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Abstract: Dementia is the most common neurodegenerative disorder globally. Disease progression is
marked by declining cognitive function accompanied by changes in mobility. Increased sedentary
behaviour and, conversely, wandering and becoming lost are common. Global positioning system
(GPS) solutions are increasingly used by caregivers to locate missing people with dementia (PwD) but
also offer a non-invasive means of monitoring mobility patterns in PwD. We performed a systematic
search across five databases to identify papers published since 2000, where wearable or portable GPS
was used to monitor mobility in patients with common dementias or mild cognitive impairment (MCI).
Disease and GPS-specific vocabulary were searched singly, and then in combination, identifying 3004
papers. Following deduplication, we screened 1972 papers and retained 17 studies after a full-text
review. Only 1/17 studies used a wrist-worn GPS solution, while all others were variously located on
the patient. We characterised the studies using a conceptual framework, finding marked heterogeneity
in the number and complexity of reported GPS-derived mobility outcomes. Duration was the most
frequently reported category of mobility reported (15/17), followed by out of home (14/17), and
stop and trajectory (both 10/17). Future research would benefit from greater standardisation and
harmonisation of reporting which would enable GPS-derived measures of mobility to be incorporated
more robustly into clinical trials.

Keywords: Alzheimer’s disease; remote monitoring; sensors; GPS; movement/mobility; wearable
technology

1. Introduction
1.1. Dementia

Dementia is a neurodegenerative disorder with growing global prevalence. There
are currently over 850,000 people living with dementia in the UK [1], with an estimated
55 million cases globally [2]. Demographic changes within high income countries, and in-
creases in longevity in low and middle-income countries, will lead to a projected 78 million
people living with dementia in 2030 and 139 million by 2050 [2]. A 2010 paper estimating
the cost of disorders of the brain across 30 European countries estimated the direct and
indirect costs of dementia to be €105 billion (Purchasing Power Parity 2010) [3]. In 2019,
it was estimated that the total global societal cost of dementia stood at $1.3 trillion, with
costs expected to exceed $2.8 trillion by 2030 [2]. As such, there is a pressing economic and
societal need for technological solutions to improve care for, and reduce the care costs of,
people with dementia (PwD).
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Dementia encompasses a spectrum of disorders which are broadly characterised by an
individual’s progressive loss of cognitive ability. The most common type is Alzheimer’s
disease, which is associated with the accumulation of amyloid plaques and cellular neu-
rofibrillary tangles [4]. Other dementias vary in their aetiology, onset and specific symptom
profile with sub-types including vascular dementias, dementia with Lewy bodies and
dementias in disorders such as Huntington’s and Parkinson’s disease.

Dementias can also have an adverse effect on an individual’s ability to move. This
effect is caused by multiple factors, such as the loss of volition and motivation, a reduction
in the need to walk to tasks that can no longer be cognitively performed, low mood, and
a direct effect on higher-order gait control [5]. Over time, sedentary behaviour may pre-
dominate due to decreased activity and movement [6], leading to social isolation, spatial
disorientation, and depressive symptoms. As disease severity increases, wandering be-
haviours may manifest [7], imparting a risk of personal injury (e.g., a road traffic accident)
and environmental exposure (e.g., hypothermia). Cumulatively, these factors may nega-
tively impact a PwD’s cognition, cardiovascular health, brain plasticity and mood. These
changes have a profound impact on family members, who often act as informal caregivers
(CGs), with the European Social Survey estimating in 2014 that family carers provide three
quarters of the total long-term care to dependent older adults [8].

1.2. GPS-Derived Mobility Data as a Potential Tool in Clinical Decision Making

Mobility refers to the physical movement of individuals where movement is defined
temporally, spatially and with complimentary descriptors, such as mode of transporta-
tion [9]. Therefore, mobility reflects an individual’s ability to navigate and interact with
their environment [10]. Within the remit of mobility, life-space mobility (LSM) is a distinct
concept, defined as the spatial extent in which an individual moves within a specified
period [11]. Life-space area intertwines with LSM, describing the spatial area that an
individual commonly navigates [12]. As mobility is intrinsic to the disease trajectory of
dementia [13], longitudinal measurements across the disease course capture a dynamic
state. Changes in this metric may, therefore, herald a need for greater support to maintain
independence, fitness, and wellbeing.

Currently, the Life Space Assessment (LSA), a questionnaire-based tool, is the most
widely validated means to quantify LSM in older adults [14–16], though other tools have
been used [15,17]. Travel diaries are commonly used to capture other important aspects of
mobility not measured by the LSA, such as mode of transport or type of activity [18]. How-
ever, these techniques are retrospective, and, hence, are subject to recall bias. Furthermore,
cognitive impairment limits the reliability of these retrospective measures.

Technology-based monitoring solutions, such as global navigation satellite systems
(GNSS), most commonly the global positioning system (GPS), may facilitate the passive
assessment of mobility patterns. Efficiently acquiring satellite position is essential in
capturing accurate GPS data. Therefore, GPS cannot detect mobility patterns accurately
in indoor environments. GPS data consists of spatial data, using latitude and longitude
coordinates to report location, and temporal data. Recent validation studies in healthy
older adults have suggested that GPS-derived spatial mobility indicators show reasonable
agreement with the used LSA tool [19–21]. GPS devices can accurately and precisely
determine a user’s position to within an accuracy of metres; such devices have the potential
to capture sufficient GPS data from which a vast range of mobility indicators can be derived.
In turn, this has the potential to report mobility outcomes beyond that of conventional
questionnaire-based tools and to detect fluctuations in behaviour that a PwD might not
detect themselves [22]. In turn, these could act as potential proxies of disease progression
and severity, consequently informing the health and social care of these patients.

