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Abstract: The use of autonomous underwater vehicles (AUV) has increased in a wide range of
sectors, including the oil and gas industry, military, and marine research. The AUV capabilities to
operate without a direct human operator and untethered to a support vessel are features that have
aroused interest in the marine environment. The localization of AUV is significantly affected by the
initial alignment and the calibration of the navigation sensors. In this sense, this paper proposes a
thorough observability analysis applied to the latter problem. The observability analysis is carried
out considering three types of sensor fusion integration and a set of maneuvers, and the results are
validated through numerical simulations. As main contribution of this paper, it is shown how the
addition of position errors in the observation vector can decouple some gyro and accelerometer
biases from the latitude and altitude errors, particularly in the stationary observability analysis. The
influence of oscillations in the diving plane and typical AUV maneuvers are analyzed, showing their
relative impacts on the degree of observability of the inertial measurement unit (IMU)/Doppler
velocity log (DVL) misalignment and DVL scale factor error. Finally, the state’s estimation accuracy
is also analyzed, showing the limitation of the degree of observability as an assessment tool for the
estimability of the states.

Keywords: AUV; observability analysis; degree of observability

1. Introduction

Technological advances in recent years have promoted the development of autonomous
vehicles for a wide variety of sectors, including aerial, aquatic, and terrestrial applications.
Internet of Things and smart cities [1,2] inspection of oil and gas pipelines [3], swarm of
underwater robots [4], and autonomous cars [5] are some examples of recent applications
of autonomous vehicles.

Unlike terrestrial and aerial mobile robots, autonomous underwater vehicles (AUV)
should deal with particular boundaries related to the limited transmission of electromag-
netic signals underwater. Those limits consist of the absence of the localization measures
provided by satellite-based systems, and the absence of a high band and long range com-
munication with the human user who is at the surface. The first kind of limitation has an
impact at AUV self-localization, which is the subject of this work.

The initial alignment, which consists of determining the initial orientation of the
vehicle, and the calibration of the navigation sensors are key factors that significantly
influence the performance of AUV navigation.

The inertial measurement unit (IMU), Doppler velocity log (DVL), pressure sensor
(PS), and global positioning system (GPS) are navigation sensors widely used in AUVs [6].
Therefore, the proper estimation of the navigation sensor errors, e.g., inertial sensors biases,
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DVL scale factor error, and the misalignment between the IMU and the DVL, as well as the
alignment errors, are necessary to improve navigation performance.

The dynamic and observation models and the movements executed by the AUV affect
the performance of the estimation. In this sense, the observability analysis is important to
determine the efficiency of the Kalman filter in the estimation of the states [7].

A system is said to be observable if the initial states, at time t0, can be determined at
time t1, from observations of the inputs and outputs of the system taken at [t0, t1] [8]. The
observability analysis can be classified as qualitative and quantitative [9]. The qualitative
analysis is a binary criterion, defining only whether the system or its states are observable or
unobservable. This criterion was first proposed by Kalman [10]. The quantitative analysis,
in turn, defines how observable the system or its states are. This analysis is related to the
concept of the degree of observability.

According to Friedman [9], the rank of the observability matrix, its linearly indepen-
dent columns, eigenvalues, singular values, and determinant are some metrics used to
analyze the observability of a system. In particular, the matrix rank is extensively employed
in the qualitative analysis. Concerning the degree of observability, it can be calculated
using the degree of independence between the columns (or the singular values) of the
observability matrix/Grammian. The singular values, in particular, are largely employed
to determine the degree of observability numerically [11–15].

In the last years, observability analysis has been employed to the AUV navigation
problem, especially during its initial alignment and calibration phase, to evaluate the
observability of the navigation variables subject to maneuver conditions [14,16–20]. In [16],
it was shown that the observability of the DVL velocity error in the navigation frame is
influenced by the AUV angular movement. However, the dynamic model used in the
analysis did not include the vertical velocity error and the altitude error. Furthermore,
the misalignment between the IMU and the DVL and the DVL scale factor error were not
directly included in the dynamic model.

