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Abstract: Slip-induced falls are a growing health concern for older adults, and near-fall events are
associated with an increased risk of falling. To detect older adults at a high risk of slip-related falls,
this study aimed to develop models for near-fall event detection based on accelerometry data collected
by body-fixed sensors. Thirty-four healthy older adults who experienced 24 laboratory-induced slips
were included. The slip outcomes were first identified as loss of balance (LOB) and no LOB (NLOB),
and then the kinematic measures were compared between these two outcomes. Next, all the slip
trials were split into a training set (90%) and a test set (10%) at sample level. The training set was
used to train both machine learning models (n = 2) and deep learning models (n = 2), and the
test set was used to evaluate the performance of each model. Our results indicated that the deep
learning models showed higher accuracy for both LOB (>64%) and NLOB (>90%) classifications
than the machine learning models. Among all the models, the Inception model showed the highest
classification accuracy (87.5%) and the largest area under the receiver operating characteristic curve
(AUC), indicating that the model is an effective method for near-fall (LOB) detection. Our approach
can be helpful in identifying individuals at the risk of slip-related falls before they experience an
actual fall.

Keywords: near-fall; gait-slip; balance loss; deep learning; machine learning

1. Introduction

Falls are one of the main causes of fatal and non-fatal injuries among older adults [1].
Approximately one out of three older adults aged over 65 falls each year and this number
increases as the population ages [1]. Slip perturbation is considered one of the leading
causes of falls in independent community ambulation for older adults [2–5]. Slip-induced
falls can lead to serious consequences including hip/arm fractures, traumatic head injuries,
functional and mobility decline, and increased dependency, thereby resulting in long-
term disability and even death [6–8]. Accurate records of daily fall events could help to
identify the population at high risk of falling and ensure that fall prevention interventions
are properly provided to targeted individuals, considering that older adults who have
a history of falls are more likely to experience recurrent falls [9]. Wearable sensors can
provide an objective record of daily activities and improve the efficiency of fall detection;
therefore, the fall risk detection approach based on wearable sensors has been the focus of
substantial research and is of ultimate importance in fall prevention among the geriatric
population [10–12].

Accelerometer-based sensors are the most used sensor type in studies on fall
detection [10,11,13,14]. Among studies on fall detection, young adults are the major study
population reported on, rather than older adults who are more vulnerable and predisposed
to a fall [1]. A systematic review paper of sensor application in older adults revealed
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that most published studies of sensor application among older adults are for fall risk
screening [11]. In the former type of studies, sensors are only worn during activities of
daily living such as walking [15] or during a baseline clinical assessment such as a balance
test or Timed Up and Go test [16], while the fall outcomes in the majority of studies are still
recorded prospectively [17,18] or retrospectively as subjective self-reported fall events [19].
Although this type of study is crucial in the early identification of individuals at high risk
of falls based on predictive models, the self-reported fall technique adopted in such designs
has limitations such as recall bias (bias in questionnaires due to inaccurate recall) [20] and
relies on subjects’ motivation [21]. Even though a few studies recorded the fall event during
the long-term monitoring of the subjects, the fall events were only collected in specific
indoor environments [22,23], while falls mainly occurred outside the home induced by
external perturbations [24,25]. Therefore, the study of automatic fall detection using sensors
that are worn during fall events is essential in improving alarm systems to identify older
adults who need immediate assistance. However, automatic perturbation-induced fall
detection studies on older adults are limited [11].

Fall detection based on real-life falls is, when compared to the approach based on
laboratory simulated falls, a less heterogeneous approach aimed towards understanding
daily fall mechanisms [26]. However, recording real-world falls is both costly and time
consuming due to the rarity of the event [27], and hence the application of this method
is limited. Only 7.1% of sensor-based fall detection studies reported monitoring study
participants in a real-world setting [28]. Therefore, the use of laboratory simulated falls
has been a cost-effective and safe supplement to understand the efficacy of sensor-based
real-world falls detection and is adopted by a vast majority of studies [10,28]. It has been
demonstrated that real-life forward falls, sideway falls, and backward falls have similar
features to those from simulated falls [26]. Furthermore, a previously developed model
based on simulated falls showed a high accuracy (>80%) of fall-related abnormal gait
pattern classification for young subjects (<50 years) [29]. However, the study of wearable-
sensor-based fall detection on older adult populations using simulated falls is still in its
infancy and only a limited number of studies appeared in the authors’ literature search.

