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Abstract: In this paper, we propose a multi-scene adaptive crowd counting method based on meta-
knowledge and multi-task learning. In practice, surveillance cameras are stationarily deployed in
various scenes. Considering the extensibility of a surveillance system, the ideal crowd counting
method should have a strong generalization capability to be deployed in unknown scenes. On
the other hand, given the diversity of scenes, it should also effectively suit each scene for better
performance. These two objectives are contradictory, so we propose a coarse-to-fine pipeline including
meta-knowledge network and multi-task learning. Specifically, at the coarse-grained stage, we
propose a generic two-stream network for all existing scenes to encode meta-knowledge especially
inter-frame temporal knowledge. At the fine-grained stage, the regression of the crowd density map
to the overall number of people in each scene is considered a homogeneous subtask in a multi-task
framework. A robust multi-task learning algorithm is applied to effectively learn scene-specific
regression parameters for existing and new scenes, which further improve the accuracy of each
specific scenes. Taking advantage of multi-task learning, the proposed method can be deployed
to multiple new scenes without duplicated model training. Compared with two representative
methods, namely AMSNet and MAML-counting, the proposed method reduces the MAE by 10.29%
and 13.48%, respectively.

Keywords: multi-scene adaptive; crowd counting; meta-knowledge; multi-task learning

1. Introduction

Recent years have witnessed the occurrence of extensively crowded scenes in public
places such as walkways, parks, sport events, concerts and holiday parades, which poses
major threats to public security [1]. As crowd density is one of the major descriptions of the
crowd’s security status, surveillance-based crowd counting has attracted much attention
in machine learning and computer vision. The current methods mainly consider crowd
counting as a standard supervised learning problem [2]. The common way is to place the
collected training images with pedestrian location annotations in a data pool. Afterwards,
a convolutional neural network (CNN) is used to train the shadowing from the image to
the density map. In the past few years, multi-scale information fusion [3–5], Attention
mechanism [6,7] and Multi-task Learning [8,9] have been proposed for crowd counts, which
has achieved remarkable progress.

The supervised single-image crowd counting method [3–9] achieves a promising
performance on the standard dataset. However, the following limitations still exist in
real-world surveillance applications.

• Surveillance cameras often need to be installed in new positions. Due to the differences
in lighting, background, camera positions and camera angles between scenes, the
crowd counting method with supervised learning is difficult to adjust to new scenes
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effectively. High-performance generic crowd density estimation models have been
demonstrated with significantly reduced performance when tested on other datasets.
It severely limits the application of supervised crowd counting methods in new scenes.

• The domain features of practical surveillance applications are ignored. Unlike image
classification and detection in the field of computer vision, a crowd counting model is
not required to accurately process arbitrary single images in real-world surveillance
applications. In contrast, because the positions and angles of each camera are station-
ary, local models that are more adapted to each camera deployment scene tend to be
more accurate than generic models trained on all training data pools.

The above deployment problem is an essential issue to be addressed in real-world
surveillance applications, where the goal is to obtain a density estimation model applicable
to new scenes using a small amount of labeled data. It has been defined as a scene adaptive
counting problem in studies [10,11]. In existing studies, the finetune mechanism [10],
adversarial training [12–14] and meta-learning [11] were adopted to effectively reduce the
training data and computational cost for inter-scene transfer of models. However, the
above model transfer mechanism has the following limitations:

• The meta-knowledge analysis of the crowd density estimation problem is not com-
prehensive. Most studies focus on crowd features, multi-scale target recognition,
foreground segmentation and occlusion analysis for a single image, while the com-
mon knowledge of inter-frame, shared by the crowd image in each scene, has been
neglected. Due to the stationary camera position, the surveillance video frames in
each scene often exhibit a change in the foreground crowd, without any change in
the background. This time-domain change provides important prior information: the
region that remains stable in the time domain between two frames is more likely to
be background; the region where change occurs between frames of the same scene is
likely to be the foreground crowd. Most of the existing studies adopt a single image as
network input, thus making it difficult to learn the time-domain knowledge, which
degrades the generalization ability of the model.

• In practical surveillance applications, it is often necessary to install multiple new
surveillance cameras simultaneously, which involves the deployment of multiple new
scenes. However, most of the above studies with transfer can merely deploy to one
new scene each time by adapting the model from the source domain to the target
domain. When deploying in multiple new scenes, such methods need to train the
transfer process for multiple times, bringing a large workload for the staff.

Considering the above limitations, this paper proposes a coarse-to-fine pipeline for
multi-scene adaption problem of real-world surveillance applications. In the coarse-grained
process, the meta-knowledge of all scenes is analyzed and then adopted to optimize a
generic density regression network structure. On this basis, considering the fine-grained
differences between scenes, the overall counting regression from estimated density map for
each known and unknown scene is considered a homogeneous subtask. Through a robust
multi-task learning method, the regression parameters of each scene are explicitly learned,
which are suitable for various scenes.

