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Abstract: This paper presents an assistive hearing smartphone app mimicking the two main functions
of hearing aids, consisting of compression and noise reduction. The app is designed to run in real
time on smartphones or tablets. Appropriate levels of amplification or gain are activated by selecting
a filter from a filter bank for six audio environment situations covering three sound pressure levels of
speech and two sound pressure levels of noise. The results of this smartphone app for real-world
audio environments are provided, indicating its effectiveness as a real-time platform for studying
compression and noise reduction algorithms in the field or in realistic audio environments.
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1. Introduction

According to the World Health Organization (WHO), the number of people with
hearing loss will grow to nearly 2.5 billion people by 2050, with 700 million of them
suffering from severe hearing loss [1]. To cope with hearing loss, hearing aids are prescribed
by audiologists.

Considering the widespread utilization of smartphones all around the world, hear-
ing aid manufacturers have introduced smartphone apps such as Signia, Starkey Thrive
Hearing Control, and Oticon ON [2] for adjustment of some of the parameters of hear-
ing aids for those devices that have Bluetooth wireless connectivity capability. However,
hearing aid manufacturers do not allow the signal processing software running on their
hearing aid processors to be accessed or modified by researchers for conducting hearing
enhancement studies in the field. In this work, we implemented the two key functions
of hearing aids—consisting of compression and noise reduction—on smartphones in an
open-source manner, so that researchers and audiologists would be able to experiment
with different compression and noise reduction algorithms in the field or in real-world
audio environments.

Humans have a roughly 120 dB dynamic range of hearing. In people with hearing
loss, this range is narrowed or reduced, and it is thus necessary to map the above wide
range of sound into a narrower range. This process is referred to as wide dynamic range
compression (WDRC). WDRC provides more gain for low-SPL (sound pressure level)
signals and less gain for high-SPL signals. The compression can be represented graphically
by an input/output compression function or curve for each frequency band. Figure 1
illustrates a typical compression curve, showing how input sound levels are mapped into
output sound levels of a hearing aid. Since hearing perception changes depending on
the frequency of sounds, different compression curves are applied in different frequency
bands [3,4]. Based on different speech SPLs, different compression ratios are applied to soft,
moderate, and loud speech sound levels. Similar to [5,6], Wiener filtering noise reduction
(NR) is used here together with compression in hearing aids in order to improve hearing in
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noisy environments. The noise reduction function reduces the background noise level so
that the speech sound can be heard more clearly.

Figure 1. Sample compression curve or compression ratios for different speech intensity levels in a
typical frequency band.

Speech sounds with SPL values of less than 55 dB are regarded as soft speech. Speech
sounds with SPL values between 55 dB and 75 dB are regarded as moderate speech,
while speech sounds with SPL values greater than 75 dB are regarded as loud speech [7].
Depending on these three speech SPL levels, WDRC applies different compression ratios to
sound signals in a number of frequency bands. Different numbers of frequency bands are
considered. In a typical conventional compression prescription such as the one in [7], nine
frequency bands are used. In our experimentations, the NR threshold of 55 dB was found
to be the most effective for activating noise reduction. The app allows users to modify
the NR threshold in its settings. To take into consideration different speech SPLs as well
as different noise SPLs in real-world audio environments, an FIR filter bank consisting
of several FIR filters was designed to achieve WDRC and NR at the same time across a
number of frequency bands.

For operation in real-world audio environments, a voice activity detector (VAD)
module is needed [8,9]. In the smartphone app developed in this work, the VAD described
in [10] is used to separate speech frames from noise frames, and an SPL meter described
in [11] is used to measure SPL of sound frames. With the VAD and the SPL meter, the app
selects an appropriate filter and processes the input audio signal in real time to achieve
WDRC and NR. Further details of the developed smartphone app are described in the
remaining sections of the paper. Section 2 describes an overview of the WDRC and NR
algorithms and the signal processing flowchart of the developed smartphone app. The
experimental setup and field testing results are then presented in Section 3, followed by the
conclusion in Section 4.