Laboratory-reproduced falls through unexpected perturbations could reduce the un-
predictability of intentional simulated falls and be combined with body-worn sensors to
examine fall detection. Perturbations are introduced by unexpected postural disturbance
to simulate the accidental nature of falls [30]. For safety reasons, falling is terminated by
protective devices such as a protective harness system, which prevents the impact on the
ground, and the changes of motion due to a fall accident can be examined in the near-fall
period before a fall occurs. A near-fall could be defined as a loss of balance (LOB) which
initiates a falling but does not result in a fall to the ground or lower surfaces [31]. A few
studies have found near-falls to be more frequent than actual falls and a clinically relevant
markers of falls [31–35]. Given the ability of near-fall detection to identify older adults at a
high risk of falling before a devastating fall event [36], sensor-based objective techniques
which could quantify near-fall events are worth further study.

To our best knowledge, only two studies have applied unexpected perturbations on
older adults to investigate sensor-based near-fall detection [37,38]. Both studies, however,
focused on analyzing trips during treadmill perturbations. This presents a major limitation,
considering that differences exist between overground walking and treadmill walking in
healthy older adults—older adults tend to have greater cadence, a smaller stride length and
stride time as well as reductions in the majority of joint angles, moments, and powers in
treadmill walking [39]. Considering that (1) the slip outcomes for the same individual might
be different with regard to overground walking and treadmill walking and (2) slip-related
falls comprise around 40% of outdoor falls among older adults [40], near-fall detection
methods induced by slips during overground walking must be investigated.

Threshold-based algorithms and intelligent algorithms are the two main methods
in fall detection using wearable devices [41,42]. Threshold-based techniques can distin-
guish different classes based on the magnitude of accelerations; such techniques have low
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computational complexity and are easy to apply. However, this method is only suitable
for specific types of falls and cannot be applied to individuals who differ in weight and
height [43]. Hence, intelligent detection algorithms, which can automatically extract fea-
tures related to falls or near-falls, have been increasingly used for fall detection in the past
decade [44]. Intelligent detection algorithms include machine learning methods and deep
learning methods. Machine learning is closely related to computational statistics, which
primarily focuses on classification and regression based on known features previously
learned from the training data. Deep learning allows for the creation of computational
models that are composed of multiple processing layers and learn representations of data
with multiple levels of abstraction, which is a more powerful and efficient way to deal
with massive amounts of data [45]. In this study, we applied and compared the usage of
different methods for near-fall detection over different cases. The goal of this study was
to investigate whether the near-fall event (LOB) following an unexpected perturbation in
overground walking could be accurately identified based on body-fixed sensor-collected
accelerometry data. In addition, the performance of traditional machine learning methods
and deep learning approaches were compared for the slip outcomes classification.

2. Methods
2.1. Participants

Thirty-four community-dwelling older adults (≥60 years) participated in this study.
All participants were initially screened to pass a cognitive test (>25 on the Folstein Mini
Mental Status Exam) [46], a calcaneal ultrasound screening (T-score > −2.0) [47], a mobility
test (Timed Up and Go < 13.5 s) [48], and a monofilament foot sensation test (able to
detect the Weinstein 5.07 monofilament at all nine locations on both feet) [49]. Exclusion
criteria included recently (≤6 months) self-reported diagnosed neurological, musculoskele-
tal, or other systemic disorders. All participants provided written informed consent,
and this study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board of the University of Illinois at Chicago
(IRB#: 2016-0887).

2.2. Experimental Setup

The slip perturbation was induced by releasing a low-friction, movable platform
embedded near the middle of a 7-m walkway. The platform was firmly locked in the first
ten walking trials. During the slip trial, the platform could slide freely in the anteroposterior
(AP) direction for up to 60 cm forward or 10 cm backward. Once a subject’s right (slipping)
foot was detected in contact with the right platform by the force plates (AMTI, Newton, MA,
USA) installed beneath the platforms [50], a computer-controlled triggering mechanism
would release the platform. Participants were instructed to walk at their preferred speed
and in their preferred manner, and they were told that a perturbation may or may not
happen during any of the trials. All participants experienced 24 unexpected slips and
around 20 unperturbed trials in between these to reduce the participants’ anticipation of
the slip perturbation. The duration of each trial was 10 s, which was from gait initiation
to gait termination on the 7-m walkway. Only the slip trials were analyzed for this study.
In total, 816 slip trials were collected for the 34 participants, while 18 slip trials (2%) were
excluded due to data collection issues (e.g., dropped marker or moved sensor). Therefore,
798 slips were analyzed in this study.