The contributions of the proposed coarse-to-fine method in this paper are listed below:

• The knowledge in crowd density estimation is comprehensively discussed. The scene-
shared knowledge, which is generic among all scenes, is defined as meta-knowledge,
including crowd features, background features, multi-scale knowledge in the spatial
domain and inter-frame knowledge in the time domain. Such meta-knowledge plays
the most crucial role in a model’s generalization capacity. Existing methods often
subconsciously or implicitly employ several meta-knowledge, whereas this paper
firstly analyzes such knowledge in a formal way.

• To the best of our knowledge, the meta-knowledge of the inter-frame temporal change
is firstly considered in the field of crowd counting. Different from existing methods
that focus on single-image crowd counting, a two-stream network is proposed in this
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paper. Leveraging difference mechanism of the high-level features, the two-stream
network can learn the difference between video frames in the same scene, which
improves segmentation between crowd foreground and static background. Since the
perception capability of this network comes from the encoding of scene-independent
meta-knowledge, it has favorable generalization to various new scenes.

• Unlike finetune [10,11] or adversarial training mechanisms [12–14], which require
training each model’s parameter to adapt to a specific new scene, we apply a robust
multi-task learning method to regress the person count of all scenes from an esti-
mated density map simultaneously. Through multi-task learning, the commonality
and difference between each subtask can be obtained. As a result, the regression
parameters suitable for multiple unknown scenes can be obtained with a small amount
of data, effectively saving the training cost required for deployment in a real-world
surveillance application.

2. Related Work
2.1. Crowd Counting

Aiming to estimate the number of people, crowd counting methods can be divided into
three main categories: single target location, direct regression and density map regression.
Single target location-based methods aim to locate and then count each person by sliding
window pedestrian detection, segmentation or tracking. Due to crowded occlusion, their
performance degrades with the increase of crowd density. Direct regression methods,
including foreground segmentation, feature extraction and counting regression, ignore the
crowd’s spatial distribution information and thus can barely have satisfying performance.

To reduce the above problems, Lempitsky et al. [15] introduce density map regression
methods that learn a mapping between local features and corresponding density maps.
In recent years, benefiting from the powerful non-linear mapping capacity and powerful
feature representation of CNNs [16], density map regression approaches based on CNN
obtain significant improvement and show promising performance. Cao et al. [17] adopt
scale aggregation modules to extract multi-scale features and propose a novel training loss
combining Euclidean loss and local pattern consistency loss. To improve generalization
capability, Shi et al. propose decorrelated ConvNet [18], where a pool of decorrelated
regressors are trained. Considering the fact that detection mechanism is more suitable
to low density scenes, while regression is more applicable for congested areas, Liu et al.
propose DecideNet [19], which can adaptively decide whether to adopt regression pipeline
or detection pipeline for different locations based on its density conditions.

2.2. Scene Adaptive Crowd Counting

Despite the remarkable progress of the aforementioned supervised counting methods
achieved in labeled datasets, severe performance degradation is usually observed when
deploying the trained model in new scenes of the surveillance application. This is mainly
caused by the domain difference between the training and deployment, which can be listed
as follows.

• Different background. Background regions (have no person instances) including
buildings, trees and other confusing objects, may vary dramatically in different crowd
scenes. For example, the background of frames collected in a park may contain more
green background elements such as grasses and trees, while crowded frames of a street
contain more gray areas such as buildings and streets. As background usually has a
similar appearance or colors with the crowd, it is necessary to learn the background
knowledge to improve the accuracy of the model in a specific scene.

• Scale variation. It is the primary problem in the field of density estimation, as the
scales of objects (such as the sizes of people’s heads) vary according to their distance
from the camera [20]. Owing to the different locations and angles of cameras, scale
distributions often vary substantially among scenes.
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• Crowd distribution. As the surveillance camera is stationary, each scene has some
specific areas such as walls, trees and sky area that are rarely positioned at the same
place as a person and the positions of these areas are usually different among scenes.
Diverse crowd densities and distributions in different scenes reduce the accuracy of
crowd density estimation.

With the aforementioned challenges faced by real-world surveillance applications
among various scenes, domain adaptive crowd counting has aroused the interest of more
and more researchers. Existing works of this field can be grouped into three categories.

2.2.1. Arbitrary Scene Methods

The arbitrary scene (or all scenes) methods simply pool training images of all scenes
and train an overall model. To promote the scene adaptive capacity of the CNN network,
Chen et al. [21] propose the novel Variational Attention technique for explicitly modeling
the attention distributions for different domains. Considering scale variations and com-
plex scenes, Wei et al. [22] apply Transformer backbone to learn scale-adaptive feature
representations. Moreover, Yan et al. [23] adopt channel attention to guide the extraction
of domain-specific feature representation and thus tackle the variations in scene contexts,
crowd densities and head scales.

The core of the above methods is training a model that works well for diverse back-
grounds, crowd distributions and scales. However, in practical applications with multiple
scenes, learning a generic model that works well in all scenes is suboptimal compared to
learning and deploying a model that is specialized for a specific scene.

2.2.2. Domain Adaptation-Based Methods

Domain adaptation-based crowd counting aims to learn domain-invariant feature
representations. Methods along this line can be generally categorized into two types:
Criterion-based methods and adversarial training-based methods.

