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Abstract: Imaging-based methods of food portion size estimation (FPSE) promise higher accuracies
compared to traditional methods. Many FPSE methods require dimensional cues (fiducial markers,
finger-references, object-references) in the scene of interest and/or manual human input (wireframes,
virtual models). This paper proposes a novel passive, standalone, multispectral, motion-activated,
structured light-supplemented, stereo camera for food intake monitoring (FOODCAM) and an
associated methodology for FPSE that does not need a dimensional reference given a fixed setup.
The proposed device integrated a switchable band (visible/infrared) stereo camera with a structured
light emitter. The volume estimation methodology focused on the 3-D reconstruction of food items
based on the stereo image pairs captured by the device. The FOODCAM device and the methodology
were validated using five food models with complex shapes (banana, brownie, chickpeas, French
fries, and popcorn). Results showed that the FOODCAM was able to estimate food portion sizes
with an average accuracy of 94.4%, which suggests that the FOODCAM can potentially be used as an
instrument in diet and eating behavior studies.

Keywords: food portion; portion size estimation; food volume; food imaging; dietary assessment

1. Introduction

Accurate dietary monitoring is necessary in this day and age with a high incidence
of obesity and other diet-related-chronic diseases. An estimated 93.3 million adults and
13.7 million children and adolescents in the U.S. are affected by obesity according to the
Center for Disease Control and Prevention (CDC) [1]. Obesity increases the risk for health
problems such as type 2 diabetes, heart disease, and certain types of cancer. Research shows
that prevention efforts early in life reduce the risk of obesity later [2]. A recent study [3]
revealed that obesity increases the risk for more severe complications of COVID-19. Thus,
the development of accurate and reliable tools for dietary assessment is critical for both the
general population and those with special nutritional needs, who would most benefit from
professional help.

Tracking and monitoring the total energy intake of an individual is essential. Energy
intake is dependent on energy density (kcal/g or kcal/mL) and food portion size (g or
mL) [4]. Energy density can be calculated by food type recognition (either conducted by
computer vision or manually by the user) followed by a simple database search. Estimating
the food portion size, however, is a challenging task. FPSE using traditional methods
involve estimation by directly measuring the quantity of food (mass/volume) using house-
hold measures or visual approximations, for example, estimating the volume in cups. These
methods are typically used in food records, 24-h recall, and/or digital food records [5]. The
traditional methods are cumbersome, subject to memory (and therefore prone to error),
and inaccurate. A recent review on sensor-based FPSE emphasized the extreme importance
of the accuracy of portion size estimation for the accurate measurement of energy and
nutrient intake [6]. Sensor-based FPSE may be based on imagery [7–11], hand gestures [12],
and/or chews and swallows [13,14].
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The majority of the sensor-based FPSE methods are imaging-based. Imaging methods
can be separated based on the number of viewpoints: single view or multi-view. The
popular single view approaches include geometric-models [15], neural nets [16], VR based
referencing [17], circular object referencing [10,18], and thumb based referencing [19].
Most single-view approaches need visual cues in the images as a dimensional point of
reference [10,19–21]. The type of visual cue used determines the complexity of the setup.
Some methods require users to carry around a dimensional reference (checkerboards, blocks,
cards), increasing user burden. Stereo-imaging-based 3D reconstruction has been previously
used for FPSE [8,22–24]. A study [22] explored the stereo reconstruction approach by
considering real food items. The authors claimed that the stereo approach works well
for FPSE with an average error in volume of 5.75 (±3.75)%. However, the method had
issues with textureless objects and varying lighting conditions. Another study [25] used a
wearable stereo camera system to estimate volumes of 16 types of food objects with error
rates of 3.01% in food dimensions and 4.48% in food volume. A similar study [26] used
a wearable stereo-camera and achieved an error rate of 2.4% in volume estimation. Both
studies [25,26] worked well for irregular shaped food items. However, two-view stereo
wearable devices were not tested in free-living and may not be a viable option.

A popular approach in 3D reconstruction and single-view volume estimation methods
is structured light reconstruction [27–29]. Structured light approaches work by projecting a
distinct light pattern onto a scene to acquire a depth map, typically using a single camera
and a single projector [30].

