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Abstract: The technology of fault diagnosis is helpful to improve the reliability of wind turbines,
and further reduce the operation and maintenance cost at wind farms. However, in reality, wind
turbines are not allowed to operate with faults, so few fault samples could be obtained. With a
small amount of training data, traditional fault diagnosis models that need huge samples under a
deep learning framework are difficult to maintain with high accuracy and effectiveness. Few-shot
learning can effectively solve the problem of overfitting caused by fewer fault samples in model
training. In view of model-agnostic meta-learning (MAML), this paper proposes a model for few-
shot fault diagnosis of the wind turbines drivetrain, which is named model-agnostic meta-baseline
(MAMB). The training data is input to the base classification model for pre-training, then, some data
is randomly selected from the training set to form multiple meta-learning tasks that are utilized
to train the MAML to finally fine-tune the later layers of the model at a smaller learning rate. The
proposed model was analyzed by the small samples of the bearing data from Case Western Reserve
University (CWRU) data, the generator bearings, and gearboxes vibration data in wind turbines
under randomly changing operating conditions. The results verified that the proposed method was
superior in one-shot, five-shot, and ten-shot tasks of wind turbines.

Keywords: few-shot learning; fault diagnosis; model-agnostic meta-learning; wind turbines

1. Introduction

As the installed capacity of wind turbines increases rapidly, the technology of condi-
tion monitoring and fault diagnosis attracts more attention to guarantee the operational
reliability of wind turbines. The huge vibration data collected from wind farms prompts the
development of intelligent diagnosis of wind turbines, which is driven by the progress of
the technology of artificial intelligence. However, in reality, wind turbines are not allowed
to run with faults. When a fault occurs, the wind turbine has to shut down. Therefore, the
collected operating data are mostly normal data under healthy status, with very few fault
data. Obviously, these kinds of data from wind turbines are insufficient to train an intelli-
gent classification model using traditional deep learning, due to the potential overfitting
caused by sample imbalance and type imbalance. Data augmentation and regularization
techniques can alleviate the overfitting caused by low data volume [1]. Data augmentation
refers to the addition of data by manual rules such as pan, flip, cut, and rotate. Designing
these rules relies heavily on domain knowledge and requires expensive labor costs. Reg-
ularization can be used to correct the direction of descent. However, neither of the two
methods can fundamentally solve the overfitting problem when data are extremely scarce.

Few-shot learning can train deep models with very limited data and solve the problem
of overfitting caused by a small number of fault samples. The current few-shot learning
makes full use of the advantages of deep neural networks in feature representation and
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end-to-end model optimization to solve the overfitting problem from different perspectives,
e.g., generative modeling, metric learning, and meta-learning [2].

Generative modeling is an intuitive method to increase the number of training samples
and enhance the diversity of data. Generative adversarial networks (GAN) have been
widely used in recent years due to their excellent performance. Hu et al. proposed a data
augmentation algorithm based on order tracking and a self-adaptive convolutional neural
network for fault diagnosis [3]. Zheng et al. achieved data augmentation by improving
GAN to enhance the accuracy of imbalance fault diagnosis [4]. However, when data is very
scarce, generative modeling cannot be trained well and may suffer from pattern collapse,
which in turn leads to poor results.

The main goal of metric learning is to learn a similarity metric under the circumstance
where a pair of similar samples can obtain a higher similarity score while nonsimilar pairs
obtain a lower similarity score. Ren et al. proposed a capsule autoencoder model based on
a capsule network for intelligent fault diagnosis of few shots [5]. Based on metric learning,
siamese neural networks [6,7], neural networks with external memories [8,9], relation
networks [10], and graph neural networks [11] have been successfully applied to few-shot
learning. The results of metric learning depend on the sampling strategy. If the sampling
strategy is too simple, only simple samples will be learned; if the sampling difficulty is too
high, it will lead to slow convergence, nonconvergence, or even overfitting.