In [17], analytical expressions were derived for the UnObservable Subspace (UOS)
of the AUV navigation problem, considering the following maneuvers: (1) stationary,
(2) stationary with yaw angle variation, and (3) constant speed with yaw angle variation.
The UOS derivation was performed based on the determination of the kernel of the ob-
servability Grammian. However, the IMU/DVL misalignment and the DVL scale factor
error were, again, not included in the analysis. As a consequence, in the inertial navigation
system (INS)/DVL integration for the AUV static condition, the dimension of the UOS
was found to be 4, comprising the gyro bias error in the z-axis, the vertical alignment error,
and linear combinations of the north and east alignment errors with the accelerometer bias
errors in the x and y axes. Such a UOS dimension, however, is in disagreement with other
works [21,22], for which the dimension of the UOS, in the stationary case, was 3 (obviously
disregarding the position errors). For Bar-Itzhack and Berman [21], and Silva, Hemerly, and
Leite Filho [22], such UOS comprises linear combinations of the accelerometer bias errors in
the north and east directions with the alignment errors in the north and east, plus a linear
combination of the vertical alignment error with the gyro bias error in the east direction.

In addition, the dynamic model of INS error propagation presented in [17] did not
include the coupling term between the attitude error vector and the velocity error vector,
which contributed to the attainment of a UOS dimension equal to 4. In this sense, the
dynamic model of [17] can be seen as a simplification of the dynamic model presented
in [23], particularly chosen to facilitate the computation of the kernel of the observabil-
ity Grammian.

In [18], it was demonstrated that trajectories containing segments of type I (constant
attitude with linearly independent specific force variation in the body frame) and type
II (turning segments) make the attitude errors, the velocity errors, the inertial sensors
biases, the IMU/DVL misalignment, and the DVL scale factor error observable. However,
the degrees of observability of the state variables were not evaluated. The results of [19]
pointed out that the addition of vertical and translational movements in the AUV trajectory
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make the variables associated with the DVL calibration completely observable. The results
presented in [14,20] further show that the degrees of observability of the state variables
increased with changes in the direction of the trajectory.

In [14,19,20], however, the authors did not address the couplings between the state
variables, which are not distinguished by the Kalman filter [21]. Furthermore, in [19], the
variables associated with the initial alignment and the biases of the inertial sensors were
not included in the observability analysis. In [20], in turn, the IMU/DVL misalignment
was disregarded from the analysis, while in [14], the degrees of observability of the DVL
scale factor errors and the IMU/DVL misalignment were not evaluated.

Given the aforementioned open issues, this work performs quantitative and qualitative
observability analyses regarding the problem of the initial alignment and the calibration
of the navigation sensors of the AUV. The quantitative analysis is performed by the rank
computation, and the qualitative analysis is performed by the degree of observability
computation. The observability analysis is carried out considering three types of sensor
fusion integration and a set of maneuvers: (1) stationary, (2) mooring, (3) straight-line
with constant speed, (4) straight-line with acceleration, (5) zigzag, (6) lawn mower with
constant speed, and (7) lawn mower with zigzag and swing. The observability analysis
results are particularly useful in the AUV mission planning, in terms of the choice of the
better maneuver and the definition of the appropriated integration.

Numerical simulations are carried out to generate the results. In the stationary ob-
servability analysis, it is shown how the addition of position errors in the observation
vector can decouple some gyro and accelerometer biases from the latitude and altitude
errors. The influence of oscillations in the diving plane and typical AUV maneuvers is also
analyzed, showing their relative impacts on the degree of observability of the IMU/DVL
misalignment and DVL scale factor error. In addition, the accuracy of the state estimation
is also analyzed, showing the limitation of the degree of observability as an assessment tool
for the estimability of the states.

This paper is organized as follows: Section 2 presents the dynamic model and the
observation models for the INS/GPS/DVL/PS, INS/DVL/PS, and INS/DVL integrations.
In Section 3, the observability decomposition is presented. Section 4 is dedicated to the
observability analysis of the AUV linear time-varying system using the stripped observ-
ability matrix and the singular value decomposition for the rank computation. Section 5 is
dedicated to the evaluation of the corresponding degree of observability. Sections 6 and 7,
lastly, present simulation results and the discussions, respectively. Section 8 is dedicated to
the conclusions.