Criterion-based methods aim to reduce the distribution variance between two scenes.
To address the scale difference across scenes and datasets, Ma et al. [24] propose a scale
alignment module by minimizing the distances between scale distributions of source and
domain scene. Wang et al. [25] propose to learn the domain shift at the parameter level
and obtain the target model by a linear transformation. Gao et al. [26] propose multilevel
feature aware adaptation (MFA) and structured density map alignment (SDA) to extract
domain invariant features.

Adversarial training is also adopted to transfer the crowd counting model to a new
scene. Wang et al. [14] leverage Cycle-Gan to translate synthetic data to surveillance
images for crowd counting in real scenes. Following, the studies of [14,27] propose a
domain adaptive method based on self-supervision without any manual label by translating
synthetic data and generating pseudo labels on real scenes to improve the prediction quality.
CODA [13] performs adversarial training with pyramid patches of multi-scales to deal with
density distribution variations of source and target domain. Moreover, studies [28] also
adopt the adversarial network to bridge the gap across domains considering local feature
and crowd segmentation respectively.

The core of this method is to align the distribution of a source domain with a target
domain, which is suitable for transferring to a specific new scene. However, in the multi-
scene crowd density estimation problem, the model is often deployed in n unknown new
scenes. If this kind of method is adopted, the deployers need to perform the model transfer
for n times, which requires high labor costs.

2.2.3. Meta Learning-Based Methods

In the study [10], the problem of deploying multi-scene counting methods in real-
world surveillance applications for a new scene is presented, and finetune is suggested
to reduce the cost of data annotation and model training. On this basis, considering fast
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adaptation to new target scenes, study [11] leverages Model-Agnostic Meta-Learning to
learn the model parameters with strong generalization ability.

These methods obtain a model with strong generalization capability by learning the
common knowledge in each scene. Taking advantage of the generalization, it takes a
considerably small amount of labeled data and training steps to train a model for the new
scene. Nevertheless, these methods still require model training for specific scenes. For
a mass deployment of surveillance cameras (which is a common situation in practical
applications), it is often necessary to train each scene individually to adapt the network
model. Similar with domain adaptation-based methods, such adaption process requires
the deployment staff to manually configure and train the neural network, with domain
knowledge requirement and high labor cost.

2.3. Multi-Task Learning

First introduced in study [29], multi-task learning tries to promote the performance
of multiple related tasks by exploiting the intrinsic relationships among them. It has been
proven that by taking the similarity and difference of tasks into consideration, simultane-
ously learning the related tasks can achieve higher accuracy in solving similar tasks with
different data distributions than merely pooling these samples to learn an overall model.

Based on the foundation that tasks are related via a certain structure, a lot of multi-task
learning methods try to learn tasks with different sample distributions by trace-norm
regularization [30], joint feature learning [31], shared hidden units in neural networks [29]
and exploring tasks’ cluster tree and network structures [32,33].

Considering the outlier tasks in many real-world applications, study [34] extended the
multi-task learning assumption that all tasks are related to each other and try to identify
irrelevant (outlier) tasks, which is referred to as robust multi-task learning [35,36].

3. Methodology

In this section, we first describe the problem setup for multi-scene adaptive crowd
counting and the pipeline of our proposed approach (Section 3.1). We then thoroughly
illustrate the meta-knowledge in the field of crowd counting (Section 3.2) and the coarse
two-stream density regression network proposed for meta-knowledge learning (Section 3.3).
Finally, the fine-grained process based on multi-task learning is elaborated in Section 3.4.

3.1. Problem Setup and Proposed Pipeline
3.1.1. Multi-Scene Adaption Crowd Counting

In a conventional supervised crowd density regression setting, there is a dataset
Dall =

{
Dtrain, Dtest}, where Dtrain and Dtest are training data and test dataset of all scenes

respectively. The objective of crowd counting supervised methods is to learn a mapping
F (θ) = X → Y , which can map the surveillance image X in Dtrain to its corresponding

density map Y. Then, the overall counting of the image can be obtained by C =
W
∑

w=1

H
∑

h=1
Yw,h,

where W and H is the width and height of density map Y.
Following study [11], we formulate the surveillance image crowd counting problem

as a multi-task learning problem, where counting of each camera’s scene is considered as a
specific task. We use Di =

{
Dtrain

i , Dtest
i
}

i = (1, 2, · · · , N) to denote the training and test
dataset of the ith task Ti, where N denotes the total amount of known scenes with labeled
counting images.