Multi-view approaches obtain the three-dimensional geometric information of an
object from multiple images. Stereo-3D reconstruction and volume estimation is one such
approach. Stereo images acquired by two cameras or by a single camera at two viewing
angles are used to determine the 3-dimensional world coordinates of an object [8,26].

Table 1 summarizes the advantages and disadvantages of these two popular 3-D
reconstruction techniques. In [31], the authors combined the two methods for acquiring
high-complexity stereo image pairs with pixel-accurate correspondence information using
structured light. The features of the structured light are matched instead of pixels. This
study proposes combining a stereo camera and an infrared (I.R.) dot projector for FPSE.

Table 1. Comparison between stereo and structured light reconstruction techniques.

Criterion Stereo Reconstruction Structured Light
Reconstruction

Number of Viewpoints Two (stereo camera or
1 camera at two view angles)

One (1 camera and a
structured light projector)

Advantages

(1) Provides a depth
perspective of an object
without any information
about the surroundings.
(2) Eliminates fiducial markers
(3) Once cameras are
calibrated, the pixel
correspondence problem is
reduced to a horizontal search

(1) Adds texture to objects.
(2) Reduces the number of
viewpoints needed.
(3) Accurate and dense pixel-
correspondences can be
automatically produced.

Limitations and
Disadvantages

(1) Occlusions
(2) Correspondence problem
in case of texture-less objects

(1) Projector needs to be
calibrated, and the pattern
must be known.
(2) Computations can be
slower and time-consuming

The contributions of this paper are: (i) a novel FPSE methodology that combines
stereo vision and structured light techniques that have not been used previously in the
field of dietary assessment; (ii) implementation of a stand-alone monitoring device that
enables passive, multispectral, motion-activated, structured light-stereo vision-based food
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intake monitoring (FOODCAM) with specified spatial resolution requirements; (iii) the
FPSE methodology that is accurate for bulk foods and irregular-shaped food items; (iv) the
FOODCAM provides high resolution RGB images for other tasks of dietary assessment
unlike in other depth modules; and (v) the FOODCAM does not interfere with the activities
of the user and can be placed at a comfortable height above the eating surface.

The rest of this paper is organized as follows. First, the device configuration and device
characteristics are discussed in Section 2, along with a description of the methodology.
Section 3 summarizes the results, and Section 4 provides an in-depth discussion about the
current approach, followed by the conclusions in Section 5.

2. Materials and Methods
2.1. Device Description

The FOODCAM device is depicted in Figure 1. The device consists of an STM32
processor, two OV5640 cameras (with an electromechanically switched infrared-block
filter), each with an FPGA + 1 MB RAM as a frame buffer, an ADXL362 accelerometer, a
Panasonic EKMC1601112 PIR sensor, an IR dot projector, and a micro S.D. card to store
the images. The filters were fitted with 90 degrees (horizontal field of view) wide-angled
lens. The device can store ~1 million images. The device has a 3000 mAh battery and has
an average runtime of 14 h (continuous image capture mode). FOODCAM captures four
images (two stereo pairs of RGB and RGB + IR) every 10 s.
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Figure 1. FOODCAM device with a stereo camera, a PIR sensor, and an infrared projector.

A mechanical lens switch shifts between a transparent filter and an IR block filter and
is synchronized with the IR dot projector. The transparent filter is active when the I.R.
pattern is projected, and the cameras capture an IR stereo-image pair. The IR block filter is
active when the IR pattern is off, and the cameras capture a RGB stereo-image pair.

The device has two capture modes: continuous and motion-activated. The PIR sensor
can be used to trigger image capture only when motion is detected and thus saves the
battery life. The FOODCAM device was primarily built to monitor food intake and cooking
activities in kitchens or dining areas..

2.2. Design for Specified Spatial Resolution

The FOODCAM was designed with consideration of the spatial resolution including
depth resolution, or the accuracy with which changes in the depth of a surface can be
estimated [32].