2. System Modelling

The expanded INS errors resolved in the NED (north-east-down) frame is given by
Equation (1) [24,25], where x =

[
φn δυn δL δλ δh bg ba e s f

]T is the state

vector; φn = [ φN φE φD ]
T corresponds to the attitude error vector; δυn is the velocity

error vector; δL, δλ, δh are the latitude, longitude e altitude errors, respectively; bg and
ba are the gyro and accelerometer bias; wg and wa are the gyro and accelerometer noises,

respectively; e = [ ex ey ez ]
T and s f correspond to the IMU/DVL misalignment errors

and scale factor error of the DVL, respectively; Cn
b is the attitude matrix from the body

frame to the navigation frame; ωn
in is the angular rate of the navigation frame with respect

to the inertial frame resolved in the navigation frame; and f n is the specific force resolved
in the navigation frame.

The coefficients of the INS error model are given by Equations (2)–(13), where RN and
RE are the meridian and transverse radii of curvature, respectively; g is the local gravity;
and Ω is the turn rate of the Earth. R0 is computed as R0 =

√
RN RE.
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.
x =



−
[
ωn

in×
]

A1 A2 03×1 A3 −Cn
b 03×3 03×4

[ f n×] ([υn×]A1 −A4) [υn×]A5 03×1 ([υn×]A3 + C5) 03×3 Cn
b 03×4

01×3 B1 0 0 b2 01×3 01×3 01×4

01×3 C1 c2 0 c3 01×3 01×3 01×4

01×3 C4 0 0 0 01×3 01×3 01×4

03×3 03×3 03×1 03×1 03×1 03×3 03×3 03×4

03×3 03×3 03×1 03×1 03×1 03×3 03×3 03×4

04×3 04×3 04×1 04×1 04×3 04×3 04×3 04×4


x +



−Cn
b 03×3

03×3 Cn
b

01×3 01×3

01×3 01×3

01×3 01×3

03×3 03×3

03×3 03×3

04×3 04×3



[
wg

wa

]
(1)

A1 =

 0 1
RE+h 0

− 1
RN+h 0 0

0 − tan(L)
RE+h 0

 (2)

A2 =

 −Ω sin(L)
0

−Ω cos(L)− υE sec2(L)
RE+h

 (3)

A3 =


− υE

(RE+h)2

υN
(RN+h)2

υE tan(L)
(RE+h)2

 (4)

A4 =

 0 2Ω sin(L) + υE tan(L)
RE+h − υN

RN+h

−2Ω sin(L)− υE tan(L)
RE+h 0 −2Ω cos(L)− υE

RE+h
υN

RN+h 2Ω cos(L) + υE
RE+h 0

 (5)

A5 =

 −2Ω sin(L)
0

−2Ω cos(L)− υE sec2(L)
RE+h

 (6)

B1 =
[

1
RN+h 0 0

]
(7)

b2 = − υN

(RN + h)2 (8)

C1 =
[

0 sec(L)
RE+h 0

]
(9)

c2 =
sec(L) tan(L)υE

RE + h
(10)

c3 = − υE sec(L)

(RE + h)2 (11)

C4 =
[

0 0 −1
]

(12)

C5 =

 0
0

− 2g
R0+h

 (13)
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Considering the INS/GPS/DVL/PS loosely coupled integrated navigation, the obser-
vation model is as follows:

y =


δυn

δL
δλ
δh

 =


υn − υ̃n

d
L− L̃gps

λ− λ̃gps

h− h̃ps

 (14)

y = Hx + ν =

[
−[υn×] I3×3 03×3 03×3 03×3 −Cn

b

[
υb×

]
−υn

03×3 03×3 I3×3 03×3 03×3 03×3 03×1

]
x + ν (15)

where υ̃n
d represents the DVL velocity vector resolved in the navigation frame; L̃gps and

λ̃gps are the GPS latitude and longitude, respectively; h̃ps is the altitude from the PS
measurements; and ν is the measurement noise vector.