Meta-learning, also known as “learning to learn”, is similar to the way that humans
learn by analogy and inference. Meta-learning attempts to improve the network’s ability
to learn higher-level tasks, rather than only classification tasks, by learning the feature
representation of the task and generalizing on new tasks. Few-shot learning is a concrete
application of meta-learning in the field of supervised learning. Hospedales et al. pro-
vide a detailed overview of meta-learning from various aspects including research areas,
algorithm improvements, and application challenges [12]. Currently, meta-learning has
been widely used in the field of image recognition [13–16]. Specifically in meta-learning, it
randomly selects a series of few-shot classification tasks from training samples, extracts
general knowledge as additional information, and optimizes the model to perform well on
testing tasks, which can effectively solve the problem of overfitting in training a learning
model with few samples.

Meta-learning-based few-shot learning has been gradually applied in the field of
fault diagnosis. Wu et al. constructed seven few-shot transfer learning methods based
on 1D convolutional networks based on meta-learning [17]. Wang et al. proposed a meta-
learning model in the light of a feature space metric for fault diagnosis of bearings [18].
Feng et al. proposed a semi-supervised meta-learning network with squeezed incentive
attention for low-probability fault diagnosis [19]. Su et al. presented a novel method called
data reconstruction hierarchical recurrent meta-learning for bearing fault diagnosis under
different working conditions [20]. Wang et al. proposed a metric-based meta-learning
method named Reinforce Relation Network for bearing fault diagnosis [21].

The aforementioned meta-learning-based fault diagnosis mainly aimed at the testbed
data under certain working conditions and realized the transfer from one fixed working
condition to another working condition. However, the actual wind turbine operating
conditions vary randomly, and compound failures often occur. The fault diagnosis of wind
turbines is of great importance. As an innate monitoring system equipped in wind turbines,
supervisory control and data acquisition (SCADA) cover a wide range of subassemblies
by abundant monitoring parameters, e.g., wind speed, rotational speed, vibration, cur-
rent, voltage, wind power, etc. Encalada et al. proposed a predictive model using only
SCADA data, which can work under different and varying operating and environmental
conditions [22]. Castellani et al. detected anomalies in damaged wind turbines based on
the novelty index of the Mahalanobis distance [23]. Meyer et al. proposed a new fault
diagnosis method that combines autonomous data-driven learning of fault signatures and
health state classification based on convolutional neural networks and isolation forests [24].
Artigao et al. identified the frequency components associated with a fault from the current
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spectrum of a faulty wind turbine motor and compares it with the current spectrum of a
healthy motor to achieve fault diagnosis [25].

SCADA-based time series for anomaly detection in wind turbines is of great practical
importance [26–34]. However, there are currently some limitations in using SCADA for fault
diagnosis of wind turbines. SCADA cannot monitor vibrations at multiple measurement
points and locations as a wind turbine condition monitoring system (CMS) can. Very precise
fault location of wind turbines is not possible with SCADA data, for example, SCADA data
cannot determine whether the inner or outer ring of a bearing is faulty or detect compound
faults in multiple gears of a gearbox. The use of CMS can solve the limitations of SCADA
and can effectively diagnose the specific fault location.

Our group has done a range of work on fault diagnosis for wind turbines using CMS.
In the literature [35] the complex wavelet transform was used to extract weak faults in the
wind turbine gearbox by analyzing the strips of the multiscale enveloping spectrogram
(MuSEnS) on different scales. Conventional demodulation analysis, cyclic coherence func-
tion, complex wavelet transform, and spectral kurtosis were used to analyze the vibration
signals of a real 2 MW wind turbine generator with a faulty bearing [36]. Empirical wavelet
transform was utilized to adaptively find weak fault frequency in the planetary stage as
well as evident fault characteristics in other ordinary stages [37]. The normalized multi-
stage enveloping spectrogram was presented to reveal the fault characteristic frequencies
of planetary gears and bearings [38]. The literature [39] reviewed almost all the research on
the vibration-based diagnosis algorithm for wind turbines in the past decade.