Different to the problem setting in study [11], we consider the problem of simul-
taneous deployment of multiple unknown scenes, which is more consistent with the
real-world surveillance application. The counting task of unknown scenes is denoted as Tj,
j = (1, 2, · · · , M). For each unknown scene, only K images are collected and labeled before
the deployment of counting methods, which is denoted as Dj =

{
Dtrain

j , Dtest
j

}
. Thus,

all the data of the N + M scenes can be denoted as Dall = {D1, · · · , DN , · · · , DN+M} in a
multi- scene crowd counting problem.
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3.1.2. Overall Pipeline

Our goal of the proposed method is to learn an accurate counting model for multiple
unseen scenes leveraging a few labeled and the existing labeled data of known scenes.
Different from study [11], which train the model parameters θmeta with meta learning and
adapt it to each unknown scene to get θ = {θ1, θ2, · · · , θM}, this paper decomposes the
objective into the following two sub objectives. As shown in Figure 1, the coarse objective
is to learn an overall model containing scene-independent common knowledge with strong
generalization to unseen scenes, while the fine-grained is to improve the accuracy by
concentrating on the difference of multiple scenes including the unknown ones.

Figure 1. The pipeline of proposed coarse-to-fine multi-scene adaptive crowd counting. At the
coarse-grained stage, the frame pairs of multiple known scenes are used to train a generic model with
meta-knowledge. At the fine-grained stage, overall counting regression from estimated density maps
of each scene is regarded as a specific task. Multi-task learning is used to learn the regression weight
of each specific scene.

In our work, meta-knowledge learning is leveraged to promote the model θall ’s general-
izability and performance by capturing useful scene-independent common knowledge. The
overall model can be denoted as F (θall) = [X1, X2]→ [Y1, Y2] , where ([X1, X2], [Y1, Y2]) is
sampled from labeled images of all scenes Dtrain and [X1, X2]is image frame pair of the
same scene.

Furthermore, we adopt the multi-task learning mechanism to explicitly concentrate on
the difference of each scene and thus obtain the counting regression weight wi of multiple
scenes simultaneously, including the unknown scenes. The regression process of each scene
can be denoted as fi

(
Ŷi
)
= wT

i Ŷi → Ci .

3.2. Meta-Knowledge Analysis

As the data distribution of new scenes is uncertain, it is crucial to learn common meta-
knowledge from the labeled data of existing scenes to achieve generalization to new ones.
For crowd density estimation, the meta-knowledge can be summarized into the following
categories: foreground/background knowledge, perspective scale knowledge and inter-
frame knowledge. Among them, foreground/background knowledge and perspective
scale knowledge mainly belong to the spatial domain of a single image, while inter-frame
knowledge belongs to the temporal domain and is obtained by comparing multiple images
of the same camera scene.



Sensors 2022, 22, 3320 7 of 18

3.2.1. Foreground/Background Knowledge

In surveillance videos, the crowd foreground shares similar characteristics in different
scenes. Such foreground knowledge enables the most basic crowd density regression
networks to have a fundamental counting capacity. Thus, basic generalization capability is
possessed by common crowd density estimation methods.

As for the background, where there are few crowd distributions, often showing trees,
buildings, pools, roads, etc., such common objects of backgrounds show similarities on
different scenes. The reason why some methods incorporating background segmentation
can improve counting performance is that they explicitly improve the learning ability on
background knowledge.

3.2.2. Perspective Scale Knowledge

This knowledge, which belongs to the category of single pictures, includes both
common knowledge of all scenes and specific knowledge of each scene. The common
knowledge of the perspective scale that exists in all scenes is manifested by the fact that the
near pedestrian target is larger, while the target scale becomes smaller as the distance from
the camera becomes farther. The scene-specific knowledge, caused by different surveillance
camera locations, is the differences in the crowd scale variation range of surveillance video
frames in different scenes. The scale variation of targets is a research hotspot in the field of
crowd counting. Many network structures have been proposed in existing studies to solve
this problem, significantly facilitating the learning of this knowledge and thus promoting
counting accuracy.

3.2.3. Inter-Frame Temporal Knowledge

This knowledge is a potential pattern implied between sequential video frames. By
comparing and analyzing two or more images, changes tend to be the foreground crowds,
while the unchanged areas have a high probability of being the background. In the existing
studies of crowd counting, researchers tend to focus on the knowledge of the crowd,
background and scale variation in a single image, while ignoring this knowledge between
frames of the same camera in multi-scene surveillance applications. In addition to the
knowledge of single image, the inter-image knowledge helps to assist model reasoning in
ambiguous situations. For example, dense foliage is similar to the distribution of a distant
crowd. Such similarity may confuse the model if it is solely based on the feature of a single
image. However, as crowds are always moving, it is easier to distinguish the stationary
background from the foreground crowd by comparing inter-frame images. As a result,
such knowledge reduces interference of background and thus promotes the sensing of the
foreground crowd.

3.3. Two-Stream Network Structure

Most of the existing crowd density estimation methods based on CNN adopt a single-
stream network structure which mainly consists of the encoder-decoder, as shown in
Figure 2. The encoder accepts picture X as the network input and gets feature F. The
decoder maps the feature F to the crowd density map Y. According to the analysis in
Section 3.2, such a structure can learn the spatial domain knowledge of a single image,
including foreground crowd knowledge, background knowledge and perspective scale
knowledge, without the inter-frame temporal knowledge of surveillance videos.
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Figure 2. Two-stream network to capture meta-knowledge.