The following equation represents depth resolution ∆z:

∆z = z2 ∆d
f.b

(1)

where

z is the depth of the object from the stereo system;
f is the focal length of the cameras;
b is the baseline distance between the two cameras; and
∆d is the disparity resolution.
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Disparity resolution is the precision of disparity estimation and is directly proportional
to pixel size, where smaller pixel sizes provide better resolution. Typically, the disparity can
be estimated accurately to about one-fifth of a pixel [28]. The camera parameters needed to
calculate depth resolution are given below:

• Pixel Size for OV5640 = 1.4 µm square;
• Disparity resolution, ∆d: 1/5 ×1.4 µm = 0.28 µm; and
• Effective Focal Length = 3.38 mm.

Equation (1) was used to calculate the depth resolution as a function of depth for
different baseline distances. Depth values in the range of 121.92 cm (4 ft) to 243.84 cm (8 ft.)
and baseline distances in the range of 3.04 cm (0.1 ft.) to 24.3 cm (0.8 ft.) were considered.
A baseline distance of greater than 152.4 mm (0.5 ft.) was identified as the optimal value to
achieve a depth resolution of at least 1.5 mm. A baseline of 152.4 mm was selected.

Once the FOODCAM was designed and fabricated, the optimal height at which the
FOODCAM should be installed was determined by considering the area that can be covered
by the device and the pixel resolution (Table 2):

1. Pixel resolution: The device was used to capture images of a checkerboard image
at different distances from the camera. The checkerboard image had squares of
unit size (1 cm sides). From this set of images, the parameters described in Table 2
were determined. The number of pixels in each unit square (pixels/square cm)
was determined from the images from which the size of each pixel was calculated
(sq. mm/pixel). The size of each 2-dimensional pixel provides the spatial resolution
of the camera. This measurement was taken prior to camera calibration. A pixel
resolution of around 0.5 mm/pixel was set as a requirement.

2. Area: Table 2 also includes the area covered by the FOODCAM as a function of height.
The area of overlap of the two cameras is the area covered by the FOODCAM. The area
covered by the FOODCAM was practically measured by capturing images at different
distances from the floor. An area of at least 106.68 cm × 106.68 cm (3.5 ft. × 3.5 ft.) was
set as a requirement.

Table 2. Pixel resolution of OV5640.

Height of Camera
Installation (cm) mm/Pixel Pixels/sq. cm Area Covered

60.96 0.14 4900 69.92 cm × 69.92 cm
91.44 0.28 1296 76.2 cm × 76.2 cm

121.92 0.40 676 101.92 cm × 101.92 cm
152.4 0.55 400 112.78 cm × 112.78 cm

182.88 0.71 196 128.02 cm × 124.97 cm
213.36 0.83 144 158.5 cm × 158.5 cm
243.84 1 100 179.83 cm × 182.88 cm
274.32 1.2 64 207.27 cm × 207.27 cm
304.8 1.4 36 236.74 cm × 236.74 cm

The optimal height was selected as 152.4 cm. At this range, we had a depth resolution
of 1.26 mm and a horizontal pixel resolution of 0.55 sq. mm per pixel. This height was used
as a reference while positioning the FOODCAM. FOODCAM was tested by mounting the
device on top of a table with the camera baseline parallel to the ground. The camera was
positioned at approximately 5 ft. (152.4 cm) from the surface of the table. However, the
height of installation cannot always be guaranteed to be 5 ft. In this study, we assumed
that the height would be approximately 5 ft. and the pixel resolution was 0.55 mm. This
condition would restrict the FOODCAM from being used at different distances.
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2.3. Calibration and Stereo Rectification

Figure 2 describes the proposed framework for the processing of FOODCAM data.
Calibration is the first step of this proposed framework. The stereo camera has to be
calibrated to eliminate errors due to misalignment of imaging sensors and/or lens distortion.
Geometric calibration of the stereo camera was performed as in [33,34] with a checkerboard.
Barrel distortion due to lens curvature was removed as in [35]. The calibration for the
FOODCAM was conducted using RGB images captured from the device.
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2.4. Semi-Global Matching

Stereo matching is the process of finding correspondence between the pixels of the
stereo images. The semiglobal matching (SGM) method [36] was used as the stereo match-
ing algorithm. SGM is based on the idea of pixelwise matching of mutual information and
approximating a global, 2-D smoothness constraint by combining many 1-D constraints.

The aggregated (smoothed) cost S(p,d) for a pixel p and disparity d was calculated by
summing the costs of all 1D minimum cost paths that end in pixel p at disparity d. This cost
was optimized for each horizontal search of correspondence between the stereo image pairs
(using the RGB + IR image pair containing the structured light pattern). The computed
disparity map was then used for volume reconstruction.