1.3. Use of GPS in Patients with Dementia

GPS has become ubiquitous in portable consumer devices, such as smartphones [23]
and navigation systems [24], as well as wearable devices, such as smartwatches [25]. As



Sensors 2022, 22, 3336 3 of 20

defined by Ye et al., a wearable device is ‘a product controlled by electronic components and
software that can be incorporated into clothing or worn on the body like accessories’ [26].
Preliminary work based on such devices has captured data from which mobility outcomes
have been derived; most commonly the average time spent out of home and the average number
of locations visited by the user [27]. With a wide range of GPS-derived mobility outcomes
coupled with sophisticated statistical or machine learning (ML) approaches, there is the
potential to differentiate mild-to-moderate Alzheimer disease patients from people without
Alzheimer’s disease [28]. This offers an important opportunity to incorporate measures of
mobility into healthcare, with particular benefit to PwD and CGs.

1.4. Processing Tools and Algorithms Used for GPS Data Analysis

Due to the large volumes of GPS data collected, extensive data processing is essential
to produce GPS-derived mobility indicators that reflect the full range of an individual’s
mobility [19]. There are two main approaches to GPS data processing: (1) Post-processing,
where the GPS data are processed after the study period has been completed, and (2) Real-
time processing where the GPS data are processed while the individual is wearing the
device [29]. Post-processing is more commonly used, however, within dementia research;
real-time processing is often used to alert a CG when a PwD leaves a ‘safe zone’ [30]. In post-
processing, ML is often implemented to predict an individual’s patterns of mobility. ML
methods commonly include neural networks [31], density-based clustering algorithms [22]
and support-vector machines [32], using software such as MatLab [28] and V-Analytics [33]
for processing. Currently there is no gold standard methodology to process GPS data to
derive mobility indicators.

1.5. Assessing the Breadth of Mobility Measures Applied in the Dementia Literature

A recent conceptual framework developed by Fillekes and colleagues [34] provides
an important tool for synthesizing GPS-derived mobility indicators that can be used in
health and ageing research. Additionally, it offers a framework to critique and compare the
breadth of mobility outcomes reported in existing studies [34]. This framework is divided
into the domains, space, time, movement scope and attribute with each domain containing
categories. The space domain contains categories detailing the spatial distribution of the GPS
data (LSM) while the other domains capture additional aspects of mobility not associated
with LSM. Time focuses on the temporal distribution of the data, such as the time spent out
of the home. Movement scope details if the GPS data captures the individual’s trajectory
or solely their stop locations. Finally, attribute includes categories that do not fall in the
previously described domains. As part of this framework, Fillekes et al. have suggested
GPS-derived mobility indicators that capture all the categories across the domains [34].

1.6. Contribution of This Paper to the Literature

The increase in commercial and research-orientated GPS devices offers the opportunity
to assess the mobility of PwD. However, despite the increasing availability and usage of
GPS technology, there has been little attempt to synthesis this literature. Therefore, in this
review, we aim to systematically summarise the current breadth of the available biomedical
literature on GPS, in particular wearable GPS, as a solution to passively monitor mobility
in PwD. Our objectives are:

1. To describe the use of GPS in dementia care and management;
2. To identify the extent to which wearable solutions have been used;
3. To assess the quality of the studies identified using the conceptual Fillekes framework.

2. Materials and Methods
2.1. Contribution of This Paper to the Literature

A systematic search using MEDLINE, EMBASE, AMED (Allied and Complementary
Medicine), APA PsycInfo and IEEE Xplore was conducted from, and including, the year
2000 up until 2 February 2022. Searches were restricted to human studies and performed in
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alignment with the Preferred Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) guidelines [35]. Search terms included a combination of technical keywords
surrounding GPS devices, such as “Geographic Information System”, “wearables” and
“GPS”. These terms were searched in isolation and then combined with the disease search
terms such as “Alzheimer”, “Dementia”, “Huntington *” and “Mild Cognitive Impairment”
(see Supplementary Materials). These search terms were developed in accordance with the
NICE guidelines [36]. PICO (population, intervention, comparison, outcome) principles
were used: (P) PwD or mild cognitive impairment (MCI); (I) wearable devices containing
GPS; (C) none; (O) GPS-derived mobility indicators.

2.2. Eligibility

Inclusion criteria were: (a) GPS sensor technology primarily used to assess mobility;
(b) the GPS technology was a wearable or portable device [26]; (c) the technology was
implemented on a population with the most common types of dementia (Alzheimer’s
disease, vascular dementias, Lewy body dementia, and Huntington’s disease) or MCI.
Studies were excluded where: (a) they did not report location or mobility-based outcomes;
(b) they did not undergo peer-review; (c) they were a conference abstract or a systematic
review; (d) the primary focus of the study was on GPS technology as a navigation aid or
alerting a caregiver if the PwD left a specific zone (i.e., geofencing).