Considering the loosely coupled INS/DVL/PS integration, the vector and the obser-
vation model are as follows:

y =

[
δυn

δh

]
=

[
υn − υ̃n

d
h− h̃ps

]
(16)

y = Hx + ν

=

[
−[υn×] I3×3 03×3 03×3 03×3 −Cn

b

[
υb×

]
−υn

01×3 01×3
[

0 0 1
]

01×3 01×3 01×3 0

]
x + ν

(17)

For the loosely coupled INS/DVL integration:

y = δυn = υn − υ̃n
d (18)

y = Hx + ν =
[
−[υn×] I3×3 03×3 03×3 03×3 −Cn

b

[
υb×

]
−υn

]
x + ν (19)

3. Observability Decomposition

Consider the linear and time-invariant (LTI) model:{ .
x (t) = Ax(t) + Bu(t)
y(t) = Hx(t) + Du(t)

(20)

If the system is unobservable, there is a similarity transformation, shown in Equation (21),
which results in the decomposed form of Equation (22), where the subsystem (A11, B1, H1, D) is
observable [8]. A11 is a square matrix r× r, where r is the dimension of the observable subspace.

x = Tx
A = TAT−1

B = TB
H = HT−1

D = D

(21)


.
x(t) =

[
A11 0
A21 A22

]
x(t) +

[
B1
B2

]
u(t)

y(t) =
[

H1 0
]

x(t) + Du(t)
(22)

The new state vector x corresponds to combinations of the observable and unob-
servable states of the original system. The similarity transformation does not change the
observability of the original system [8].
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The similarity transformation matrix is given by Equation (23), where 〈v1, v2, ..., vr〉
is a set of linearly independent vectors of <n. 〈vr+1, vr+2, ..., vn〉 is a base of the kernel of
the observability matrix Qo:

T =
[

v1 v2 . . . vr vr+1 . . . vn
]−1 (23)

Qovi = 0, i = r + 1, . . . , n (24)

where

Qo =


H

HA
HA2

...
HAn−1

 (25)

4. Stripped Observability Matrix and Singular Value Decomposition

Consider the linear time-varying (LTV) model for the continuous and discrete cases:{ .
x(t) = A(t)x(t)
y(t) = H(t)x(t)

(26)

{
xk+1 = Φkxk
yk = Hkxk

(27)

The observability of an LTV system in the time interval to to t f can be determined
from the analysis of the rank of the observability Grammian matrix O. The observability
Grammian matrices for the continuous and discrete cases are as follows [9]:

O
(

to, t f

)
=

t f∫
to

Φ(t, to)
TH(t)TH(t)Φ(t, to)dt (28)

O
(

ko, k f

)
=

k f

∑
k=k0

Φ
(

k, k f

)T
HT

k HkΦ
(

k, k f

)
(29)

Equations (28) and (29) show that for the determination of O, it is necessary to calculate
the state transition matrices, which are Φ(t, to) and Φ

(
k, k f

)
. If O is a non-singular matrix,

the LTV system is observable in the considered time interval.
In general, the calculation of O is performed numerically [7,9]. As an alternative to

O, the observability of the LTV system can be evaluated by the rank of QSOM (stripped
observability matrix), which is obtained by partitioning the LTV system into piece-wise
constant systems (PWCS) [7].

Then, consider the PWCS models for the discrete case:{
xk+1 = Φjxk

yj = Hjxk
(30)

For each j time segment, matrices Φj and Hj are constant. Then, QSOM is computed
using Equation (31), where Qo,j, for j = 1, 2, . . . , l, corresponds to the observability matrix
for each j time segment.

QSOM(r) =


Qo,1
Qo,2

...
Qo,l

 (31)
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The rank of a matrix can be numerically determined by singular value decomposition
into (SVD) or by decomposition into eigenvalues. The rank corresponds to the number of
singular values or eigenvalues different from zero [9]. Unlike eigenvalues, singular values
are always equal to or greater than zero.