The above research mainly addresses the problem of variable operating conditions,
compound faults and weak faults in wind turbines from the perspective of signal processing.
Signal processing often requires some prior knowledge and expert experience. In contrast,
deep learning does not require too much human intervention and can effectively improve
the intelligence of fault diagnosis. CMS is more expensive and requires additional hardware
and software costs. Therefore, in reality, CMS does not have access to sufficient sample data
as SCADA does. In practical situations, wind turbine fault samples are few, and the specific
operating conditions at every moment cannot be accurately obtained. Therefore, wind
turbines’ few-shot learning requires a more powerful meta-learning model. In combination
with convolutional neural network (CNN) pre-training, MAML, and fine-tuning, this
paper makes full use of CNN’s classification ability, MAML’s generalization ability to learn
new tasks, and fine-tuning’s ability to further optimize parameters, so as to better solve
the problem of wind turbine few-shot fault diagnosis under variable working conditions
and noise.

In this paper, a novel few-shot fault diagnosis model of wind turbine drivetrain based
on model-agnostic meta-learning (MAML) is carried out. Three types of vibration data are
analyzed to verify the advantages of the proposed model, including the few-shot case of
the bearing data from Case Western Reserve University (CWRU), the few-shot case of wind
turbine generator bearing, and the few-shot case of wind turbine gearbox. Each class of
data contained data in both x and y directions, all sampled at 1 s. All training data was
input into the classifier to train a base model, i.e., the base classifier, then, randomly selected
samples from the training datasets were used to build the meta-learning task, and the base
classifier was further updated using MAML; further, the optimal classifier was achieved by
fine-tuning. The rest of this paper is organized as follows: Section 2 introduces the basic
concepts of few-shot learning and MAML. In Section 3, a few-shot fault diagnosis model for
wind turbines based on MAML is proposed. In Section 4, the on-site wind turbine datasets
are input into the proposed model for training and testing, and the results are analyzed.
Section 5 concludes the paper.

2. Few-Shot Learning and Meta-Learning
2.1. Few-Shot Learning Based on Meta-Learning

Meta-learning was originally driven by the human learning process, where humans
can learn to recognize a new object with a few instances. The model contains the training
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set and the testing set. The training set comes from the source domain, the testing set
shares the same label space and comes from the target domain, and the source domain
does not intersect with the target domain. In the training meta-learning process, k data
are selected from the training set as the support set S, and q data as the query set Q. If the
support set contains c categories with k labeled data in each category, the few-shot problem
is called a c-way k-shot. Since the number of labeled samples in the support set is extremely
small, meta-learning is performed on the training set to extract transferable knowledge and
classify the testing set.

The support set S and query set Q are extracted from the source domain data, the
support set is used as a labeled sample to generate prototype features for the model, and
the query set is used as a training sample to update the model. Both the support set and
query set form a meta-task, and multiple meta-tasks form a training set. For a c-way k-shot
problem, during the training phase, c categories are randomly selected in the training
set, and k samples are selected from each category (a total of k × c data) to construct
a meta-task as the support set of the model S = {(xi, yi)}m

i=1 (m = k × c); then a batch
of samples from the remaining data in these c categories are selected as the query set
Q = {(xi, yi)}n

i=1 (n = q × c) to update the model.
During the training process, different meta-tasks are sampled for each training, so

overall, the training contains different combinations of categories, and this mechanism
enables the model to learn common parts of different meta-tasks, such as how to extract
important features and compare sample similarities. The models learned through this
learning mechanism will perform better at classifying when facing new unseen meta-tasks.

2.2. Model-Agnostic Meta-Learning

Finn et al. proposed model-agnostic meta-learning (MAML) [40], which is compatible
with any model trained with gradient descent, by explicitly training the parameters of
the model so that a new task requires only a small number of gradient steps and a small
amount of training data to produce good generalization performance. The method has
achieved good performance in computer vision [41–43], speech recognition [44,45], and
reinforcement learning [46].

The MAML meta-gradient update involves a gradient through a gradient, i.e., MAML
is based on a secondary gradient, which provides many flexibilities for MAML to adapt
to different models. The MAML update process is shown in Figure 1. Define the model
as f, the parameter of the model as φ, and its initialization parameter as φ0. For discrete
classification tasks with a cross-entropy loss, the loss is:

LTi ( fφ) = ∑
x(j),y(j)∼Ti

y(j) log fφ(x(j)) + (1− y(j)) log(1− fφ(x(j))) (1)

where x(j), y(j) are an input/output pair sampled from task Ti.
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Figure 1. MAML update process. Figure 1. MAML update process.