2.5. Gaussian Interpolation and Median Filtering

There can be discontinuities in the disparity map even after a dense pixel matching is
performed. The disparities can arise due to occlusions or due to noisy pixels.

Gaussian interpolation uses the 2-D Gaussian distribution as a point-spread function. This
fills up disparity discontinuities by convolution with the 2-D distribution. After the interpolation,
median filtering is used to remove grainy, speckle noise and provide a smooth map.

2.6. 3D-Reconstruction

The estimated disparity map must now be converted from 2-D points to 3-D world
coordinates. Triangulation is the process used to project the points in the 2-D images to
world coordinates given the disparity map and the geometry of the stereo camera. The
geometry of the stereo camera is obtained in the calibration step. Triangulation can be
described as given below [36]:

In Figure 3, the point P is a 3-D point in world coordinates. Point P is observed at
points Pl and Pr in the left and right image planes, respectively. We assumed that the
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origin of the coordinate system coincided with the center of the left imaging sensor. From
triangular similarity (∆PMCl~∆PlLCl), we obtain:

x
z
=

x′l
f

(2)
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Figure 3. The above plot illustrates how projections of a 3D-point on the x-axis of the stereo-image is
used to estimate real-world coordinates. P is a 3-D world point with coordinates (x, y, z). Cl and Cr

represent the left and right cameras. L and R are the principal points (origin) of the left and right
cameras, respectively. zl and zr are the z-axes that are normal to the image plane of the two cameras.
Pl and Pr are the projections of the point P on the x-axis of the images in the left and right cameras,
respectively. X’l is the distance between the principal point L and the projection point Pl. Similarly, X’r
is the distance between the principal point R and the projection point Pr. M and N are the projections
of P on zl and zr, respectively. f is the focal length, and b is the baseline distance of the stereo camera.
X’l and X’r are used to estimate the disparity between the projections of point P on the left and right
image planes. Finally f, b, and disparity are used together to obtain the real-world depth z of the point.

Similarly, from the similar triangles ∆PNCr and ∆PrRCr, we obtain:

x− b
z

=
x′r
f

(3)

From Equations (2) and (3), we obtain:

z =
bf

x′l − x′r
(4)

Thus, the depth at various points in the image may be recovered by learning the
disparities of corresponding image points. Once z is obtained, x and y can be calculated,
and the 2-D image point can be projected in world coordinates. Since we have a dense
disparity map, we can obtain a dense point cloud.

2.7. Volume Estimation (for FOODCAM)

After the point cloud is obtained, integration can be used to obtain the volume of the
object. A voxel is the smallest 3-D unit that can be measured (similar to a pixel in 2-D). We
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assumed that each point in the point cloud surface represents one voxel bar consisting of
many unit voxels. The surface area of one voxel can be obtained by multiplying the unit
lengths in the x- and y-axes. The volume of one voxel bar can be obtained as follows:

Vvbar = Avoxel × hvbar (5)

where hvbar is the height of each voxel bar as measured from the 3-D depth map. The surface
of the dish or plate in each point cloud is considered as the base or bottom of the object. The
surface area of the voxel is the square of the pixel resolution (0.5 mm × 0.5 mm) in the x- and
y-axes. The height is the distance from the base of the object to the top of the voxel bar.

Once the volumes of all the voxel bars are calculated, we can obtain the volume of the
object as given:

Volume of Object =
n

∑
i=1

Vvbar,i (6)

2.8. PMD CamBoard Pico Flexx

The CamBoard Pico Flexx is a 3D camera development kit based on pmd Time-of-
Flight (ToF) technology. It is a slim external USB device, about the size of a pack of gum, for
flexible 3D sensing use cases using a VCSEL based IR illumination (Laser Class 1). X, Y, and
Z values for every pixel resulted in a point cloud of the observed scene. In addition to the Z
value, every pixel provides a gray value, which represents the signal strength (amplitude)
of the active illumination, so this is an IR gray value image. It can be used for standard
2D image processing, and is perfectly aligned to the depth image. It is also not affected
by background light, so it is a very robust 2D image in every light condition. This data
also directly correspond to the depth data quality, so it gives a performance indication for
the depth data. This depth camera was placed at approximately five feet to capture data
to compare to the FOODCAM. The Pico Flexx camera depth images, once captured, were
processed using MATLAB 2020B. The grayscale images were used to segment the region of
interest, and then the final point clouds were obtained. The volumes of these point clouds
were calculated using the alpha shape [37] watertight model for point clouds. An alpha
shape creates a bounding volume that envelops a set of 3-D points.