2.3. Study Selection

References were uploaded to EndNote reference management software to remove
duplicates. The references were then imported to Rayyan for review. A.C. conducted
the title and abstract review alongside M.Ó.B., and, where there were disagreements on
the inclusion of a study, M.S. determined the final decision. From screening of the titles
and abstracts using the eligibility criteria, 1944 references were excluded and 28 included
for full-text review. A total of 185 studies were excluded, as they were identified as a
publication type outside the criteria (i.e., conference abstracts or systematic review), or they
did not undergo peer-review. After assessment of the full text conducted by A.C., M.Ó.B.
and F.E.L., 17 studies were determined to have met the eligibility criteria and underwent
data extraction. A summary of the screening process is shown in Figure 1.
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2.4. Data Extraction and Study Synthesis

Data extraction from the full text of the included studies was completed by A.C. where
the following were identified: author (year), study population, device (s) and location
carried on the body, duration, sampling frequency, study design, GPS-derived outcomes,
data processing details and key findings. The included studies were assessed on the
number and range of GPS-derived mobility outcomes using the Fillekes framework. Within
this framework, mobility indicators were classified based on the domains: space, time,
movement scope and attributes (see Section 1.4). The categories encompassed by each of
these domains were (space: count, extent, and shape/distribution), (time: duration, timing and,
temporal distribution), (movement scope: stop, move and trajectory) and (attribute: out of home,
transport mode and further attribute) [34].

3. Results
3.1. Study Characteristics

In total, 3004 papers were found after the initial search; once duplicates were removed,
1972 studies remained (Figure 1). An overview of the 17 included studies is provided in
Table 1. Five of the 17 studies focused on the mobility of a cognitively impaired population
(either PwD or MCI), while 12/17 studies compared the mobility of a cognitively impaired
population with an age-matched healthy control group. Two studies included CGs in their
population to determine if the GPS device improved CG quality of life. Nine studies were
part of a single project (Senior tracking, SenTra) [27,33,37–43].

A single study by Chung et al. employed a truly wearable GPS solution (Garmin™
Vivoactive HR smartwatch) worn on the PwD’s wrist [48]. Thorpe et al. also used a
smartwatch but in combination with a smartphone which provided the GPS logging [22].
The nine studies from the SenTra project used a wristwatch with a radio frequency (RF)
transmitter which communicated with a portable GPS receiver to verify if the individual
was carrying the GPS device. All other studies used portable devices which could be worn
on the person using additional accessories, such as a pouch, or were carried in pockets,
bags, or used a standalone smartphone.

The GPS monitoring duration varied across the studies with four weeks used in ten
studies, including the nine studies involved in the SenTra project. The minimum duration
was 3–5 days in the Tung et al. study [28] and the maximum duration was eight weeks, used
by Thorpe et al. and Bayat et al. [22,46]. However, in the Bayat et al. study only four weeks
of the collected data were processed to compare with the information from the LSA tool
which assessed mobility over four weeks. The study by Thorpe et al. however, processed
all the data collected across the eight week duration. Sampling frequency varied across
the studies from a maximum of 1 Hz to 0.017 Hz [22,46]. Commonly, 0.2 Hz and 0.1 Hz
were used, including in the SenTra project studies. One study (Thorpe et al.) reported an
intermittent sampling frequency ranging from 1000 Hz to 0.003 Hz [22].
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Table 1. Summary of identified papers where GPS has been used in patients with dementia disorders. Participant age is presented as mean (SD) where available.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Oswald et al.
[38]

(2010)

PwD n = 6,
MCI n = 6,
HC n = 7

(Participants
between age

63–80).

SenTra device:
GPS receiver, a RF

transmitter
wristwatch, and a

home RF
monitoring
system [44].

Location: GPS
device located in

pouch or bag [44].

4 weeks 0.2 Hz
Observational,

cross-
sectional study

Distance travelled,
Walking speed,

Distance
from home,

Daily mobility
activity

The GPS data were transmitted
via the GPRS protocol to a project

server. A valid hour was
≥30 min of valid GPS data; a day
was valid only if there were no

invalid hours. Full time analysis
was carried out on valid days

(methodology of processing was
not stated).

This study established
that the future

proposed SenTra
project was feasible.
However, the SenTra
tracking kit placed
high cognitive and

behavioural demands
on participants.

Shoval et al.
[33]

(2011)

PwD n = 7
(mean age 81.9),

MCI n = 21
(mean age 78.3),

HC n = 13
(mean age 72.9).

SenTra kit [44] 4 weeks 0.1 Hz
Observational,
cross-sectional

study

Distance from
home,

Time OOH

GPS data transmitted via the
GPRS protocol to a project server.
Using a combination of a GIS and

the recorded locations of the
participant, the distance from

home was calculated. This
information was visualized on a

‘spider-web diagram.’

Participants with
cognitive impairment

travelled shorter
distances from home

during the day
compared with HCs.
PwD had a smaller

spatial range
compared to those

with MCI.

Werner et al.
[27]

(2012)

PwD n = 16,
MCI n = 34,
HC n = 26,
CG n = 66

(Participants aged
63 or older).

SenTra kit [44] 4 weeks 0.1 Hz
Observational,
cross-sectional

study

Time spent OOH
per day,

Time spent
walking per day,

Number of visited
nodes,

Number of
walking tracks per

day,
Average walking

distance,
Average walking

speed

GPS data transmitted via the
GPRS protocol to a project server.

From GPS data a node was
defined as a stopping point

lasting >5 min. A track was the
pathway between nodes. Detail

was not presented on the
processing methods to gather

GPS derived outcomes.