The SVD of a matrix A ∈ <m×n is [13,15]:

A = UΣVT (32)

where U =
[

u1 u2 . . . um
]

and V =
[

v1 v2 . . . vn
]

are the orthogonal matri-
ces, Σ = diag(S, 0), Σ ∈ Rm×n, is a matrix of singular values, and S = diag(σ1, σ2, σ3, . . . , σn),
with σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σn, which corresponds to a diagonal matrix containing the
singular values of A.

Then, an LTV system is observable if QSOM is full rank. On the contrary, if the SVD of
QSOM results in null singular values, the system is unobservable.

5. Degree of Observability

The rank of QSOM only informs whether the system is observable or not. The ob-
servability condition of the states, in particular, cannot be evaluated by the rank analysis.
For LTI systems, the observability of the states can be obtained directly from analytical
expressions, using similarity transformations that decompose the system into observable
and unobservable subspaces [8,21]. However, the observation model and the dynamic
model of the navigation errors, presented in Section 2, are LTV. So, it is hard to obtain
analytical expressions for the observability of the states.

Alternatively, the concept degree of observability can be used. The degree of observ-
ability informs how observable the state of the system is.

Usual methods to evaluate the observability degree of a state rely on the QSOM singular
value decomposition approach [11,13,15,26]. In particular, the degree of observability can
be determined using the weighted singular vector ur [11,26]:

ur =
r

∑
i=1

σi
σ1

ui (33)

Equation (33) represents the weighted singular vector for the first r singular vectors of
U. The elements of a greater magnitude of ur correspond to the states with a higher degree
of observability, which, hence, can be determined as follows:

nj =
ur(j)
ur0

(34)

where ur0 corresponds to the elements of ur associated with the measured states.
Note that the correspondence of the elements of ur with the degree of observability

is direct and independent of the measurements. In practical terms, the weighted singular
vector allows for computing the degree of observability using only the observability matrix
of the system.

6. Results

This section presents simulation results aiming at the observability analysis of the
initial alignment and calibration of the AUV navigation sensors, subject to the following
maneuver conditions:

1. Stationary.
2. Mooring. For a mooring maneuver, the vehicle motion was modeled with oscillations

in roll (φ), pitch (θ), and yaw (ψ), with the same amplitude and period, and with
oscillatory translational movement in the surge (x), sway (y), and heave (z) axes, also



Sensors 2022, 22, 3287 8 of 21

with the same amplitude and period. For roll, pitch, and yaw, the model is given by
the following (in deg):

φ, θ, ψ = 0◦ + 5.0◦ sin
(

2πt
10

)
For the translational movements (in m/s):

υx, υy, υz = 0 + 0.1 sin
(

2πt
10

)
3. Straight-line with constant speed. In the straight-line maneuver with a constant speed,

the velocity was set to 1.0 m/s in the x-axis, and 0 in the y and z axes. The swing
movement was disregarded.

4. Straight-line with acceleration. In this maneuver, the velocities in the y and z axes, as
well as the oscillations in roll, pitch, and yaw, were null. The velocity model in the
x-axis is given by the following (in m/s):

υx = 1.5 + 0.75 sin
(

2πt
10

)
Therefore, the resulting acceleration in the x-axis (in m/s2) is as follows: ax =
1.5π
10 cos

( 2πt
10
)
.

5. Zigzag. In the zigzag maneuver, the speed was set to 1.0 m/s in the x-axis, and 0 in
the y and z axes. The roll and pitch oscillations were 0. The yaw oscillation model is
given by the following (in deg): ψ = 0◦ + 5.0◦ sin

( 2πt
10
)
.

6. Lawn mower with constant speed. In the lawn mower maneuver, the velocity was
set to 1.0 m/s in the x-axis, and zero in the y and z axes. The swing movement
was disregarded.