Figure 2 illustrates the process of MAML update step by step, assuming that the
learning rate for a single task θ update is γ and the learning rate for model φ update is η,
the steps of MAML are as follows:
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(1) For task θi, compute the gradient on the support set S and update the parameters:

θi
′ = θ − γ∇θ LTi ( fθ) (2)

(2) Calculate the sum of the losses of all tasks on the query set:

L(φ) = ∑Ti∼p(Ti)
LTi ( fθi

′) (3)

(3) Update the initialization parameters:

φ← φ− η∇φL(φ) (4)

As shown in Figure 3, the original intention of MAML is to find the appropriate
parameter φ that makes it possible to descend to the global optimum regardless of the loss
curve of task1 or task2.
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2.3. Fine-Tuning the Model

Due to the bias in the distribution of the source and target domains, direct classification
of the target domain by the base model trained in the source domain usually does not
achieve the desired effect. Fine-tuning the pre-trained model using the support set data in
the target domain will be beneficial to further improve the classification accuracy of the test
set by fine-tuning the parameters of the fully connected layer or the top few layers of the
base model. Howard et al. proposed a general fine-tuning language model by varying the
learning rate [47]. Nakamura et al. used an adaptive gradient optimizer for fine-tuning
while using a lower learning rate during the few-shot retraining [48]. Gao et al. proposed a
few-shot fine-tuning method (LM-BFF) for fine-tuning based on language model cues [49].
Chua et al. provided risk bounds on the best predictor found by fine-tuning via gradient
descent [50].

3. Proposed MAMB for Few-Shot Fault Diagnosis

In this paper, based on MAML, we proposed a model named model-agnostic meta-
baseline (MAMB), which performs few-shot fault detection for multiple faults of wind
turbine generator bearings and gearboxes, and the model structure is shown in Figure 4.
A small number of existing fault samples of the wind turbine were used to build a meta-
learning model, and the model was updated through meta-tasking, which could effectively
detect the faults when the same faults occurred again.
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The classifier model contained three convolution layers, three BatchNorm1d, three
MaxPool1d, and one fully connected layer. The number of neurons in each layer is marked
in Figure 4. The activation functions of all layers were rectified linear units (Relu), except
for the last layer where the activation function was Softmax. All the data went through the
fast Fourier transform, and then it was fed into the model.

The fault diagnosis model was divided into the following steps:
In the first step, the baseline model was trained. All the training set data were input

into the classifier model, set the model as f, and updated the base model parameters with
the learning rate lr1 as 0.01.

In the second step, the meta-learning model was trained. Assuming a c-way k-shot
learning task, k pieces of data of each class were randomly selected from the training data as
the support set S, another q pieces of data were selected as the query set Q, and the support
set and query set formed a meta-learning task. N meta-learning tasks were constructed.
The initial parameters of the MAML model were selected from the trained baseline model,
and each task was used to update the MAML parameters. The updated learning rate of
each task was lr2 as 0.002, and the updated learning rate of MAML was lr3 as 0.001.

In the third step, the meta-learning model was fine-tuned. We randomly selected data
from the training data to fine-tune with a learning rate lr4 of 0.0005. As shown in Figure 4,
this paper only fine-tuned the last two blocks (green) and froze the first two blocks (black).

In the last step, the test set data were fed into the fine-tuned model for classification
and solved for accuracy. The feature embedding was visualized by t-distributed stochastic
neighbor embedding (t-SNE) to test the effectiveness of the proposed model.

Backpropagation updates from the first step to the third step are carried out according
to Equation (5).

LTi ( fφ) = ∑
xi ,yi∼Ti

[yi log fφ(xi) + (1− yi) log(1− fφ(xi))] (5)

The complete algorithm flow is shown in Algorithm 1.
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Algorithm 1. few-shot (c-way-k-shot) fault diagnosis based on MAMB.