The greater the
mobility of PwD (with

mobility defined
through the GPS

derived outcomes),
the less burden placed

on CGs.
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Table 1. Cont.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Wahl et al. [39]
(2013)

MCI n = 76
(mean age 72.9),

HC n = 146
(mean age 72.5).

SenTra kit [44] 4 weeks 0.1 Hz
Observational,
cross-sectional

study

Time spent OOH
per day, Number

of visited locations

A valid day was when <1 h of
missing data was observed.

A visited location was defined as
a GPS coordinate staying in the

same location for >5 min.

The mean number of
visited locations was
higher in HCs than

those with MCI.

Tung et al. [28]
(2014)

PwD n = 19
(mean age 70.7),

HC n = 33
(mean age 73.7).

GPS receiver on
smartphone

chipset
(Qualcomm

RTR6285,
Qualcomm Inc.,
San Diego, CA,

USA)
Location: Pocket

3–5 days 1 Hz
Observational,
cross-sectional

study

Life-space area,
Distance from

home,
Time OOH

GPS coordinates were projected
to a 2D plane using Matlab R12.

Home radius was set to 25 m
around home coordinates

determined from the participants
address and Google Earth. A

convex hull, calculated using the
standard convex hull operation,
was used to determine the area
and perimeter measures. The
Euclidean distance from the

home coordinates was calculated
and a distance time series was

produced to determine the time
spent OOH and distance from

home were calculated.

Reduced mobility was
observed in PwD
compared to HCs,

using measurements
of the area and

perimeter of the
convex hull.

Wettstein et al.
[40]

(2014a)

PwD n = 35
(mean age 74.1),

MCI n = 76
(mean age 72.9),

HC n = 146
(mean age 72.5)

SenTra kit [44] 4 weeks 0.2 Hz
Observational,
cross-sectional

study

Walking distance,
Walking speed,

Walking duration,
Time spent OOH,
Number of places

visited,
Number of

walking tracks
per day

GPS data transmitted via the
GPRS protocol to a project server.

A valid day had to have OOH
behaviour and <1 h of missing

GPS data. A visited location was
defined as GPS coordinates in the

same location for >5 min.
A walking track was considered
as movement less than 5 km/h.

In PwD, higher
walking distance and
walking speed were
positively correlated
with environmental

mastery (how capable
an individual feels

with using
environmental

resources).
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Table 1. Cont.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Wettstein et al.
[41]

(2014b)

As per Wettstein
et al. [40] SenTra kit [44] 4 weeks 0.2 Hz

Observational,
cross-sectional

study

Time spent OOH,
Number of places

visited

The same data processing
method was used as per

Wettstein et al. [40]. However, the
walking tracks were not

processed as this was not a GPS
derived outcome for this study.

Behavioural
competence was

significantly lower in
PwD than both MCI
and HC. The mean
number of activities
carried out was also

lower in PwD
compared with MCI

and HCs.

Kaspar et al.
[37]

(2015)

PwD n = 16,
MCI n = 30,
HC n = 95

(Participants were
in the age range

50–84).

SenTra kit [44] 4 weeks 0.2 Hz Case Control
study

Time spent OOH,
Average walking
distance, Type of

activity,
Type of transport

The GPS data were transmitted
via the GPRS protocol to a project

server. A valid day had <1 h of
missing data. Spatial GPS data
was interpreted using complex

algorithms (specific type not
stated), which integrated

compound measures, such as
acceleration and velocity,
alongside geographical

background data to distinguish
transport modes.

The authors were
unable to establish a
strong relationship

between daily mood
and an individual’s

mobility.

Wettstein et al.
[42]

(2015a)

As per Wettstein
et al. [40] SenTra kit [44] 4 weeks 0.2 Hz

Observational,
cross-sectional

study

Walking distance,
Walking speed,

Walking duration,
Time spent OOH,
Number of places

visited,
Number of

walking tracks per
day

The same data processing
method was used as Wettstein
et al. [40]. An addition of this
study was the cluster method

which used GPS-derived
outcomes to identify whether the

participants were ‘mobility
restricted’, ‘outdoor oriented’ or

‘walkers’.

The mobility patterns
in older people were

heterogenous.
However, it was

identified that there
was a higher
proportion of

cognitively impaired
individuals in the
cluster defined as
having restricted

mobility.
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Table 1. Cont.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Wettstein et al.
[43]

(2015b)

As per Wettstein
et al. [40] SenTra kit [44] 4 weeks 0.2 Hz

Observational,
cross-sectional

study

Walking distance,
Walking speed,

Walking duration,
Time spent OOH,
Number of places

visited,
Number of

walking tracks per
day

Data processing method the same
as Wettstein et al. [40]

The three cognitive
ability groups did not
significantly differ in

OOH walking
indicators (e.g.,
walking speed).
However, OOH

mobility indicators
(time OOH, number
of visited locations)

were lowest in PwD.

Harada et al.
[45]

(2019)

PwD n = 147
(The mean age of

the n = 192
baseline

participants was
76.3 but the age

was not stated for
those included in
the final study)

Globalsat DG-200
Data Logger

Location: Pocket
2 weeks 0.033 Hz

Secondary
analysis of a
randomised

controlled trial

Time spent OOH
per day

GPS data was processed in
accordance with the GIS system
(ArcGIS for Desktop 10.3: Esri

Japan Incorporation: Tokyo,
Japan). Home radius set to 100 m
around the home coordinates; the
time spent OOH was determined

using this radius. Validity of a
day was defined as wear ≥10 h,

location started and ended in the
home area, no poor connection
during the time OOH and, the

participant stated they wore the
device in their travel diary.