A study [37] has indicated that estimation errors in the background areas impede
the performance of the counting methods. To address this problem, some existing meth-
ods [18,28] add crowd segmentation branches to crowd density regression, which improves
the ability of the network to perceive and segment the background. However, existing
studies are based on a single image and ignore the important domain knowledge that
the background of the video frame in the same scene is consistent. Inter-frame temporal
knowledge can improve the crowd segmentation effectively in each scene. In this paper, a
two-stream network structure is used to learn this meta-knowledge.

The comparison of K (K ≥ 2) images is needed to better perceive inter-frame temporal
information. In order to reduce the complexity of the model, an intuitive two-stream neural
network (K = 2) was adopted to learn this knowledge by comparing the high-level features
obtained by the encoder. As illustrated in Figure 2, the two-stream network adopted a
Siamese mechanism to reduce parameters, with two video frames X1 and X2 of the same
scene as network inputs and the encoder obtained features F1 and F2, respectively.

After differencing F1 and F2, they were respectively concatenated with the original
high-level features to obtain features F1,C and F2,C, which is shown as follows:

F1,C = F1 ⊕ (F1 − F2)
F2,C = F2 ⊕ (F2 − F1)

As inputs to the decoder, F1,C and F2,C mapped the differential fusion features to the
estimated crowd density maps Ŷ1 and Ŷ2, respectively, and trained the neural network with
the density of ground truth obtained by calculation.

The motivation of difference mainly lies in highlighting the changing and stable areas
by comparison. The stable areas of two images in the same scene are more likely to be the
background. This network structure is capable of learning meta-knowledge in both the
time and space domains.

Backbone network architecture. Our proposed two-stream network can apply any
crowd counting network structure with encoder and decoder, which is the mainstream
crowd counting network structure. In this paper, we use CSRnet [38] as our backbone, as
it has been proved to achieve favorable performance with a simple and elegant structure.
The network consists of an encoder as feature extractor and a decoder as density map
estimator. The encoder makes use of VGG-16 [39] to extract the feature of the input image.
The decoder consists of a series of dilated convolutional layers, which are used to regress
the output density map.

3.4. Counting Regression Based on Multi-Task Learning

Most existing CNN-based counting methods try to count people by direct integration
of the estimated density maps which are the output of the overall model trained with
pooling samples of all scenes [3,6,40,41]. As a result, the error in estimated density maps,
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caused by the fact that the overall network ignores the difference among scenes, directly
accumulates to errors in the final crowd counting.

Our aim is to promote the accuracy of overall crowd counting results in multiple
scenes. To this end, instead of the direct integration applied by existing methods, we
propose to adopt an additional learning process to project density maps to overall counts.
More specifically, we propose to adopt the multi-task learning method for multiple scenes.

The training samples of w scenes are composed of feature vectors reshaped from the
estimated density maps and the overall counting acted as the regression label. We use(

Xi,k, Ŷi,k, Ci,k
)

to denote the labeled image samples, where i is the index of the scene and k
is the index of the kth frame image in this scene. Ŷi,k is the estimated density map of the kth
training sample of the ith scene and Ci,k is the number of pedestrians in frame Xi,k.

Based on the assumption that the previous density map regression network has already
finished the non-linear projection from the surveillance frames to density maps, a linear
function fi is capable to regress the density map to overall counting.

fi
(
Ŷi,k
)
= wT

i Ŷi,k ≈ Ci,k

where wi denotes the linear regression weight of the ith scene.
Without considering the robust multi-task learning penalty, the crowd counting re-

gression problem can be formulated as

min
W

N

∑
i=1

Ki

∑
k=1

1
N
∑

i=1
Ki

‖ wT
i Ŷi,k − Ci,k ‖

2

where Ki is the amount of labeled frames in the ith scene.
In real-world crowd counting applications, the background and person distribution of

various scenes may vary on a large scale. Thus, the existence of outlier scenes is inevitable
and may probably mislead the model in other tasks if not properly dealt with. To promote
the robustness of the multi-task counting regression in applications, we adopt the method
proposed by [34], where the regression tasks in various scenes are divided into two groups:
the related scenes group and the outlier scenes group.

Inspired by study [35], we adopted a low-rank structure to couple the closely-related
scenes and utilize a group-sparse structure to identify outlier scenes. Specifically, the weight
of the regression model in ith scene can be denoted as

wi = li + si

where li and si are the low-rank and the group-sparse structure of the weight wi, respectively.
Such decomposition is based on the motivation that the ith task should be either an outlier
task or a closely-related task. If the ith task is from the closely-related tasks group, si is expected
to be a zero-vector and hence wi obeys the specified low-rank structure constraint. on the
other hand, if the ith task is from the outlier tasks group, si is expected to be non-zero and
wi is equal to the direct value of li plus the non-zero si.

As the regression matrix of the m scenes can be denoted by W = [w1, · · ·wN ],
W ∈ RWH×N , the weight matrix W can be decomposed to two components, namely,
low-rank matrix L = [l1, · · · , lm] and group-sparse matrix S = [s1, · · · , sm].