Input: Input training data Tr = {(xi, yi)}M
i=1, testing data Te = {xi}I

i=1, classified model f, model
parameters φ, meta-learning model task parameters θ, updated learning rate lr2 of task θ, updated
learning rate lr3 of model φ, updated learning rate lr4 of fine-tuning.
########################(1) Pre-training baseline models ####################
1: For each training epoch, do:
2: For each batch, do:
3: ci = fφ(xi)
4: Backward propagation (with the learning rate as lr1):
L( fφ) = ∑

xi ,yi∼SSi

[yi log fφ(xi) + (1− yi) log(1− fφ(xi))]

5: end
########################(2) train MAML models ############################
6: Randomly draw data from Tr to form N tasks, each task containing k support sets and q query
sets, to form {(S1, Q1), (S2, Q2), · · · , (Sn, Qn)}
7: For each training, do:
8: For each batch, do:
9: ci = fθ (Si), l = yilogci +(1 − yi)log(1 − ci)
10: Update parameters θi = θi − lr2∇φl
11: cqi = fθ (Qi)
12: ln(φ)= yilogcqi +(1 − yi)log(1 − cqi)

13: Calculate L(φ) =
N
∑

n=1
ln(φ), Backward Propagation: φ← φ− lr3∇φL(φ)

14: end
###################### (3) Fine-tuned meta-learning model ##################
15: Randomly draw data Si from Tr
16: For each training, do:
17: ci = fφ (Si)
18: Backward Propagation: φ← φ− lr4(∇φL(φ))
19: end
###################### (4) testing results and t-SNE #########################
20: For the test set, calculate cTi = fφ (Tei), calculate the accuracy, and draw the t-SNE diagram.
Output: optimized meta-learning model and testing results.

As the working conditions of wind turbines are randomly changing, the working
conditions are not stable and constant for the data of wind turbines over a period of time,
and the working conditions of the data are unknown. Therefore, in this paper, we took
the first 15 data (the first 15 data span a short period of time and could be considered as a
constant condition) as training data and the next 240 pieces of data as testing data. While
the testing set had unknown conditions (perhaps the same conditions as the training set,
or perhaps not), this paper does not make a specific subdivision of the source and target
domains. It only solves the results of a large number of testing data when the training
model had only a small amount of data in a single working condition.

The update function used in this model was Adam, with 100 training epochs for the
pre-trained base model, 200 training epochs for the meta-learning update, and 100 training
epochs for the fine-tune. The batch size was 32. In the MAML training step, the sample
size of the query set was 5.

4. Case Analysis

In this section, three few-shot learning cases are analyzed to verify the advantages of
the proposed model, including the few-shot case of the bearing data from Case Western
Reserve University (CWRU), the few-shot case of wind turbine generator bearing, and the
few-shot case of wind turbine gearbox.

All the three types of data were vibration data. Case 1 was the bearing data from
the Case Western Reserve University (CWRU) data, selected from 12DriveEndFault, with
operating conditions of 1730, 1750, and 1772 rpm, a sampling frequency of 12 kHz, and
a sampling time of 1 s. Case 2 was wind turbine generator drive-end bearing vibration
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data from field operation, with a sampling frequency of 25,600 Hz and a sampling time of
1 s. Case 3 was wind turbine gearbox vibration data from field operation, with a sampling
frequency of 25,600 Hz and a sampling time of 1 s. The input channels provided to the
model were the x and y directions of the vibration data.

To further validate the proposed model of MAMB, we compared it with some few-
shot or transfer learning algorithms, such as CNN, the Siamese net [7], and the MAML
net [40]. To make a fair comparison, we used the same datasets, the same data preprocessing
methods (fast Fourier transform), the same classified model, the same epochs, and the
same learning rates. Three case studies with one-shot, five-shot, and ten-shot settings
were conducted.

4.1. Case 1: Fault Diagnosis of CWRU Datasets

In this case, a few-shot fault diagnosis of the CWRU datasets in the drive end was
conducted. The available samples are shown in Table 1. The samples contained one
category of health data and three kinds of fault data, and each category contained 260 data.

Table 1. Fault description of CWRU data.