2. App Signal Processing Flowchart

Figure 2 depicts the signal processing flowchart of the app, which consists of three
parts: VAD and SPL measurement, filter selection, and sound signal filtering. In the first
part, the app measures a confidence or probability value for the VAD together with the
SPL value of each input sound frame. In the second (filter selection) part, it decides which
filter in the filter bank to use at a specified decision rate. The default decision rate is set to
200 frames, which means that a decision is made once every 200 frames. The app allows
this rate to be adjusted by the user. The information regarding whether an incoming speech
level is soft, moderate, or loud, and whether the noise reduction module should be enabled,



Sensors 2022, 22, 3306 3 of 15

is stored in a buffer for making the next filter selection. In the last part, the selected filter
is used to process sound signals for the next filter selection time duration, or the next
200 frames. The sampling frequency is set to 48 kHz, since this sampling rate generates the
lowest latency on smartphones [12].

Figure 2. App signal processing flowchart.

The VAD module used in the app is based on the VAD approach described in [10,13],
providing the probability of the presence of speech in a frame. By adjusting a threshold in
the VAD, the noise-only frames and noisy speech frames are separated according to the
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probability of the presence of speech in those frames. For SPL measurement, the splmeter
function of MATLAB is used to return an average time-weighted sound level in dB [11].
The VAD function and splmeter function are converted to C codes from MATLAB codes
by using the Coder utility of MATLAB. The steps to convert MATLAB codes to C codes
are covered in [14,15]. The generated C codes are then placed inside a shell, which was
previously developed and described in [14]. Interested readers are referred to [16,17]
for more details related to embedding MATLAB-generated C codes into the software
development environments of smartphones.

In the filter selection part, the VAD value is used to separate noise-only frames from
noisy speech frames. When a frame is pure noise and does not contain any speech, a
variable called ‘NR_flag’ is updated for the purpose of deciding whether to enable the
noise reduction module or not. When a frame contains speech with noise or no noise, a
variable called ‘WDRC_flag’ is updated to see whether the speech SPL is soft, moderate, or
loud. Then, based on ‘NR_flag’ and ‘WDRC_flag’, a so-called temporary filter selection is
made for each frame. All temporary filter selections are saved in a buffer depending on the
decision rate. The filter selection is performed by taking majority voting within the buffer.

Six filters were designed for the three settings of WDRC_flag and two settings of
NR_flag, as indicated in Table 1. Based on an audiogram, the compression amount is
determined. An audiogram indicates the lowest level of sound that is audible to a person
in a number of frequency bands. A sample audiogram used in this paper for WDRC
implementation is shown in Table 2.

Table 1. Filter index for WDRC and NR flag settings.

Filters Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6

WDRC Soft Soft Moderate Moderate Loud Loud

NR Off On Off On Off On

Table 2. Sample audiogram for WDRC implementation.

Frequency
Bands (Hz) 125–250 250–500 500–750 750–1000 1000–1500 1500–2000 2000–3000 3000–4000 4000–6000

Audiogram
(dB SPL) 20 25 30 30 35 35 40 35 35

The WDRC or compression gain values are then generated based on a prescriptive
compression fitting [18,19]. In our implementation, the nine bands that are commonly used
for compression are mapped into five bands in order to make the computation time more
efficient and, thus, achieve real-time processing. Performance-wise, we found that there
was not much difference when using five bands as compared to nine bands. Table 3 shows
the compression ratio and makeup gains derived based on [19] by using the audiogram
in Table 2 as the input. The nominal values of the other compression parameters for
performing the WDRC are shown in Table 4. The NR algorithm used in the app is the one
described in [20]. Here, it is worth pointing out that the app was designed in a modular
manner, which means that the above compression and noise reduction algorithms in the
app can be easily replaced by any other compression and noise reduction algorithms.
One way this can be achieved is by designing a new filter bank corresponding to these
algorithms. Then, our filter bank part of the app can be replaced by the new filter bank
within the jni (Java Native Interface) folder of the app. Another way involves substituting
other compression and noise reduction algorithms written in C within the jni folder of the
app by following the steps mentioned in [14]. As illustrated in Figure 3, the WDRC and
NR modules are placed in parallel. The six filters or the filter bank are designed according
to the six settings of the WDRC and NR flags.
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Table 3. Compression ratios and makeup gains for the WDRC implementation.