3. Results

Five NASCO plastic food models—French fries, popcorn, chickpeas, chocolate brownie,
and banana (Figure 4)—were selected to validate the proposed volume estimation method.
The volume of each food item was measured using the water displacement method. Each
food item was placed on a food tray.
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The test objects (with the tray) were placed at random positions on the table (Figure 5).
At each position, four sets of stereo RGB and RGB + IR images were captured from the
FOODCAM and four sets of depth and grayscale images were captured using the Pico
Flexx cam. Samples of RGB and RGB + IR stereo image pairs are shown in Figure 6. Sample
grayscale image captured from Pico Flexx camera is shown in Figure 7. The RGB + IR
image pairs were used to obtain the food volume. RGB images can be used to identify
the food items and used as masks for 3D models to better identify regions of interest in
the image scene. Figure 8 depicts stereo image rectification. It can be seen in the image
that the unrectified images were not aligned vertically. This misalignment is caused by
the manufacturing of the FOODCAM device. Once the images are rectified, they are
processed using the SGM algorithm for disparity estimates. Figure 9 depicts the disparity
map obtained for a sample set for French fries.
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Figure 9. Disparity map obtained after stereo matching the left image with respect to the right image;
the color bar represents the disparity level.

A trained research assistant manually segmented the region of interest using the RGB
images. The tray was selected as the region of interest. Each region of interest was then
separated into the background (tray) and foreground (food item) object using the point clouds.

The height (hvbar) of each voxel of the food item was then calculated from the top of
the tray. The volume was then calculated as in Equation (6).

Figure 10 presents the segmented point clouds obtained for the five food models.
Table 3 summarizes the results of the volume estimation from the Pico Flexx cam. The mean
absolute error in volume estimation for the five test items was 16.62%. Table 4 summarizes
the results of volume estimation from the FOODCAM. The mean absolute error in volume
estimation for the five test items was 5.40%.
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Table 3. Errors in volume estimation using the Pico Flexx cam.

Food Item Random
Position

Predicted Volume (mL) Mean Predicted
Volume (Mean ±

Std. Dev.)
Ground Truth

Mean Error in
Volume Estimation
(Mean ± Std. Dev.)Trial 1 Trial 2 Trial 3 Trial 4

Chickpeas

1 77.58 75.2526 75.2526 78.3558

75.84 ± 2.07 mL 100 mL −24.17 ± 2.01%2 76.0284 76.8042 74.4768 80.6832

3 73.701 74.4768 73.701 73.701

French Fries

1 147.54 144.5892 146.0646 141.6384

146.66 ± 3.42 mL 180 mL −18.58 ± 1.90%2 140.163 151.9662 144.5892 147.54

3 149.0154 151.9662 147.54 146.0646

Popcorn

1 100.41 95.38 103.412 98.392

100.14 ± 3.015 mL 130 mL −22.97 ± 2.31%2 95.38 103.412 102.408 104.416

3 98.392 97.388 102.408 100.4

Chocolate
Brownie

1 135.44 131.81 131.81 134.5

133.90 ± 3.35 mL 135 mL −0.81 ± 2.48%2 130.465 138.535 131.81 138.535

3 133.155 129.12 139.88 131.81

Banana

1 96.192 97.194 98.196 99.198

100.16 ± 2.65 mL 120 mL −16.57 ± 2.20%2 103.206 99.198 101.202 105.21

3 97.194 103.206 101.202 100.2

Mean Absolute Error: 16.62%

Table 4. Errors in volume estimation using FOODCAM.