To achieve this intuition, on the one hand, we adopt the trace norm regularization term
on L to encourage the low-rank structure. On the other hand, the l1,2-norm regularization
term is used to induce group sparse structure in the matrix S. Then the robust multi-scene
crowd counting regression problem can be formulated as

min
W

N

∑
i=1

Ki

∑
k=1

1
N
∑

i=1
Ki

‖ wT
i Ŷi,k − Ci,k ‖

2
+ α‖L‖∗ + β‖S‖1,2
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where α and β are non-negative parameters.
Note that similar robust multi-task learning formulation based on low-rank and group-

sparse structures are studied in [35,36], which focus on the accelerated proximal method to
solve the problem and provide the performance bound of the formulation. Here we adopt
the solving method proposed by [35] to solve the robust multi-task formulation.

The previous two-stream crowd density estimation network can be regarded as a shar-
ing feature extractor for all scenes and the density maps can be considered as features for
each image. The fine-grained multi-task learning process can also be seen as another specific
layer, whose parameters vary to suit different scenes and obey the multi-task penalty.

4. Experiments

In this section, we first introduce the evaluation metrics and datasets (Section 4.1). We
then describe several baselines for comparison and the experiment setup (Section 4.2). The
experimental results are presented afterward (Sections 4.3 and 4.4).

4.1. Metrics and Dataset
4.1.1. Evaluation Metrics

In this paper, we adopt the commonly used metrics in the field of crowd count
estimation, namely mean absolute error (MAE), root mean squared error (MSE) and mean
deviation error (MDE) in [3,42] to evaluate the performance of each method.

MAE =
1

M
∑

i=1
Ki

N

∑
i−1

Ktest
i

∑
k=1

∣∣Ci,k − Ĉi,k
∣∣

RMSE =

√√√√√√ 1
M
∑

i=1
Ki

N

∑
i−1

Ktest
i

∑
k=1

∣∣Ci,k − Ĉi,k
∣∣2

MDE =
1

M
∑

i=1
Ki

M

∑
i=1

Ktest
i

∑
k=1

∣∣Ci,k − Ĉi,k
∣∣

Ci,k

where M is the number of new scenes and Ktest
i is the number of test images in the ith

surveillance scene. Moreover, Ci,k and Ĉi,k denote the ground truth and estimated overall
counting, respectively. Ĉi,k can be calculated by multi-task regression model as illustrated
in Section 3.4.

4.1.2. Dataset

Many available datasets in the context of crowd counting neglect the multi-scene
domain knowledge in surveillance applications. As a result, they just randomly collect and
pool the crowd images of arbitrary scenes. Different from arbitrary image crowd counting
methods, the multi-scene adaptive problem formulated in this paper should be evaluated
on datasets containing the scene information. More specifically, the video frames should be
collected by multiple fixed cameras and each collected frame should be annotated, not only
the location of each person, but also the camera ID as well.

To the best of our knowledge, WorldExpo10 dataset [42] is the only large-scale multi-
scene dataset. It contains 1132 images collected from 108 different surveillance cameras on
the campus of WorldExpo10. The dataset is released in the cross-scene application, where
annotated images of 103 scenes are used as training data and the remaining images of
5 scenes as test data. Following study [42], in the multi-scene adaptive crowd counting
application, we randomly set 103 known scenes and 5 unseen scenes with few labeled
images. The labeled data in known scenes is used as training data for learning the generic
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model at the coarse-grained stage. For unknown scenes, K = 5 labeled images in each
scene are adopted to train the multi-task regression weights at the fine-grained stage.

4.2. Baselines and Implementation
4.2.1. Baselines

To compare the performance on multi-scene adaptive crowd counting, we adopt
methods of three mainstream domain adaption crowd counting pipelines as baseline.

• Fully supervision methods for arbitrary scenes: Cross-scene net [42], CSRnet [38],
CAN [41] and AMSNet [43].

• Domain adaption-based crowd counting: SE Cycle GAN [14]. Through adversarial
training-based domain adaption, the labeled data of known scenes are pooled together
and thus regarded as source domain, while each unseen scene is regarded as target
domain. By implementing the domain adaption training for 5 scenes successively, SE
Cycle GAN learns 5 models specifically tuned to each particular scene.

• Meta learning-based adaptive crowd counting: MAML-counting [11]. MAML mecha-
nism is leveraged to learn the model parameters of fast adaptation to target scenes.
Similar with SE Cycle GAN, models suitable for each scene are fine-tuned respectively.

4.2.2. Implementation Details

(1) Crowd density regression. In the process of learning meta knowledge, the ground
truth of overall model is the density map calculated from the dot annotations given by
dataset. Following conventional mechanism in the field of crowd counting [3,41], we
adopt a Gaussian kernel to blur the point annotations. Similar with backbone, the proposed
two-stream network’s (TSN) encoder is initialized with the weights of pre-trained VGG [39].
We set batch size to be 8 with Adam optimizer [44] adopted for parameter update. The TSN
is trained for 500 epochs. For each epoch, 8 pairs of images are randomly sampled from the
labeled images of each scene. Such image pair also contributes to data augmentation, which
makes the labeled training samples of the ith scene increasing from Ki to Ki·(Ki − 1)/2,
where Ki is the number of labeled training images of the ith scene.