Fault Type Label Number of Samples
from the Training Set

Number of Samples
from the Testing Set

Healthy 0 100 240
Outer Race 6 1 15 240
Inner Race 2 15 240

Rolling fault 3 15 240

In practical working conditions, healthy data is easy to collect, but fault data is difficult.
Therefore, in this case, there were 150 data in the health data training set and 15 data in
each of the three faults. Data from the 20th to the 260th of each class was used as a testing
set to test the model classification accuracy. This example analyzed the results of four-
way-one-shot, four-way-five-shot, and four-way-ten-shot, respectively, and compared with
CNN, the Siamese net [7], and the MAML net [40]. The final t-SNE is shown in Figures 5–7.
The accuracy is displayed at the top of each chart.
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The fault classification accuracy of the different algorithms using the CWRU dataset is
shown in Table 2. The proposed model MAMB already showed relatively high classification
accuracy (91.64%) in the four-way-one-shot while reaching 95.78% and 97.21% in the four-
way-five-shot and four-way-ten-shot, respectively. The average accuracy was 14.4% higher
than that of CNN, 21% higher than that of Siamese net, and 9% higher than that of MAML.

Table 2. Comparison of MAMB with different algorithms in the few-shot diagnosis of the CWRU data.

Algorithms 4-Way-1-Shot 4-Way-5-Shot 4-Way-10-Shot Average

CNN 73.82% 79.81% 87.67% 80.43%
Siamese net [7] 63.08% 63.0% 62.92% 63%

MAML [40] 80.57% 86.4% 89.27% 85.41%
MAMB (proposed model) 91.64% 95.78% 97.21% 94.88%

4.2. Case 2: Fault Diagnosis of Generator Bearings for Wind Turbines

In this case, a few-shot fault diagnosis of the generator bearings for wind turbines was
conducted. The available samples are shown in Table 3.
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Table 3. Fault description of generator bearings for wind turbines.

Fault Type Label
Number of

Samples from
the Training Set

Number of
Samples from
the Testing Set

Healthy No faults 0 100 240
Fault 1 Outer ring failure 1 15 240

Fault 2 Inner ring failure +
Outer ring failure 2 15 240

Fault 3
Inner ring failure +

Rolling failure +
Cage failure

3 15 240

The generator bearing data for the wind turbine included health data and three types
of faults, and each category contained 260 data. The latter two faults were compound
faults. In the actual operating conditions, wind turbines mostly have compound faults, and
this paper studies the few-shot problem of compound faults, which has better engineering
significance. At the same time, the operating conditions of wind turbines are changing
at any time, and the first 15 data were taken for training in this paper. Usually, the latter
240 data are in different operating conditions from the training data. The model could also
be further tested for different operating conditions.

This case analyzed the results of four-way-one-shot, four-way-five-shot, and four-
way-ten-shot, respectively, and compared with CNN, the Siamese net [7], and the MAML
net [40]. The final t-SNE is shown in Figures 8–10. The accuracy is displayed at the top of
each chart.
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The fault classification accuracy of the generator bearings for wind turbines using
different algorithms is shown in Table 4. The proposed MAMB model showed relatively
high classification accuracy (89.48%) in the four-way-one-shot while reaching 95.73% and
96.4% in the four-way-five-shot and four-way-ten-shot, respectively. The average accuracy
was 24% higher than that of CNN, 21% higher than that of Siamese net, and 22% higher
than that of MAML.

As the operating conditions of wind turbines change all the time, it can be seen that
the classification accuracy of CNN, Siamese net, and MAML was much lower than that
of the CWRU data. However, the proposed model incorporated the basic classification
advantages of CNN and the learning advantages of MAML, and the test accuracy still
reached consistently high values.
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Table 4. Comparison of MAMB with different algorithms in the few-shot diagnosis of the generator
bearings for wind turbines.

Algorithms 4-Way-1-Shot 4-Way-5-Shot 4-Way-10-Shot Average

CNN 56.35% 74.9% 77.6% 69.62%
Siamese net [7] 72.92% 73.02% 73.23% 73.06%

MAML [40] 63.44% 74.38% 76.67% 71.5%
MAMB (proposed model) 89.48% 95.73% 96.4% 93.87%

4.3. Case 3: Fault Diagnosis of Wind Turbine Gearbox

This case focused on a few-shot fault diagnosis of the gearbox of wind turbines. The
available gearbox samples are shown in Table 5, and the samples contained one category
of health data and four kinds of fault data, each category contained 260 data. Fault 2 is a
compound fault.