In PwD, a stronger
social network was

positively correlated
with greater time

spent OOH. However,
no relationship

between
environmental factors
and time spent OOH

was observed in PwD.
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Table 1. Cont.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Thorpe et al.
[22]

(2019)

PwD n = 6
(Mean age 69.7)

Smartphone
(Nexus 5) and a

Smartwatch (Sony
Smartwatch 3)

Location: Pocket
(smartphone) and

Wrist
(smartwatch).

8 weeks

Ranging
from

1000 Hz to
0.003 Hz

Longitudinal
study

MCP,
Action range,
Total distance

covered outside
the home,

Time spent OOH,
Time spent

moving between
locations,

Number of places
visited, Number of

trips

The GPS data was filtered in
alignment with the upper limit

set at 25 m accuracy. The stop and
moves were determined from the

trajectory with the DBSCAN
method applied to determine

locations. A stop was defined as
GPS coordinates in the same

location for >5 min. The MCP
was calculated using the R
function to determine the

smallest convex polygon around
the data points. The action range
was the geodesic distance from
home coordinates and the GPS

data [23].

Digital monitoring of
mobility and activity
has the potential to

detect fluctuations in
behaviour that the

participant might not
detect themselves.

Bayat et al.
[46]

(2021)

PwD n = 7,
HC n = 8

(All participants
were ≥65 or

older).

SafeTracks Prime
Mobile GPS

Device
Location: Pocket

8 weeks 0.017 Hz Case control study

Number of
destinations,
Sequence of

destinations, Time
spent at each
destination

4 of the 8 weeks of captured GPS
data were extracted. Home

location of each participant was
determined using DBSCAN

algorithm. The trajectory
segmentation method [47]

extracted the locations visited by
each participant. Extracted

destinations were clustered and
each destination was assigned a
cluster ID [47]. Different entropy
methods (random, heterogeneous
spatial and spatiotemporal) and
algorithms were used to assess

randomness of individuals
mobility.

There was lower
spatial and temporal

randomness in
mobility patterns in

PwD compared to HC.
Therefore, across the
collected data there
was a 5% chance, on
average, that a PwD

would choose a
location at random
but an 8% chance

in HC.
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Table 1. Cont.

Author (Year) Study
Population

Device(s) and
Location Carried Duration Sampling

Frequency
Study

Design
GPS-Derived

Outcomes Data Processing Details Key Findings

Chung et al.
[48] (2021)

PwD n = 1,
CG n = 1

(PwD 64, CG 62)

Garmin™
Vivoactive HR
Location: wrist

watch

1 week Not stated Case study

Total distance
moved,

Movement speed,
Convex hull area,
Total wear time,

Location (home vs.
other),

Total time OOH,
Total time at home,

Heart rate

The GPS data were extracted in
TCX and CSV formats. The
participant wore the device

longer than the intended 7-day
study period therefore generating

9 days of complete GPS data.
GPS track plots used to describe

locations visited with total
distance moved and speed of

movement determined for each
track. LSM visualized by plotting
and calculating the convex hull of

GPS points using mapview
package (CITE). Home radius

was set as ≤1000 ft around home
coordinates.

The participant
engaged in OOH

activities every day
from late morning

until the evening. The
travel diary correlated
with the GPS-derived

outcomes and
provided additional
information on the
type of activity the
participant carried

out.

Liddle et al.
[49]

(2021)

PwD n = 3,
MCI n = 15

(Participants mean
age 86.7)

Smartphone based
GPS system

Location: Pocket

Required
105 to

240 h of
GPS data.

Not stated
Longitudinal
observational

study

Life space area,
Time at home,

Maximum
distance from

home,
Trips OOH,

Time left at home

Custom algorithms (not stated)
were used to create metrics. The
locations extracted from the GPS
data were plotted to visualize the
life space area and the shape and
perimeter of the life space area
were analysed. The home area
was defined as 500 m from the

home location and the time spent
OOH was when the participant
left the home radius and did not

return for a period > 5 min.

The authors found no
relationship between

life space and
cognition. However,
an association with

life space and driving
status was found with
non-drivers having a

lower life space
compared with

drivers.
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Table 1. Cont.

Author
(Year)

Study
Population

Device(s) and
Location
Carried

Duration
Sampling

Fre-
quency

Study
Design GPS-Derived Outcomes Data Processing Details Key Findings

Sturge et al.
[50]

(2021)

PwD n = 2,
MCI n = 5

(Participants
were aged

59–93).

QStarz
BT—1000X 2 weeks Not

stated

Observational,
cross-sectional

study

Visited locations,
Distance from home,

Life Space Area

GPS data extracted and processed
in Microsoft Excel then imported

into V-Analytics to store the
participants locations and trips
over the study period and for

time-space movement analysis.
Activities were created if GPS

location points were connected
within an 80 m radius for >5 min.

GPS locations exceeding this
radius were considered as a
distinct trip. Activities were

imported into ArcMap 10.5.1. to
visualize participants’ spatial
movement with activities then

defined into routine activity
space (<7.5 km of the home
coordinates) and occasional

activity space (>7.5 km).

Cognitively
impaired

individuals still
engaged in

activities beyond
their

neighbourhood
area.

Bayat et al.
[51]

(2022)

PwD n = 7,
HC n = 8

(All participants
were ≥ 65).