Food Item Random
Position

Predicted Volume (mL) Mean Predicted
Volume (Mean ±

Std. Dev.)
Ground Truth

Error in Volume
Estimation (Mean ±

Std. Dev.)Trial 1 Trial 2 Trial 3 Trial 4

Chickpeas

1 103.47 96.27 89.92 88.84

93.77 ± 5.33 mL 100 mL −6.23 ± 5.33%2 101.99 100.24 86.74 91.87

3 92.79 94.23 89.04 89.82

French Fries

1 166.22 164.76 163.15 165.40

169.67 ± 8.04 mL 180 mL −5.73± 4.46%2 165.65 164.85 190.07 166.98

3 166.07 180.80 164.98 177.18

Popcorn

1 134.61 123.65 127.80 137.74

137.53 ± 7.95 mL 130 mL 5.79 ± 6.12%2 137.98 149.75 143.44 150.04

3 142.30 136.61 127.67 138.83

Chocolate
Brownie

1 141.29 137.32 142.12 136.03
143.88 ± 5.46 mL 135 mL 6.58 ± 4.04%

2 148.91 152.29 143.86 149.20

Banana

1 108.86 118.38 130.28 117.82

115.58 ± 9.74 mL 120 mL −3.68 ± 8.11%2 126.28 118.29 125.67 124.72

3 102.03 103.44 101.94 109.28

Mean Absolute Error: 5.60%

4. Discussion

FOOODCAM device is based on a novel approach to FPSE. It combines two state-of-
the-art technologies in depth/3-D reconstruction.

The advantages of the proposed approach are five-fold:
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1. The IR projector provides an artificial texture that facilitates the stereo matching
algorithm for food scenes, where major portions of the image may be flat and texture-
free (e.g., plate or table surface). In traditional methods, matching accuracy suffers
due to ambiguities in matched pixels on such surfaces.

2. The problem of matching the structured light from the projector and the light pattern
projected in the image, as in the case of structured light reconstruction, is replaced by
a more straightforward stereo-correspondence problem, allowing the use of a random
projection pattern, and thus, a less expensive projector.

3. The projector or the pattern in the proposed method does not need calibration. Any
random pattern can be used, thus reducing the cost and complexity of the projector
being used.

4. The proposed approach does not require any fiducial markers.
5. Once the device is calibrated, it can be fixed to a location to monitor food intake. The

same calibration parameters can be stored and re-used for that device. In other words,
the calibration only needs to be conducted once.

FOODCAM has a unique characteristic of capturing two separate stereo image pairs.
The RGB + IR pair is primarily used for portion size estimation using structured light-stereo
vision-based volume estimation. The RGB pair can be used for other dietary assessment
purposes such as food type recognition. The FOODCAM design conforms to specific spatial
resolution requirements. FOODCAM provides a resolution of 0.55 mm in the (x,y) plane and a
resolution of 1.26 mm in the z-direction (voxel resolution) at the optimal height of installation.

The current study was conducted using the continuous image capture mode. FOOD-
CAM, unlike other 3D scanners, can capture a temporal sequence of images and possibly be
used to construct a temporal sequence of 3-D scans. The temporal aspect of the FOODCAM
can be used to track food intake from the beginning of the meal to the end of the meal. This
way, the FOODCAM may be used to detect intake behavior such as eating rate as well as to
estimate the actual food amount consumed (by considering the portion of leftovers). The
motion-activated mode was primarily included to increase battery life. The FOODCAM
has a battery that lasts for more than a day and can be used in remote locations without
any additional wiring.

Another possible use of FOODCAM is to monitor cooking. It can be used to track the
meal preparation from start to end, identifying ingredients and the recipe. The multispectral
aspect of the FOODCAM may also be used to detect energy dense items as in [38] and
could be one possible future work.

The FOODCAM is a passive device and can be used in wild, free-living conditions.
However, the FOODCAM is intended to be positioned straight above the region of interest,
which provides an overhead view of the scene. This position/orientation can be difficult
to achieve all the time. One possible solution is to use a tripod or support system onto
which the device can be mounted. The device has been tested at indoor locations outside
the laboratory. The indoor locations all had closed rooms with indoor artificial lighting
with minimal sunlight. How the device will behave in outdoor locations or in locations
with plenty of sunlight is not known. Testing under different lighting conditions could be a
possible future direction.