The participants wore their own athletic shoes and a full-body safety harness connected
with shock-absorbing ropes to a loadcell (Transcell Technology Inc., Buffalo Grove, IL, USA)
mounted on an overhead trolley on a track over the walkway, enabling participants to
walk freely while providing protection against body impact with the floor surface. A
3-axis accelerometer, Axivity AX3 (Axivity Ltd., Newcastle, UK), was attached on the
lower back of the participants using an elastic belt; the accelerometer registered 3D sacrum
acceleration at 100 Hz and ±8 g. To identity the slip outcomes and compare the reactive
performance between different slip outcomes, kinematics of a full body marker set of
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30 retro-reflective markers were also recorded by an eight-camera motion capture system
(Motion Analysis Corporation, Santa Rosa, CA, USA). Kinematic data were sampled at
120 Hz and synchronized with the loadcell data and force plate data, which were collected at
600 Hz. It should be noted that the camera system was only used for the model development
but not for its application.

2.3. Slip Outcomes and Reactive Kinematics

Slip outcomes were classified as LOB or NLOB. LOB was defined as the recovery foot
landing posterior to the sliding foot based on the location of heel markers [51]; otherwise,
the slip outcome would be NLOB. It is known that the slip severity or slip consequence
is related to the slip outcomes. To have a better understanding of the difference in the
consequences between the two slip outcomes, we compared the reactive performances of
participants with respect to the LOB and NLOB trials, including the recovery stride length,
slipping distance at recovery foot touchdown (TD), the slipping velocity at TD, and trunk
extension angles. These variables were calculated from the motion data in the slip trial. The
recovery foot is the one taking a compensatory step following slip perturbation, and TD
is the instant when the recovery foot contacts the ground, which was detected from force
plate data. Recovery stride length was calculated as the travel distance of recovery heel
from slip onset to TD in AP directions. The slip distance and velocity were approximated by
the slider marker. The trunk angles in sagittal plane were calculated as the angle between
vertical lines and the straight line connecting the center of hip markers and the center of
shoulder markers.

2.4. Classification Models

Although the traditional threshold-based classification method showed a high ac-
curacy (>80%) for fall detection [27,52,53], the previously reported threshold of 3.52 g
(corresponding to 2.52 g after gravity removal in our study) for vertical acceleration failed
to distinguish LOB and NLOB trials in our study. Take the trials in Figure 1, for example;
the LOB trial showed an immediate increased acceleration in all the three axes within 1 s
following the perturbation due to the trunk reaction. For the NLOB trial, the acceleration
was also increased in all the three axes at around 1 s after the slip onset, which might
be related to the stepping of the trailing limb. For this case, only the acceleration in a
mediolateral direction was larger in the LOB trials compared to the NLOB trials. Vertical
acceleration was similar in both, and the AP acceleration was even smaller in the LOB trials.
Furthermore, both trials exceeded the fall threshold due to the unexpected slip perturbation,
indicating that the threshold-based method is not suitable for slip outcomes classification.

Therefore, machine learning and deep learning models were used to identify the slip
outcomes based on the 10 s time series acceleration data for each trial (from gait initiation to
gait termination). Specifically, two machine learning methods were used: time series forest
classifier (TSF) [54] and time series classification with multiple symbolic representations
and symbolic sequence classifier (Mr-SEQL) [55]. TSF is a tree-ensemble method proposed
for time series classification. It uses an ensemble of decision trees (i.e., random forest)
that use both entropy and distance to capture temporal characteristics. Mr-SEQL uses a
symbolic sequence learning algorithm to efficiently traverse the feature space and select
the most discriminative subsequences of the time series for a linear model.

On top of that, we also used two state-of-the-art deep learning approaches, time
Le-Net (TLeNet) [56] and InceptionTime (Inception) [57]. TLeNet is a deep learning ap-
proach that uses a data-augmentation technique and convolutional neural network con-
sisting of two convolutional layers. The state-of-the-art Inception model is an ensemble of
five different deep learning models for time series classification; each model has the same
architecture but with different randomly initialized weight values.

