in
realistic running conditions. We also introduced a new combination of tools to understand
the performance of model predictions: statistical parametric mapping (SPM) combined
with time−continuous error. The SPM provided information about where in stance the
model prediction was significantly different from the measured GRF. For instance, the
linear models exhibited a systematic bias in the vertical GRF in late stance and near the
breaking and propulsive A/P GRF peaks (Figure 5). Such a statistical assessment should
be accompanied with a time−continuous error measurement as SPM does not provide an
indication of HOW different; rather there is a region THAT is different.

Removing speed and slope as predictors from both model types had little impact
on their respective performances (Figure 4). In future wearable applications this means
that the GRF prediction errors shown here will not inflate due to further estimations of
running speed or running slope. With IMUs attached to the foot, running speed can
be estimated within 5% of the true value [30]; however, it is currently an open question
whether ground slope can be estimated with IMUs during running. The fact that these
two predictors have little impact on accuracy could be interpreted as plantar pressure
contains a rich enough dataset to discriminate between running on different slopes and
speeds. Removing speed as a predictor most likely did not affect the GRF estimates as it is
well known that GRFs (and thus plantar pressure) increase in magnitude with speed [31].
On the other hand, there is no known relationship between running slope and plantar
pressure. One possibility is that the running slope could change the foot contact patterns
resulting in different time−continuous plantar pressures. However, visual examination of
the vertical GRFs for all subjects and trials showed that 11 subjects changed to a forefoot
striking pattern with uphill running, two subjects changed to a rearfoot striking pattern
with downhill running and five subjects did not change foot contact pattern for the different
slopes. As these contact patterns did not consistently change, there likely is a more complex
relationship between plantar pressure and running slope. Other models that predicted
running vertical GRFs on slopes utilized IMU signals as model inputs along with running
speed and slope [12]. It is currently not known if these IMU−based models are sensitive
when removing speed and slope as predictors.
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It is not surprising that the recurrent neural network outperformed the linear models
in predicting vertical and A/P GRFs (Figure 4). Previous studies that compared linear
models vs. machine learning algorithms have also shown this discrepancy [10,32]. The
linear models did show a similar correlation between the prediction and the vertical GRF as
the recurrent neural network. This could be due to the fact that the force normal to the foot
surface (i.e., what the plantar pressure measures) is almost entirely in the vertical direction.
The advantages of the recurrent neural network can be observed in the predictions of
the A/P GRF—where the correlation and RMSE were both better than the linear model
(Figure 4). Such an improvement in performance may be partially attributed to how the
recurrent neural network predicts each time point in the GRF curve, whereas the linear
models provide a scaling factor for the entire stance phase for each of the five plantar
pressure curves (Figure 2). This increased prediction power of the recurrent neural network
especially aided in estimating A/P GRFs for forefoot striking runners. For instance, one
subject that was a forefoot striker for all conditions had an average correlation of 0.83 and
RSME of 0.12 BW with the linear models and an average correlation of 0.96 and average
RMSE of 0.06 BW. For this subject, the linear models anticipated pressure in the heel region
in early stance. As this pressure was not present, the linear models’ predictions suffered,
yet the recurrent neural network did not have trouble predicting this subject’s A/P GRF. In
the future, methodologies similar to layer−wise relevance propagation [33,34] could be
adapted for recurrent neural networks in order to understand the impacts of the plantar
pressure during certain times in the stance phase of GRF prediction.

One noticeable difference in the recurrent neural network performance was how the
model performed on average (Figure 5) versus for individual subjects (Figure 6). For
individual subjects, there were times in the step where there were systematic differences
(i.e., significant differences) between the model and the ground truth; whereas, on aver-
age, the recurrent neural network exhibited no systematic differences. This discrepancy
can be linked to how the recurrent neural network is trained. Here we performed a
leave−one−subject−out validation, which means the model optimized the GRF prediction
and mitigated its error for 17 subjects across all of their steps. Then, this model is applied
to a single subject that has relatively low variability (with respect to 17 subjects). This will
inevitably lead to systematic differences between the GRF prediction and the ground truth.
Similar effects have also been observed in GRF predictions from other recurrent neural
networks [12]. As currently trained, the recurrent neural network performs very well
overall; but it would be difficult to have confidence in secondary biomechanical metrics
(e.g., tibia bone load) computed from these predictions for individual subjects.