SafeTracks
Prime Mobile
GPS device

Location:
Pocket, purse

or bag

4 weeks Not
stated Case control study

Maximum distance from home,
Radius of gyration,

Life space area,
Number of destinations,

Number of unique destinations,
Time at home,

Time OOH,
Time on foot,

Time in vehicle,
Trip time period,

Total number of trips,
Outdoor activity duration,

Types of activities

Data processing as described by
Bayat et al. was used in this
study [46]. A distance-based
probabilistic model based on

Google places, API, was used to
retrieve information about visited

locations of the participants to
define their OOH activities (i.e.,

shopping, leisure, medical
services).

PwD undertook
more

medical-related
and fewer

sport-related
activities

compared to HCs.
PwD spent less

time walking than
cognitively intact

individuals.

GPS = global positioning system, GIS = geographic information system, GPRS = general packet radio service, RF = radio frequency, GSM = global system for mobile communications,
DBSCAN = density-based spatial clustering of applications with noise, PwD = people with dementia, CG = caregivers, MCI = mild cognitive impairment, HC = healthy control,
LSM = life space mobility, OOH = out of home, API = application programme interface.
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3.2. GPS Data Processing

Across the included studies, a range of processing methods were implemented to
derive GPS mobility outcomes. In the studies involved in the SenTra project, wear-time
of the GPS receiver, determined from the additional radio frequency (RF) wristwatch and
home RF monitoring system, was used to assess the validity of the data. Kaspar et al.
defined a valid day as having <1 h of missing data whereas Oswald et al. considered a
day valid if there were no invalid hours, with an invalid hour having <30 min of valid
GPS data [37,38]. The home radius, the set radius around the home coordinates used to
determine if the participant left their home, varied across studies with values ranging from
approximately 25 m [28] to 500 m [49]. Studies commonly agreed that a visited location is a
GPS data point which has the same coordinates for at least 5 min.

A variety of data packages were used to process the data including MatLab, V Analyt-
ics and R. The methodology for processing the GPS data was rarely detailed in the included
studies. The Bayat et al. studies detailed their ML methodologies, namely the density-based
spatial clustering of applications with noise algorithm, and the Trajectory segmentation
method, which were used in combination to extract the location of the participant [47].
Several studies also used the convex hull algorithm to capture the convex hull area, the
smallest convex shape that contains all the GPS recorded coordinates, which allowed the
life space area to be captured [22,28,48]. In four of the studies a geographic information
system (GIS) was used in alignment with the GPS data to retrieve information about the
nature of the location that the participants visited, for example, a supermarket, leisure
centre or medical centre [45,46,50,51].

3.3. GPS-Derived Mobility Indicators

Applying the Fillekes framework to the studies described in Table 1 revealed that the
Bayat et al. study provided the most comprehensive set of mobility indicators, considering
all but one of the categories, shape distribution, as shown in Table 2 [51]. Due to the positive
associations with mobility and the categories in the movement scope domain, all of the
identified studies included at least one of these categories. Either stop or trajectory were
derived in ten studies and move recorded in nine studies. Across the space and time domains,
the most frequently derived categories were count (nine studies) and duration (fifteen
studies). However, across these domains the categories that focused on qualitative data
were less well covered and no studies reported shape/distribution; two studies reported
timing and two studies reported temporal distribution. As most of the identified studies
focused on the time the participants spent out of home, the category out of home was
frequently used (fourteen studies). Additionally, seven studies included the category
further attribute, and seven studies reported additionally derived outcomes, including
walking speed (specifically those within the SenTra project) and the type of activity carried
out by the participant.
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Table 2. Characterisation of dementia studies based on the GPS-derived mobility indicators used,
according to the characteristic aspects of the conceptual framework by Fillekes et al. [34], where
mobility indicators are classified based on their analytical and characteristic aspects, which are then
grouped into further thematically organized categories.ju.

Study

Space Time Movement Scope Attribute
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A
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Oswald et al. (2010) [38] • • • 3

Shoval et al. (2011) [33] • • • • • 5

Werner et al. (2012) [27] • • • • • • 6

Wahl et al. (2013) [39] • • • • 4

Tung et al. (2014) [28] • • • • 4

Wettstein et al. (2014a) [40] • • • • • • 6

Wettstein et al. (2014b) [41] • • • • 4

Kaspar et al. (2015) [37] • • • • • • • 7

Wettstein et al. (2015a) [42] • • • • • • 6

Wettstein et al. (2015b) [43] • • • • • • 6

Harada et al. (2019) [45] • • • 3

Thorpe et al. (2019) [22] • • • • • • • 7

Bayat et al. (2021) [46] • • • • 4

Chung et al. (2021) [48] • • • • 4

Liddle et al. (2021) [49] • • • • 4

Sturge et al. (2021) [50] • • • • 4

Bayat et al. (2022) [51] • • • • • • • • • • • 11

Total number of studies per
category 9 8 0 15 2 2 10 9 10 14 2 7

4. Discussion

We will discuss the overall findings of our review, thereafter, presenting the broader
context in which these findings can be interpreted in the wider role of GPS in the care,
treatment, and management of PwD. Additionally, we consider future research and the
potential considerations associated with such research.