K-fold (k = 10) cross-validation was used to calculate the performance of all the models.
The slip trials were randomly split into a training set (90%) and a test set (10%) at sample
level; therefore, the rate of LOB and NLOB was similar in both datasets. The training set
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was used to train the model parameters and evaluate the resulting models by minimizing
the loss, and the test set was used to evaluate the performance of each model. Considering
the fact that participants could adapt to the slip perturbation [58], there were more NLOB
data points than LOB. Because of this proportion problem, we employed ADASYN, an
oversampling approach used for learning from imbalanced data sets [59]. The model
training and evaluation were performed using the Python 3 libraries sktime and sktime-dl.
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2.5. Statistical Analysis

To evaluate the performance of each model for slip outcome classification, first of all,
the receiver operating characteristic curve (ROC) was calculated. Following conventional
ROC analysis, the thresholds of the ROC plot were determined by sorting the test instances
decreasing by target scores, and processing one instance at a time to update the TP and FP.
Next, the sensitivity for LOB detection [TP/(TP + FN)], the specificity for NLOB detection
[TN/(TN + FP)], and the overall classification accuracy was calculated for each model
using three different approaches: (1) default cutoff at which the overall accuracy is maxi-
mum; (2) optimal cutoff at which the sum of sensitivity and specificity is maximum; and
(3) default cutoff along with the ADASYN oversampling approach. The area under the
curve (AUC) is a robust metric of a model’s performance; hence, the AUC of each model
was also calculated for each test set (n = 10), and one-way ANOVA was conducted to
compare the difference in AUC among these four models. The post-hoc paired t-test was
then used to compare each pair of them. All statistical analysis was performed using
MATLAB2021a (MathWorks Inc., Natick, MA, USA).
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3. Results

Among 798 slip trials, 229 of them were identified as LOB (40 are falls), and the rest
(569) were classified as NLOB. The participants with LOB showed a significant differ-
ence in terms of reactive kinematics compared to those without LOB (p < 0.001 for all;
Table 1). The LOB trials had longer slip distances (31 vs. 8 cm) and faster slip velocity
(1.12 vs. −0.34 m/s) than the NLOB trials at recovery touchdown, which resulted in more
trunk extension (4.9◦ vs. −1.46◦) and a shorter recovery stride length (0.41 vs. 0.70 × body
height) for the participants losing their balance.

Table 1. Comparison of kinematic measures (mean ± standard deviation) between LOB trials and
NLOB trials.

Method LOB NLOB p Value

Stride length/height 0.41 ± 0.18 0.70 ± 0.15 <0.001

Slip distance (m) 0.31 ± 0.16 0.08 ± 0.13 <0.001

Slip velocity(m/s) 1.12 ± 0.74 −0.34 ± 0.62 <0.001

Trunk angle(degree) 4.9 ± 8.22 −1.46 ± 7.72 <0.001

The time series acceleration data could be used to identify the slip outcomes based
on all the models. Specifically, the machine learning models (TSF and Mrseql) showed a
lower classification accuracy (<81%, Table 2), and the two deep learning models (TLeNet
and Inception) showed a higher classification accuracy (>82%). Among all the models, the
Mrseql model showed the lowest overall accuracy, with 69.5% at the default cutoff, and
the Inception model showed the highest overall accuracy, with 87.5% at the default cutoff.
Specifically, this model could accurately identify 94.8% of NLOB, and 69.4% of LOB.

Table 2. Specificity (for NLOB), sensitivity (for LOB), and overall classification accuracy of the
two-class models at default cutoff and optimal cutoff, as well as the results using the adaptive
synthetic sampling approach (ADASYN). Spe indicates specificity, Sen indicates sensitivity.

Method
Accuracy at Default Cutoff Accuracy at Optimal Cutoff Accuracy with

ADASYN

Spe Sen Overall Spe Sen Overall Spe Sen Overall

TSF 94.4% 45.4% 80.3% 81.8% 74.3% 80.0% 86.1% 56.8% 77.6%

Mr-SEQL 82.7% 37.1% 69.5% 58.6% 67.7% 60.8% 73.7% 40.7% 64.1%

TLeNet 90.2% 64.2% 82.7% 83.8% 79.9% 82.9% 90.4% 67.7% 83.8%

Inception 94.8% 69.4% 87.5% 84.8% 86.5% 85.2% 92.0% 73.8% 86.7%

The models at the optimal cutoff (Figure 2) were highly consistent with those at the
default cutoff. Among them, the Inception model still showed the highest overall accuracy
(85.2%) and the identification accuracy for LOB increased to 86.5%, while the accuracy
for NLOB reduced to 84.8% (Table 2). For the models using the ADASYN approach, the
sensitivity for all the models were improved by ~5%, while their specificity was reduced,
except in the case of the TLeNet model. Therefore, the overall accuracies were similar
between the models with and without the ADASYN approach.