An important point to consider is that the FOODCAM provides a dense point cloud.
Most of the FPSE methods that were proposed previously suffered while testing irregularly-
shaped food items. The dense disparity maps and point clouds obtained from the FOOD-
CAM were robust and work well on irregular shaped or bulk plastic food models. Future
work could include real foods. A major concern of using FOODCAM is the noise caused by
bright reflective spots in the images. It was seen that bright spots on the table produced
noise in the disparity map (Figure 6).

The design section of the paper discusses the ideal design parameters for the function-
ing of the proposed two-camera approach. The area and the pixel resolution are practically
estimated from the camera. We then identified the optimal height of installation for the
camera using these measurements. We identified 152.3 cm (from the eating surface) to be



Sensors 2022, 22, 3300 12 of 14

optimal for our design considerations. However, we cannot guarantee that the camera
will be accurately placed at the desired height at all times. We used this distance as a
guideline for our processing and assumed that the pixel resolution was 0.55 mm at all
depths, irrespective of how big the food item was.

We noticed that the error in volume estimation was not linear across multiple trials.
This is essentially because of the variations or fluctuations in the IR projector and the
lighting conditions. Since there was a delay between image capture in the left and right
cameras, the image capture was not at the same instant, unlike in other stereo-cameras.
This delay induced variations in the light and IR pattern intensity in the RGB + IR images.
These variations were translated into variations in the final volume estimation, which was
preceded by the stereo-matching algorithm.

Another point to be noted is that the FOODCAM needs to be positioned parallel to
the surface, looking straight down to achieve optimal performance. This is not always
possible, but is acceptable for indoor locations. Additionally, the optimal distance to the
eating surface should be approximately 152.4 cm (5 ft), as calculated. This is a limitation
since the FOODCAM needs a specific setup for optimal use. In [39], the authors discussed
a similar setup for monitoring food intake. The study utilized the universal eating monitor
(UEM) that was previously tested under restricted eating conditions, in order to detect and
measure individual bites. The paper described a new algorithm to eliminate the limitation
of previous studies. A table-embedded scale to be used to measure individual bites during
unrestricted eating proved to be a potential alternative to traditional FPSE. Similarly, the
FOODCAM can potentially be used during unrestricted eating, and future work could
include these analyses.

The results indicated that the picocam provides high precision (low values for std. dev
in error in volume estimation). There are numerous other devices such as the picocam that
can be used for FPSE. However, one immediate point to be noted is the power consumption
of these products. The FOODCAM can last for at least 12–14 h in the continuous capture
mode and up to three days in the motion-activated capture mode. Additionally, the device
can store data captured during the entire duration of this period on the device memory,
therefore, making the FOODCAM a passive and standalone device. The FOODCAM can
also provide high resolution RGB images unlike in other depth modules and therefore, is
not only capable of depth estimation, but can be used for other tasks of dietary assessment.

A limitation of this paper is the quantity and variety of trials to test the accuracy of
the devices. Only five food items were tested in this study, which does not replicate the
variety of foods in reality. The number of food items (five) and number of measurements
for each food item (12) may not be enough to validate the use of FOODCAM for daily use
in FPSE. Future work may include the use of FOODCAM in varying conditions and the
test set could include a larger number of food items and more number of measurements to
test the use of this device in free-living and real-world scenarios.

At the present moment, image segmentation is conducted manually by a trained
assistant. Image-based food segmentation, followed by image-based food recognition, are
important steps in dietary assessment; however, our current focus is on the estimation of
portion size. Energy density can be calculated by food type recognition (either conducted
by computer vision or manually by the user), followed by a simple database search. Seg-
menting food items is a major step in the process, and we intend to automate it in the
future; however, this remains a major limitation of this paper. In the future, this additional
step could be eliminated, leading to fully automated FPSE. A possible solution is to include
food segmentation to identify the food item/ object of interest. Additionally, the approach
used to estimate volume assumes that the objects have a flat bottom. Food items and other
objects that have concave bottoms may introduce errors in estimation.
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5. Conclusions

In this study, a novel approach for FPSE using imaging sensors was proposed. The
method combined two state-of-the-art volume estimation methods and did not require
fiducial markers. The FOODCAM was tested using five NASCO plastic food models. The
mean absolute error in volume estimation was 5.60%, suggesting that the FOODCAM can
be used as a reliable method for FPSE.
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