4.1. Overall Findings

GPS technologies are emerging as a solution to monitor mobility and life space patterns
in PwD. Across nine of the included studies [22,37,38,40,42,45,48–50], GPS-derived mobility
outcomes broadly agreed with travel diaries completed by participants. This is congruent
with work in healthy older adults and populations with non-dementia neurodegenerative
disorders [19–21]. Of the included studies, 9/17 were part of a single project (SenTra)
and made use of three devices: an RF wristwatch, a GPS receiver and a home monitoring
unit [44]. The GPS receiver had a short battery life of only 12 h when set to a sampling rate of
0.1 Hz. All devices contained an RF component to determine if the individual was carrying
the GPS receiver outside the house determining GPS wear-time. Oswald et al. reported
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that, on average, participants carried the GPS receiver out of the home for 88% of the total
captured hours [38]. Additionally, the SenTra tracking kit had a short battery life of only 12 h
when set to a sampling rate of 0.1 Hz. Only one study (Chung et al.) used a GPS-enabled
smartwatch, with high PwD and CG compliance reported in the observed dyad [48]. On
one hand the PwD found the smartwatch easy to use and convenient. However, the number
of buttons on the device rendered it difficult to use and on occasion the user struggled to
turn it on and inadvertently switched it off. Additionally, the smartwatch had a relatively
short battery life (13 h in GPS tracking mode [52]). The remainder of the GPS solutions
were commercially available GPS devices which the participant carried in their pocket,
bag or purse. Examples include, QStarz BT-1000XT, a multipurpose GPS device, and the
SafeTracks Prime Mobile Device which is a dedicated PwD tracker. Although these devices
are not as compact as a wristwatch, they have a significantly longer battery life, with QStarz
BT-1000XT having a 42 h life at its lowest sampling rate frequency (0.001 Hz) [53].

4.2. Mobility Behaviour of PwD

Several of the included studies compared the mobility behaviour of PwD with age
matched HCs and those with MCI. Findings showed that PwD were more mobility re-
stricted [42] and travelled a shorter distance from home during the day compared with
HCs [33]. These findings suggest PwD experience an increase in sedentary behaviour [6],
as well as a reduction in the need to walk to perform tasks that can no longer be cognitively
sequenced [5]. Differences in the mobility of participants with MCI were also noted, with
them spending less time out of their home and visiting fewer locations compared with HCs.
Although the reduction in mobility was not as high in participants with MCI with PwD, it
highlights that cognitive impairment, regardless of severity, can cause a reduction in an
individual’s mobility behaviour.

4.3. GPS-Derived Outcomes and Processing Methods

Within the Fillekes framework, the majority of included studies reported quantitative
GPS-derived outcomes, such as the number of locations visited (count and stop), the time
spent out of the home (duration and out of home) and the number of tracks (move). Time spent
out of home was calculated by determining when an individual was outside of the home
radius, defined as a set external radius around the home coordinates, and for how long.
When count was reported in a study the stop category (GPS coordinates in the same location
for >5 min) was also derived. Within 3/9 studies involved in the SenTra project, move was
reported and defined as any movement less than 5 km/h. Trajectory (which combines stop
and move) was reported in 10/17 studies and was visualised using packages such as Google
Earth and ArcMap to chart an individual’s overall movement. These basic algorithms
highlight the relative ease of deriving such categories. Bayat et al. adapted and expanded
on the basic methodology of determining stop locations by differentiating stop locations into
a full signal stop (i.e., a set of continuous GPS coordinates at the same location) or a no signal
stop (i.e., where the GPS signal is lost/ no motion detected) [47]. Using these definitions,
the cluster methodology mapped the stop locations of the individuals considering if the
GPS signal was lost or motion was undetected.

Few studies derived the more qualitative GPS outcomes of the attributes domain, such
as activity type (further attribute) or transport mode. Only Bayat et al. reported their method-
ology to determine activity type [46]. Key ML entropy methods (random, heterogeneous
spatial, spatiotemporal) were used to determine the randomness of an individual’s mobility
behaviour and thus to predict their future activities based on known information about
their daily pattern of visited locations. Spatiotemporal entropy patterns predicted a 5%
chance, on average, that a PwD would choose a location in a random manner compared
with an 8% chance in HCs [46].

Within the wider literature, a combination of the rule-based machine learning method
and predefined heuristic rules are used to determine activity type [47]. Bohte and Matt [54]
used this methodology, combining location-specific information with the last known stop
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location of the individual; if their last known stop location was a 50 m radius from a known
location it could be assumed they were visiting that location [54]. Other studies have used
probabilistic methods [55], though only at an aggregated level (not an individual level).
As previously highlighted, the entropy methods used by Bayat et al. have the potential
to predict the destination of PwD [46]. However, at present, there is no gold standard
methodology to capture activity type. Instead, studies commonly use a combination of
GPS-derived data with information from a travel diary, which are subject to recall bias and
are not suitable for a cognitively impaired population. Future research needs to develop
suitable methodologies to determine qualitative data outcomes or to validate entropy
methods more widely.

4.4. The Extent to Which Wearable Solutions Have Been Used

A single study used a truly wearable GPS device in a wristwatch form [48]. However,
the majority of studies used commercially available GPS devices that could be carried
on the participants in a pocket, bag or purse. It remains debatable if such solutions are
wearable as they are not incorporated into clothing or worn on the body [26]. Conversely,
if a device is within a pouch/pocket attached to the individual’s body it may in some
respects be considered wearable. Some studies (including the SenTra project) specified that
participants could carry devices in a pouch worn around the abdomen, but they did not
indicate if such accessories were provided or were used by participants [44]. Therefore,
it can be assumed across the studies that they relied on the participants remembering to
carry the GPS device when they left the house. Consequently, the most common reasons
for missing GPS data were either due to the participant forgetting to carry the device or the
device running out of battery. However, the commercially available portable GPS devices,
such as the QStarz BT-1000XT used by Sturge et al. [50], have a long battery life, up to 42 h
under certain configurations, meaning, if charged and used appropriately, they can capture
a complete 24 h period [53]. As it is unlikely that a cognitively impaired population will all
remember to correctly charge their devices throughout the study duration, it is arguably
inevitable for devices to run out of battery in some cases. Therefore, ensuring the device is
wearable will aid in reducing the amount of missing data.