The one-way ANOVA results showed that method had a significant effect on the AUC
(F = 43, p < 0.001, Figure 3). Post-hoc tests indicated that the Inception model had the
largest AUC compared to the other three models (p ≤ 0.01 for all), while the Mrseql model
showed the smallest AUC among all the models (p < 0.001 for all). The TSF and TLeNet
models showed a comparable AUC (p > 0.05).
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TLeNet and TSF models, while the Mr-SEQL model showed the worst performance.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 2. The receiver operating characteristic curve (ROC) for the machine learning (TSF and Mr-
SEQL) and deep learning (TLeNet and Inception) models. The true positive rate is the sensitivity, 
and the false positive rate is 1- specificity. The optimal cutoff is shown as a circle for each model. 
Among all these models, the Inception model showed the highest specificity and sensitivity, fol-
lowed by the TLeNet and TSF models, while the Mr-SEQL model showed the worst performance. 

The one-way ANOVA results showed that method had a significant effect on the 
AUC (F = 43, p < 0.001, Figure 3). Post-hoc tests indicated that the Inception model had the 
largest AUC compared to the other three models (p ≤ 0.01 for all), while the Mrseql model 
showed the smallest AUC among all the models (p < 0.001 for all). The TSF and TLeNet 
models showed a comparable AUC (p > 0.05).  

 
Figure 3. Post-hoc comparison of the area under curve (AUC) across the TSF, Mr-SEQL, TLeNet, 
and Inception models. The Inception model had a significantly larger AUC value than the other 
three models, and the Mr-SEQL model had a significantly smaller AUC value than other models. ** 
indicates <0.01, *** indicates <0.001. 

4. Discussion 

Figure 3. Post-hoc comparison of the area under curve (AUC) across the TSF, Mr-SEQL, TLeNet,
and Inception models. The Inception model had a significantly larger AUC value than the other
three models, and the Mr-SEQL model had a significantly smaller AUC value than other models.
** indicates <0.01, *** indicates <0.001.

4. Discussion

Our results indicated that machine learning models could accurately (>82% for TSF
and Mr-SEQL) identify the NLOB trials, while they could only identify the LOB trials with
a low accuracy (<50% at default cutoff). The deep learning models (TLeNet and Inception)
showed a higher accuracy for both LOB (>64%) and NLOB (>90%) classifications, indicating
that deep learning is a more powerful method for near-fall (LOB) detection.

Compared to participants in the NLOB trials, participants with balance loss always ex-
perienced a longer slip displacement (31 ± 16 cm) and faster slip velocity (1.12 ± 0.74 m/s).
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Previous studies have showed that once the slip displacement exceeds 30 cm, the prob-
ability of a fall is around 50% [60]. A faster slip velocity further increases the fall risk to
around 70% once the slip velocity relative to COM exceeds 1 m/s [61]. Therefore, even if
individuals with LOB prevent a fall by taking a reactive (backward) step, they are still at
a higher fall risk compared to those without LOB. Furthermore, it has been reported that
the slip outcome (fall or not) following LOB is determined by the performance of reactive
stepping [62], as reactive stepping can restore the stability and enhance limb support to
avoid a fall [63]. However, reactive responses can be influenced by many factors, such as
muscle fatigue, improper landing location, or longer reaction time [62,64,65]. It is possible
that individuals who prevent a fall following LOB in one slip might experience a fall
when they encounter another unexpected slip. Hence, individuals with LOB should be
detected and receive fall intervention or balance training to lower their risk of slip-induced
falls [66,67]. Additionally, participants with LOB showed a larger trunk extension following
the slip perturbation, which might induce trunk injury or back injury [68]. Quick stepping
with a shorter stride length (or larger distance between the two feet) would be required for
balance recovery, which might induce muscle strain. Therefore, near-fall events could also
cause injuries and should be detected.

Several studies have tried to detect fall events arising during activities of daily
living [69–73], which are voluntary movements; motor responses following slip perturba-
tion, on the other hand, are reactive movements. Previous studies have compared reactive
stepping and voluntary stepping and revealed that there were significant differences in the
locomotor performance between these two behaviors [74], for example, in terms of step
length, execution time, joint angles, and different neuromuscular responses. Due to these
differences, fall events can be accurately detected based on accelerometry data using the
traditional threshold-based method; once the magnitude of acceleration in an event exceeds
the determined threshold, the event would be identified as a fall. Otherwise, it would be a
non-fall. Contrary to previous studies, this study aimed to distinguish between participants
with and without LOB that experienced a slip perturbation under similar conditions, to
elicit recovery reactive responses. In this case, the acceleration showed similar magni-
tudes in the LOB and NLOB trials (Figure 1); therefore, the traditional threshold-based
method would not be suitable. Even the machine learning methods selected in this study
(TSF and Mr-SEQL) only showed a low classification accuracy for LOB detection due to
their similarity.