Speech Intensity Compression Ratio Makeup Gains (dB)

Soft Speech [1.0 1.0 1.0 1.0 1.0] [10.0, 11.0, 14.0, 25.0, 21.0]

Moderate Speech [1.6 2.0 1.6 1.6 5.0] [8.0, 9.0, 13.0, 23.0, 19.0]

Loud Speech [3.0 2.8 5.0 20.0 20.0] [6.0, 4.0, 8.0, 18.0, 15.0]

Table 4. Nominal values of the other compression parameters for the WDRC implementation.

Release Time Attack Time Compression
Threshold Knee Width

1 s 0.01 s −45 dB 5 dB

Figure 3. Filter design and filter operation paths.

The app has two main graphical user interfaces: one is the operation interface, and
the other is the settings interface (see Figure 4). In the operation interface, the start button
runs the app in real time, while the “read file” button runs the app by processing a stored
audio file. In the settings interface, the user can control how the output plays, change the
sampling frequency, and set a debugging option. For a more accurate SPL value, users can
specify a calibration value for the device in the app’s settings by comparing and matching
the computed SPL value with the one indicated by an SPL meter. When the app runs in
real time or on a stored audio file, the VAD value, SPL value, and selected filter number for
each frame are displayed in a rolling-up manner. The debugging option can be set to store
the above information.
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Figure 4. The app’s graphical user interfaces.

3. Results of Real-World Audio Environment Experiments

The code for the entire signal processing pipeline is written in C within a project
shell described in [14], based on the Android Studio SDK (Software Development Kit) and
Android NDK (Native Development Kit) [21]. It is worth noting that there exists a similar
shell for iOS, which is also described in [14]. The app code is available for public use at the
website stated in [22].

Experiments were conducted by running the app with a frame size of 256 samples at
a sampling frequency of 48 kHz on an Android phone with a Snapdragon processor. To
obtain the quantitative results reported in this section, audio files of real-world noisy audio
environments were captured and stored on the phone’s storage. By running the app on the
audio files, the filtered audio and a text file were generated, which contained the VAD, SPL,
and selected filter values in the same folder where the audio file was stored. The filtered
audio and text files were then used to report the results discussed next.

Real-world audio files were captured at a 48 kHz sampling frequency in the presence of
commonly encountered noisy environments, such as dining halls, lecture rooms, machinery,
cars, streets, etc. Table 5 lists the number of audio files collected in different audio scenarios.
During audio sound capture, the environmental noise was recorded first for a few seconds.
The purpose of doing so was for the app to detect the initial noise conditions for the speech
to follow. The signal-to-noise ratio (SNR) was altered by changing the distance between the
phone and the person talking. In other words, this allowed different levels of speech to be
captured in the noisy environments. As a result, different filters needed to be used across
a single audio file. The input audio signal is normalized in the app before processing to
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make sure that the same output values are generated when using different smartphones.
Figures 5–7 exhibit the waveforms, VAD values, and SPL values of three sample audio
files. These three audio files were recorded in the presence of an air purifier, which is a fan
noise type. Based on the VAD values, the speech parts were separated from the noise-only
parts. Furthermore, as per the SPL values, the speech level was taken to be soft, moderate,
or loud. The app applied different filters from the filter bank depending on the VAD and
SPL values.

Table 5. Number of audio files collected from real-world audio environments (this audio dataset is
available for public use at the website stated in [22]).

Noise Type Audio Environment Number of Audio Files

Machinery Noise Dryer, shaver, washing machine 13

Wind Noise Open air, parking lot 12

Car Noise Bus, car driving 15

Babble Cafeteria, party, dining hall, campus 21

Music Song, piano, radio 4

Water Flow Sink, raining 4

No Noise or Quiet Study room 14

Figure 5. Sample of a soft−speech audio.