While many novel devices have been developed that surmount some of the challenges
surrounding battery life and wearability [56,57], they remain in the prototype stage and, to
date, none have been widely trialled in a clinical population.

4.5. Device Use and Acceptability in PwD

All of the included studies focused on quantitative data, but some also included
qualitative data (n = 2). Chung et al., a dyadic study, considered the device acceptance
by the PwD, and CG impressions on whether it reduced overall burden on both PwD
and CG [48]. Both were accepting of the form of the device, though the PwD sometimes
struggled with unintentionally turning off the device. The PwD and CG were accepting
of the impact of GPS-based monitoring on privacy, if the information could be of use to
healthcare professionals. Crucially, significant CG support was needed to remind the PwD
to wear the device and to ensure that tracking was active. As such, this type of device may
be ineffective in a study population of PwDs without CG support. The Thorpe et al. study
solely consisted of PwD using a smartphone for GPS tracking; 4/6 of the participants who
already used smartphones thought the device easy to use and were accepting of it [22].
The other participants were not accepting of the smartphone; one found the rubber strap,
provided to make the smartphone wearable, uncomfortable and the other found the device
too big and heavy. Overall, participants found the device beneficial, and all but one of
the participants wished to continue using the device after the study duration. In contrast,
the GPS tracking kit in the SenTra project had an extensive set up which was reported
as making high cognitive and behavioural demands on participants [38]. This suggests
PwD are more accepting of devices that are simple, compact and easy to use as they can
incorporate this into their daily lives without too much additional cognitive burden.
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Although the lack of qualitative data across the included studies hampers our ability
to determine the most appropriate GPS device to monitor mobility in PwD, the wider
literature provides useful insights into GPS device selection. Megges et al. reported the
acceptability of two different models of GPS watch in 17 patient–CG dyads with devices
rated on usability, telephone function, overall design features, font, buttons, and battery
life [58]. For both products, usability, determined by the International Standardization
Organisation Norm (ISONORM) 9241/10 usability scale [59], ranged from fair to good.
However, product satisfaction was significantly lower at home for both products [58].
Freiesleben et al. explored barriers to the adoption of GPS technologies for dementia
care through interdisciplinary stakeholder meetings consisting of professionals working
in business (n = 7), healthcare (n = 6), and research (n = 9) [60]. Øderud et al. explored
the day-to-day administration of GPS devices in a cohort of PwD, focusing on who was
responsible for device charging, ensuring it was switched on/off, and, where applicable,
who assisted the PwD during their daily activities [61]. The study found that health care
professionals, usually nursing home based, administered devices for approximately 50%
of PwD, family CGs administered for about 30% of PwD, while in only 4% of cases, the
PwD administered the device themselves. Sustained device use was low with 46% and
12% of participants using the device beyond one and two years, respectively [61]. The
most common reason for dropout cited was the PwD no longer being able to perform
outdoor activities.

4.6. Strengths and Limitations

This review searched the biomedical and technological literature, with studies only
included that tested GPS technology on PwD in real-world conditions. While numerous
novel approaches to applying GPS and similar technologies were detailed in the techno-
logical literature, few of these had been tested beyond the prototype phase and many
had only been tested in healthy controls and not PwD. We limited our search to studies
conducted from 2000 onwards as initial scoping of the literature suggested few studies
in this area before 2010, though we cannot discount the possibility of earlier studies. We
made a pragmatic decision to focus on common dementia sub-types and, whilst we used
broad search criteria, we recognize that we may have excluded studies of rarer dementia
subtypes, such as HIV-related dementia and others. Due to the marked heterogeneity of
the studies, we pragmatically decided against performing a formal risk-of-bias assessment
but acknowledge that many of the included studies are at high risk of bias due to modest
sample sizes and the lack of control groups.

5. Conclusions

This review summarises the current use of GPS devices in dementia research to assess
the mobility of PwD and highlights the heterogeneity of GPS-derived mobility outcomes
reported across existing studies. At present, few clinical studies have incorporated the full
breadth of GPS mobility domains and categories that can be derived from raw GPS data.
Therefore, future research would benefit from greater standardisation and harmonisation
of reporting to ensure GPS-derived mobility outcomes are incorporated more robustly into
clinical trials. In turn, this would enable the relationship between mobility and dementia
disease severity or progression to be explored further.

In the interim, we advocate that studies aim to capture the maximum number of
mobility categories described in the Fillekes framework to develop a deeper understanding
of an individual’s mobility. Studies should particularly focus on the categories detailing
LSM and those most relevant to clinical practice, disability, function and wellbeing.

Currently, there is no ideal GPS tracking device for clinical research. Such a device
would benefit from being developed alongside PwD and CGs to ensure it captures mean-
ingful data and is acceptable to the end user (s). A compact, wearable device with a simple
interface and long battery life would enable higher quality data collection and enhance
user experience.
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