Compared to machine learning models, deep learning models showed a higher clas-
sification accuracy, especially the Inception model, which had the highest classification
accuracy and the largest AUC. Such results indicate that the Inception model is a more
powerful wayto identify reaction characteristics based on accelerometry data. Previous
approaches, including TLeNet, were inspired by image recognition and made use of pro-
gressive pooling layers to reduce the input data’s dimensionality. This model negatively
impacted accuracy since it ignored valuable information in favor of a simpler model. Con-
versely, fully convolutional neural networks were shown to achieve better performance
without pooling layers. Considering this, and the fact that time series are dimensionally
simpler than images, it became possible to design more complex models, such as Inception.
This model, by applying multiple filters simultaneously to the input time series, allows
the network to extract relevant features considering time series of different lengths, which
is an essential characteristic used to capture the subtle acceleration changes in our data
(Figure 1).

Although the Inception model showed a high accuracy (94.8%) for NLOB detection
at the default cutoff, it could only detect the LOB with an accuracy of 69.4%. One of the
reasons for this problem is the imbalance between the LOB and NLOB groups. Our results
indicated that the ADASYN approach could lower the effect of imbalanced sample sizes
on the classification accuracy. Additionally, the harness system used in this study might
be another factor affecting the classification accuracy, as the impulse-absorbed harness
system limited the changes in the vertical acceleration following the slip perturbation.
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Furthermore, there was no typical impact stage for the LOB trials due to the protection
of the harness system. While the sudden deceleration during the impact stage is a key
characteristic for fall detection, it is reasonable to postulate that the classification accuracy
of LOB (including both falls and non-falls) would be higher in the home environment
without using the harness system.

To the best of our knowledge, this study is the first to identity slip-induced near-
falls based on acceleration data. Previous studies only developed models for slip event
detection without differentiating LOB and NLOB events [75,76]. Furthermore, the reliability
of these models needs to be further validated, as only small sample sizes (<9) were used for
validation. Compared to other models for fall risk classification based on accelerometer data
and/or gyro data [77–79], our model showed a comparable accuracy (>80%). It should be
noted that these previously developed models only distinguished fall events from activities
of daily living (ADLs), and most of the ADLs could only generate an acceleration with a
small magnitude; thus, the inclusion of a large number of ADLs would greatly increase
the identification accuracy. As aforementioned, our study only included slip trials with
a similar performance, and such a method of selecting a dataset made the development
of our model more challenging but also made the model more reliable. Additionally,
there are some state-of-the-art fall detection algorithms with a higher (>90%) prediction
accuracy [80,81], fusing accelerometer data with gyro data. This indicates that fusion data
might further improve the fall/near-fall risk classification accuracy. Hence, our future
study will try to enhance our model based on fusion data.

Limitations exist in this study. First, only slip-induced LOB trials were analyzed;
trip perturbation is another major cause of falls in older adults [82,83]. In contrast to
slip perturbations, trip perturbations can cause a forward LOB. Due to the difference in
the motor behaviors, different models might be developed for trip-related LOB detection.
Furthermore, we only tested the developed models using perturbed walking trials, and
the question of whether the models can accurately classify conventional ADLs without
perturbation (i.e., normal walking) remains unclear. However, a previous study developed
a model to detect slip events during normal walking based on an inertial sensor [75]. The
results indicated that slip walking showed different angular and heel accelerations com-
pared to normal walking, and the slip event could be accurately classified from the walking
trials. Hence, this study only focused on the most challenging problem by including only
perturbed trials. Our future study will try to collect a diversity of conventional ADLs to
further validate the reliability of our model.

5. Conclusions

In conclusion, this study developed a near-fall detection model based on a wearable
accelerometer for older adults, and our results indicated that a deep learning method could
accurately classify LOB and NLOB events following a slip perturbation. This near-fall
detection approach could be used to identify individuals at risk of slip-related falls before
they experience an actual fall, which might contribute to reducing slip-related injuries.
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