In order to improve the recurrent neural network’s performance for individual subjects,
subject−specific training can be used to enhance GRF estimates. For instance, Figure 7
shows the difference that this subject−specific training can have on the recurrent neural
network performance. Here the model was set up similarly as described in the method
with some slight deviations. Seventeen subjects were used to create a “generic” model.
Then a “subject−specific” model was created by training that “generic” model with ≈10%
of the steps (165 steps) for the subject of interest. This scenario would mimic a calibration
session where a new user briefly comes into the laboratory and runs several minutes on an
instrumented treadmill. The subject illustrated in Figure 7 exhibited the greatest combined
error for the vertical and A/P GRF prediction in order to demonstrate the maximum
potential of this subject−specific training. For this example, the subject−specific model
reduced the significantly different regions across all conditions by 77% in the vertical GRF
and 53% in the A/P GRF. This subject−specific model also reduced the average percent
error across all conditions from 7.7% to 2.9% for the vertical GRF and 8.0% to 5.2% for the
A/P GRF. Such a low error rate could provide confidence to researchers when computing
additional metrics from the GRFs, such as tibia bone load [1]. Additionally, such models
that predict accurate GRFs could be used in conjunction with IMUs that provide joint
kinematics [3] to understand how high−performance footwear (e.g., Nike VaporFly) affects
lower limb kinetics outside of the lab.
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Figure 7. Subject−averaged (N = 18) ground reaction forces (GRFs), model predictions, and model
errors for running downhill and level ground at 3.4 m/s for a single subject. The left two columns
represent a generic model that was trained on the other 17 subjects in the study. The right two
columns represent a subject−specific model that is trained on 17 subjects plus ≈10% of the data from
the subject illustrated. The top row shows the average vertical GRF from the force platform (FP)
along with average recurrent neural network (RNN) predictions. Areas shaded green are where there
were significant differences between the FP and RNN (p < 0.05). The second row shows the mean
absolute percent error plus/minus one standard deviation for the RNNs in the vertical direction. The
third row shows average anterior/posterior (A/P) GRF from the FP and average RNN predictions.
Areas shaded green are where there were significant differences between the FP and RNN (p < 0.05).
The bottom row shows the mean absolute percent error plus/minus one standard deviation for the
RNNs in the A/P direction.

There are several limitations to acknowledge with this study. This study was per-
formed exclusively on an instrumented treadmill and the speed provided to the recurrent
neural network was the speed set for the treadmill. Future studies should also examine
the affects of recurrent neural network predictions overground and with different surfaces,
which can change the GRFs [35]. Here we explored a wide range of running slopes; how-
ever, it is not known if even greater slopes would decrease the accuracy of a recurrent
neural network that does not utilize slope as an input. The subjects recruited were young,
healthy, and active. It is not known how the models shown here would perform with
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elderly or clinical population, which can have different time−continuous ground reaction
forces [36,37].

Anecdotes from Model Building

In this sub−section, we wanted to explain and/or elucidate decisions that were made
in the creation of the GRF prediction model in order to aid future researchers who are
interested in the outlined methodologies.

• The five plantar pressure regions examined here were based on data exploration and
preliminary linear model fitting. We explored as little as three regions and some
explorations looked at regions that were unequal in size/length. The five regions
used here worked relatively well. We did explore using all 99 pressure sensors as
inputs to the recurrent neural network; however, it did not improve performance
enough to justify the added complexity and reduced applicability to other pressure
sensing modalities.

• The GRFs were aligned parallel/perpendicular to the gravity vector as preliminary
exploration demonstrated that such an orientation enabled better linear model predic-
tions in contrast to GRFs aligned parallel/perpendicular to the running surface.

• Including a binary predictor variable for left/right foot was explored; however, it did
not affect model performance

• The recurrent neural network sequence input layer was responsible for normalizing
the predictor variables. We found that ‘Z−Score’ normalization resulted in the best
performance. During network development we also experimented with four other
methods, which did not perform as well:

# ‘zerocenter’; Subtract the mean
# ‘Rescale−symmetric’; Rescale range to [−1 1]
# ‘Rescale−zero−one’; Rescale range to [0 1]
# ‘none’; Raw inputs

• We applied a dropout function to each of the bidirectional LSTM layers of the recurrent
neural network that set randomly selected nodes to 0. This was done to prevent
overfitting and the dropout probability was 30% and 20% for the first and second
bidirectional LSTM layer, respectively. During development, we experimented with
lower (up to 0%) and higher (up to 80%) dropout probabilities. Generally, higher
probabilities resulted in worse performances, while lower dropout probabilities created
better training results but worse testing results.

• For the first two fully connected layers of the recurrent neural network we applied the
hyperbolic tangent as activation function, while the last fully connected layer was not
exposed to an additional transfer function. We experimented with the rectified liner
unit transfer function as an alternative but found no substantial differences within the
network performances.

5. Conclusions

Recurrent neural networks estimated average vertical and A/P GRFs more accurately
than linear models across all speeds and slopes. This was particularly evident with the
A/P GRF, as the recurrent neural network reduced the average root mean squared error by
55% with respect to the linear model. Subject−specific ground reaction force predictions
were enhanced with subject−specific model training (i.e., including steps from the subject
in the training data). The improvement for one subject reduced prediction errors from 7.7%
to 2.9% for the vertical GRF and 8.0% to 5.2% for the A/P GRF. With such low errors, these
wearable−based GRFs could be confidently used outside of the laboratory to understand
running performance or injuries.

6. Patents

Work shown here is included in patent 63/291,424 and 63/315,847.
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