7. Lawn mower with zigzag and swing. For this maneuver, roll and pitch oscillations
were null. For yaw, the oscillation model is given by the following (in deg):

ψ = 0◦ + 5.0◦ sin
(

2πt
10

)
The velocity models (in m/s) are given by the following:

υx = 1.0 + 0.05 sin
(

2πt
10

)

υy = υz = 0.1 sin
(

2πt
10

)
All maneuvers lasted 1 h. For the stationary maneuver, analytical expressions were

obtained for the observability of the states, as, for this condition, the dynamic and observa-
tion models are LIT. Regarding the degrees of observability of the state variables, they were
calculated using Equation (34). The following assumptions were additionally considered:

1. AUV aligned with the navigation frame (NED).
2. Initial coordinates of −23 degrees (latitude) and −45 degrees (longitude).
3. Zero initial altitude.
4. IMU/DVL misalignment and DVL scale factor error are null.
5. Loosely coupled INS/GPS/DVL/PS, INS/DVL/PS, and INS/DVL integrations, with

dynamic and observational models, as given by Equations (1), (15), (17), and (19).

6.1. Observability Decomposition: Stationary Case

For the INS/GPS/DVL/PS integration, the rank of Qo is 12. So, the dimension of
the unobservable subspace is equal to 7. Applying the similarity transformation given by
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Equation (35), where W is a matrix of r vectors of the canonical base of <19 and linearly
independent of the kernel of Qo.

x = Tx =

[
xo
xo

]
(35)

T =
[

W ker(Qo)
]−1 (36)

ker(Q0) =



0 0 1
g 0 0 0 0

0 − 1
g 0 0 0 0 0

1
Ω cos(L) 0 − tan(L)

g 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 Ω sin(L)

g 0 0 0 0 0
1 0 0 0 0 0 0
0 Ω cos(L)

g 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(37)

The following states and combinations of states are found to be observable:

xo =



φN −
bay
g

φE + bax
g

φD −
bgy

Ω cos(L) +
tan(L)bay

g
δυN
δυE
δυD
δL
δλ
δh

bgx − Ω sin(L)bax
g

bgz − Ω cos(L)bax
g

baz



(38)

The unobservable states, in turn, are as follows:

xo =



bgy
bax
bay
ex
ey
ez
s f


(39)
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As can be inferred, all of the states are individually unobservable for the stationary
condition, except for the velocity errors, the position errors, and the accelerometer bias in
the z-axis (baz).

Considering the INS/DVL/PS integration, the rank of Qo is equal to 10, hence the
dimension of the unobservable subspace becomes 9. Applying the similarity transformation,
the kernel of Qo is:

ker(Q0) =



0 0 0 0 1
g 0 0 0 0

0 0 0 − 1
g 0 0 0 0 0

0 1
Ω cos(L) 0 0 − tan(L)

g 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

Ω cos(L)
1
g 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 tan(L) 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(40)

The observable states and combinations of states are, then:

xo =



φN −
bay
g

φE − bax
g

φD −
bgy

Ω cos(L) +
tan(L)bay

g
δυN
δυE
δυD
δh

bgx + Ω sin(L)δL− Ω sin(L)bax
g

bgx + Ω cos(L)δL− Ω cos(L)bax
g

baz



(41)

The unobservable states and combinations of states, in turn, are as follows:

xo =



δλ
bgy

Ωcos(L)bax
g −Ωcos(L)δL

bax
bay
ex
ey
ez
s f


(42)
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For the INS/DVL/PS integration, hence, all of the states are individually unobservable,
except the velocity errors, the altitude error (δh), and the accelerometer bias in the z-axis.
Furthermore, the gyro biases in the x (bgx) and z (bgz) axes are coupled with the latitude
error (δL), unlike the result of the INS/GPS/DVL/PS integration shown in Equation (38).
In such an integration, bgx and bgz are coupled only with the accelerometer bias in the
x-axis (bax).