In this example, there were 150 health data in the training set and 15 data for each
type of failure. Data from the 20th to the 260th of each class was used as a testing set to
test the model classification accuracy. This example analyzed the results of five-way-one-
shot, five-way-five-shot, and five-way-ten-shot, respectively, and compared with CNN, the
Siamese net [7], and the MAML net [40]. The final t-SNE is shown in Figures 11–13. The
accuracy is displayed at the top of each chart.

Table 5. Fault description of wind turbine gearbox.

Fault Type Label
Number of

Samples from the
Training Set

Number of
Samples from the

Testing Set

Healthy No faults 0 100 240

Fault 1 Spalling of gears in the
intermediate shaft 1 15 240

Fault 2
Broken teeth of gears in the

intermediate and
high-speed shaft

2 15 240

Fault 3 Broken teeth of gears in the
high-speed shaft 3 15 240

Fault 4 Broken teeth of gears in the
intermediate shaft 4 15 240
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The fault classification accuracy of wind turbine gearboxes using different algorithms
is shown in Table 6. The proposed model reached 86.44%, 90.94%, and 91.18% in the
five-way-one-shot, five-way-five-shot, and five-way-ten-shot, respectively. The average
accuracy was 14% higher than that of CNN, 21% higher than that of Siamese net, and 10%
higher than that of MAML.

Table 6. Comparison of MAMB with different algorithms in the few-shot diagnosis of the gearboxes
for wind turbines.

Algorithms 5-Way-1-Shot 5-Way-5-Shot 5-Way-10-Shot Average

CNN 67.31% 76.72% 82.18% 75.4%
Siamese net [7] 68.25% 68.33% 68.92% 68.5%

MAML [40] 76.09% 80.57% 82.09% 79.58%
MAMB (proposed model) 86.44% 90.94% 91.18% 89.52%
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4.4. The Impact of the Number of Training Data on the Results

This section analyses the effect of the number of training samples on the results using
MAMB, the accuracy result was shown in Table 7. The sample sizes of each class were 15
or 20. It can be seen that the accuracy of the model improved as the number of training
samples increased.

Table 7. The effect of the number of training samples on the results for wind turbines data.

No. of Shot 1-Shot 5-Shot 10-Shot

No. of Train Data 15 20 15 20 15 20

Bearing (4-way) 89.48% 90.02% 95.73% 96.08% 96.4% 97.2%
Gearbox (5-way) 86.44% 88.25% 90.94% 92.0% 91.18% 92.09%

5. Conclusions

Fault diagnosis of wind turbines plays an important role in improving the reliability
of wind turbines. However, the operating conditions of wind turbines change randomly,
and multiple faults often occur simultaneously. When fault samples are small, ordinary
deep learning can fall into overfitting, which in turn leads to low diagnostic accuracy.

Model-agnostic meta-baseline (MAMB)-based few-shot learning was presented in this
paper to achieve the few-shot diagnosis of compound faults of the wind turbines drivetrain
under variable operating conditions. The model consists of four steps: pre-training the
base model, training the MAML, fine-tuning, and testing.

This paper analyses the diagnosis of one-shot, five-shot, and ten-shot tasks of single
and compound faults in CWRU, wind turbine generator bearings, and wind turbine
gearboxes. It was also compared with other algorithms to verify the accuracy and stability
of the proposed method. The results are also presented by t-SNE.

The proposed model MAMB combines the advantages of CNN in basic classification
and MAML in learning new tasks. The results show that the proposed model MAMB was
superior to CNN, Siamese net, and MAML in the classification accuracy of three kinds of
data. Especially for wind turbine data, the accuracy of the proposed model MAMB was
higher than that of other models. This shows that the proposed model could solve the
problems of wind turbine variable operating conditions and composite diagnosis better.

In the future, the recognition of unknown classes of wind turbines should be further
considered through transfer learning.
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