To verify that the filter bank could perform the compression (WDRC) and the noise
reduction (NR) properly, an experiment was conducted by considering only a single filter
and by speaking the numbers 1 through 10 in a counting order with washing machine
noise in the background. This allowed an easy separation between speech and background
noise. As expected, the SPL of the audio signal increased because of the gain applied by
the WDRC, and the noise level was decreased when the NR was activated.

Figures 8–13 illustrate the effect of applying the six filters in the filter bank. In these
figures, the blue lines correspond to the original audio signals, while the red lines corre-
spond to the filtered audio signals. By comparing the effects of Filter 1, Filter 3, and Filter 5,
which were designed for soft, moderate, and loud speech levels, respectively, it can be seen
that the app applied a relatively larger gain on the audio signal when Filter 1 was selected,
a smaller gain when Filter 3 was selected, and the smallest or even negative gain when
Filter 5 was selected.
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Figure 6. Sample of a moderate−speech audio.

Figure 7. Sample of a loud−speech audio.

Furthermore, by comparing the effects of Filters 1 and 2, Filters 3 and 4, and Filters 5
and 6, which corresponded to situations with the noise reduction on and off, it can be seen
that the SPL of the noise-only part was suppressed when the noise reduction was enabled.
For the soft-speech audio, even though the speech was amplified by the WDRC, the SPL of
the noise part was kept around the original level. For the loud-speech audio, due to the
very small gain applied by the WDRC, the SPLs for both the speech and the noise were
reduced considerably, which naturally impacted the quality of the speech signal. In all
of the experiments carried out in various realistic audio environments, it was found that
the compression and noise reduction were carried out according to the designed filters for
those audio environments.
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Figure 8. Outcome when Filter 1 was applied.

Figure 9. Outcome when Filter 2 was applied.

Figures 14 and 15 show the results for four sample audio signals illustrating the
difference between the original audio and filtered audio waveforms. The filter result graph
outcome in Figure 14a indicates that the SPL of the speech in this audio signal was at the
soft-to-moderate level. As a result, the WDRC applied a large gain to this audio signal.
Figure 14b indicates that Filter 3 and Filter 4 were applied for most of the audio signal,
which meant this audio signal contained a moderate speech level with both high and a low
noise levels. It can be seen that the waveform peak was higher when Filter 3 was selected,
and Filter 4 was selected to achieve noise reduction. The effect of noise reduction can also
be observed in Figure 15a,b, which show that the noise reduction was activated for most of
the audio signal.
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Figure 10. Outcome when Filter 3 was applied.

Figure 11. Outcome when Filter 4 was applied.

For typical hearing improvement smartphone apps, the latency needs to remain below
20 ms [23,24] in order not cause a mismatch between hearing the voice(s) and seeing lip
movements. At a sampling frequency of 48 kHz and a frame length of 256 samples, the
maximum allowable time is about 5 ms. A real-time throughput is thus achieved, and no
downsampling is needed, since the processing time per frame is about 1.05 ms, which is
well below 5 ms. In the app, the audio processing buffer is set to be twice the input frame
size, so as to enable a 50% overlap between consecutive signal frames. Figure 16 shows the
memory and CPU usage of the app on the Android smartphone used.
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Figure 12. Outcome when Filter 5 was applied.

Figure 13. Outcome when Filter 6 was applied.
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Figure 14. Sample audio signal: (a) study room; (b) driving.
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Figure 15. Sample audio signal: (a) open air; (b) dryer turning on.

Figure 16. Developed app memory and CPU usage.
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4. Conclusions

In this paper, a real-time smartphone app was developed to mimic the two key
functions of hearing aids, consisting of compression and noise reduction. The developed
app allows a smartphone to be used as a virtual hearing aid for the purpose of studying
the compression and noise reduction functions of hearing aids in the field, or in realistic
audio environments, noting that hearing aid manufacturers do not allow access to these
signal processing modules on their hearing aids. The open-source nature of this app allows
researchers and audiologists to study and experiment with different compression and noise
reduction algorithms.
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