(2) Multi-task learning: We apply the MALSAR toolbox to solve the robust multi-task
regression problem. The maximum number of iterations is set as 1500. The parameter of
low rank regularization is α = 10, while that of group-sparse is β = 30.

4.3. Comparison on Performance

To verify the performance of the proposed method, we perform comparison exper-
iments of the existing methods as introduced in Section 4.2.1. As shown in Table 1, the
performance of fully supervision methods becomes better from Cross Scene Net to AM-
SNet as the network structure becomes more and more complex. Without considering
the specific characteristic of scenes, AMSNet still achieves acceptable performance, which
demonstrates the effect of foreground/background common knowledge and perspective
scale knowledge. SE Cycle GAN and MAML-counting are domain adaption methods,
whose model training processes are dependent on each specific target domain. They show
better performance compared with their backbone, which indicates that scene-specific
model can promote counting accuracy. Our proposed method TSN with multi-task learning
(MTL) achieves dominant counting accuracy with an overall MAE of 6.1, outperforming
the representative methods of two kinds, namely AMSNet and MAML-counting by 10.29%
and 13.48%, respectively.
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Table 1. The MAE comparison on WorldExpo’10. The best performance is colored red and second
best is colored blue.

Methods S1 S2 S3 S4 S5 Ave.

Fully
Supervised

Methods

Cross Scene Net 9.8 14.1 14.3 22.2 3.7 12.9
CRSNet 2.9 11.5 8.6 16.6 3.4 8.6

CAN 2.9 12.0 10.0 7.9 4.3 7.4
AMSNet 1.6 8.8 10.8 10.4 2.5 6.8

Domain
Adaption
Methods

SE Cycle GAN 2.7 15.4 12.1 11.9 3.6 9.1
MAML-counting 3.05 10.37 8.18 9.41 3.91 7.05

Proposed
Methods

TSN 2.8 9.2 8.9 11.7 3.2 7.2
TSN with fine-tune 2.5 9.0 8.1 11.3 2.8 6.8

Backbone (CRSNet) with MTL 2.5 10.3 8.4 13.4 3.0 7.5
Proposed TSN with MTL 2.2 8.7 7.6 9.3 2.5 6.1

To analyze the improvement of performance by MTL at fine-grained stage, we compare
the effect of coarse-grained crowd counting, which only adopts TSN with the performance
of the proposed TSN with MTL method. Compared with the TSN method without multi-
task fine-grained stage, the proposed method can reduce the average MAE by 15.28%.
Moreover, Backbone (CRSNet) with MTL can reduce the MAE by 12.79%. Such improve-
ment embraced by MTL demonstrates its universal optimization effect on accuracy in
multi-scene crowd counting problem. Further discussion about the effect of MTL is illus-
trated in Section 4.4.

To discuss the performance of TSN, we compare it with its backbone. Compared with
the CRSNet, the proposed TSN reduces MAE by 16.28%, which demonstrates the capacity
of inter-frame temporal knowledge. Note that our TSN is a generic model for domain
generalization such as fully supervised methods. Moreover, backbone (CRSnet) with MTL
means that it does not use a meta-learning mechanism and merely adopts a single stream
network to estimate single image’s density map, and then carries out fine-grained stage
with multi-task learning. Compared with backbone (CRSnet) with MTL, the proposed TSN
with MTL method can reduce the average MAE by 18.67%. In addition, we provide visual
results of the backbone CRSNet and the proposed TSN in Figure 3. Figure 3c shows that
the error on background areas is a difficult issue to be addressed in counting. From the
comparison of Figure 3c,d, the STN shows its capacity on recognizing background, which
comes from the learning of meta inter-frame knowledge.

To further discuss the robustness of the algorithm under various conditions with
different lighting and crowd density, we select surveillance images collected from cameras,
whose IDs are 100,400 and 100,730, as shown in Figure 4 and Table 2. In WorldExpo’10, cam-
era 100,400 collects images of different illumination conditions, while camera 100,730 faces
obvious fluctuation of crowds. By observing the estimated density map corresponding to
100,730, it can be found that although the crowd density significantly varies, the density
maps obtained by the proposed TSN and TSN with MTL method are accurate and clear,
with few noises in background areas, which shows that the proposed method is capable to
distinguish human crowd with buildings and trees in the background. Therefore, the pro-
posed method has favorable robustness in the case of large population density divergence.
The main reason can be attributed to the STN’s capacity on learning the knowledge to adopt
the difference between frames to distinguish the foreground crowd from the background.
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Figure 3. Comparison of density maps estimated by CRSNet and our proposed TSN.

Table 2. The performance comparison on camera 100,400 and camera 100,730.

Methods
100,400 100,730

MAE RMSE MDE (%) MAE RMSE MDE (%)

TSN
Proposed TSN with MTL

11.56 16.35 34.96 7.44 11.57 10.57
7.98 12.06 20.49 5.01 8.83 6.17

The proposed method shows relatively poor performance in the scene of camera
100,400. Such performance degradation can be observed in the noise of the crowd density
maps and the metrics in Figure 2. The TSN may find it difficult to distinguish the difference
caused by lighting from the difference caused by foreground crowd movement, thus
confusing the recognition of crowds. Such confusion may be caused by the unbalanced
data distribution of video frames. More specifically, most of the video frames in this
data set are collected during the day, while less than 10% of frames are collected at night.
Moreover, the proposed method has not elaborated a data sampling mechanism to balance
the data distribution of various illumination conditions. Therefore, only a small part of
picture pairs sent into the STN are under different lighting conditions. Improving the
sampling mechanism to balance the lighting conditions of image pairs, so as to optimize
the counting robustness under different lighting conditions, is a research direction worthy
of further research.
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Figure 4. Robustness performance of the proposed TSN-MTL under different lighting conditions and
crowd density. Display of estimated crowd density map of pictures collected by camera 100,400 and
100,730. The first column is the original picture, the second column is the density map estimated by
STN and the third column is the density map estimated by STN with MTL. The first two rows are
frames collected by camera 100,400, while the next two rows are frames collected by camera 100,730.

4.4. Multi-Task Learning

The necessity of the fine-grained stage using multi-task learning results from the
difference of data distribution collected from various scenes. To evaluate the necessity,
we adopt the regression parameters of each scene which is learned in multi-task learning
process to represent the data distribution and explore the similarity of multiple scenes.
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Cosine similarity is adopted to calculate the similarity matrix M of 108 scenes, shown in
Figure 4; the similarity between ith and jth scenes is denoted by Mi,j and calculated by

Mij =

∑
k=1

wi
kwj

k√
∑

m=1

(
wi

m
)2
√

∑
n=1

(
wj

n

)2

where wi is the regression parameter of the ith scene.
In Figure 5, the ith and jth scene are more similar if mi,j is brighter in Figure 5. It

is clear that 72–80 scenes are different with 1–71 scenes and 10–100 scenes. We realize
that the 108 scenes can be generally divided into four groups which in turn illustrated the
necessity to induce the multi-task learning method to explore the difference and similarities
of multiple scenes and learn a set of regression parameters for all scenes.

Figure 5. Similarity relationship of parameters in multiple scenes.

More specifically, the difference of scenes, which is presented by the similarity matrix in
Figure 5, demonstrates that merely adopting the overall CNN-based density map estimation
with direct integration mechanism can barely capture the specific data distribution of each
scene. The direct integration of the estimated density map can be expressed as Ĉi,k = ∑ Ŷi,k,
where Ŷi,k is the estimated density map of the kth training sample of the ith scene and Ĉi,k
is the estimated overall crowd counting. Compared with the direct integration mechanism
adopted by conventional CNN-based crowd counting methods, the proposed MTL-based
fine-grained process learns the regression weight from the estimated density map to the
overall counting. With the specific learned regression weight of each scene, the overall
counting can be calculated as weighted integration of the regression parameters and the
estimated density map, Ĉi,k = wT

i Ŷi,k, where wi is the regression weight of the ith scene.
Such weighted integration captures the character of each scene in addition to the overall
CNN-based density map estimation process.

On the other hand, the similarity of scenes indicates that the density map regression
tasks of the known scenes with sufficient labeled images can promote the regression
performance of unknown new scenes with few labeled images, which can largely reduce
the demand of training samples when cameras need to be deployed in new locations. The
data of other labeled similar scenes can facilitate the counting regression of new scenes
with the advantage of MTL mechanism.
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In all, due to the differences and similarities between scenes, the MTL-based density
map regression can promote overall counting accuracy and reduce the demand for labeled
images of new scenes, respectively. Such weighted integration using the learned regression
parameters can also be regarded as a type of attention mechanism, with MTL regularization
items added.

Such relation of the multiple tasks is the reason why the fine-grained stage using
multi-task learning can promote the counting accuracy in Table 1. Compared with TSN’s
performance, TSN with MTL can reduce the MAE by 15.28%.

5. Conclusions

This paper pioneers the analysis of the crowd density estimation problem from a
knowledge learning perspective. In this paper, a coarse-to-fine pipeline is adopted to solve
the multi-scene adaptive problem in crowd counting. The objective of coarse stage is to
learn a generic model robust to unseen scenarios. We observe that meta-knowledge (i.e.,
scene-independent common knowledge) is the cornerstone for generalization capacity
and analyze the meta-knowledge of crowd counting. Exploiting the inter-frame temporal
knowledge, a two-stream network structure is adopted to optimize the perception of
foreground crowds and promote generalization ability to unknown scenes. In addition,
at the fine-grained stage, a robust multi-task method is adopted to train the counting
regression parameters of each specific scene, and thus promote the counting accuracy in
several new scenes simultaneously.

However, we also note that the proposed method is a two-phase approach. In future
work, the overall counting regression from density map can essentially be replaced by a
specific layer of the neural network. By transforming it into a holistic model, we will explore
an end-to-end network that integrates domain adaptation with meta-knowledge learning.
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