For the INS/DVL integration, it is possible to show that the rank of Qo is equal to 9,
which makes the dimension of the unobservable subspace equal to 10. The kernel of Qo, in
this case, is as follows:

ker(Q0) =



0 0 0 0 1
g 0 0 0 0 0

0 0 0 − 1
g 0 0 0 0 0 0

0 1
Ω cos(L) 0 0 − tan(L)

g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 − 1

Ω cos(L)
1
g 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 R0+h

2g 0 0 0 0
0 0 tan(L) 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



(43)

The observable states and combinations of states are as follows:

xo =



φN −
bay
g

φE + bax
g

φD −
bgy

Ω cos(L) +
tan(L)bay

g
δυN
δυE
δυD

bgx + Ωsin(L)δL− Ω sin(L)bax
g

bgz + Ω cos(L)δL− Ω cos(L)bax
g

baz − 2gδh
R0+h



(44)
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While the unobservable states and combinations of states are as follows:

xo =



δλ
bgy

Ω cos(L)bax
g −Ω cos(L)δL

bax
bay
2gδh
R0+h

ex
ey
ez
s f


(45)

For the INS/DVL integration, it can be seen that all states are individually unobserv-
able, except for the velocity errors. The gyro biases bgx and bgz are coupled with the latitude
error and the accelerometer bias in the x-axis. In addition, baz is coupled with the altitude
error, δh, which does not occur in the INS/GPS/DVL/PS and INS/DVL/PS integrations.

The analytical expressions for the observability of the states, obtained for the stationary
case, show that the addition of position errors (latitude, longitude, and altitude) in the
observation vector not only increases the dimension of the observable subspace, but also
decouples bgx and bgz from δL, and baz from δh. In practical terms, decoupling bgx, bgz, and
baz from latitude and altitude errors improves the accuracy of estimation of these variables.

6.2. Comparison Results for INS/GPS/DVL/PS Integration

Table 1 shows the results of the system observability analysis performed by the rank
computation of QSOM. For the stationary maneuver, the rank of QSOM is 12. This value is in
accordance with the rank of Qo obtained in Section 6.1. In addition, it can be seen that the
system is observable only for the lawn mower with zigzag and swing maneuver.

Table 1. Observability and final rank of QSOM (j = 100). INS/GPS/DVL/PS integration.

Maneuver QSOM Rank System Observability

Stationary 12 Unobservable

At Mooring 18 Unobservable

Straight-line 18 Unobservable

Straight-line with acceleration 18 Unobservable

Zigzag 18 Unobservable

Lawn Mower 18 Unobservable

Lawn Mower with zigzag and swing 19 Observable

The comparative results of the degree of observability for the state variables are
illustrated in Figures 1–4. Figure 1 shows that the degree of observability of φD was higher
for the straight-line with the acceleration maneuver (yellow bar), lawn mower maneuvers
(green and dark blue bars), and zigzag (middle blue bar). Likewise, φN and φE obtained a
higher degree of observability for lawn mower, straight-line with acceleration, and zigzag.

The lowest degrees of observability of φN and φE were obtained for stationary (light
blue bar) and straight-line with constant speed (gray bar) maneuvers. For φD, the lowest
degrees of observability were obtained for stationary, straight-line with constant speed,
and mooring maneuvers (orange bar).
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Figure 1. Degrees of observability of the attitude errors. INS/GPS/DVL/PS integration.

Figure 2. Degrees of observability of the gyro biases. INS/GPS/DVL/PS integration.

Figure 3. Degrees of observability of the accelerometer biases. INS/GPS/DVL/PS integration.
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Figure 4. Degrees of observability of the IMU/DVL misalignment and the DVL scale factor error.
INS/GPS/DVL/PS integration.

Figure 2 shows that the degrees of observability for bgx and bgy were lower for the
stationary and straight-line with constant speed maneuvers, and higher for lawn mower,
straight-line with acceleration, and zigzag. Concerning bgz, the degree of observability was
lower for stationary, mooring, and straight-line with constant speed maneuvers, and was
higher for lawn mower and straight-line with acceleration.

Figure 3 shows that the degrees of observability of bax, bay, and baz were higher for
lawn mower maneuvers, straight-line with acceleration, zigzag, and mooring. For the
stationary maneuver and straight-line with a constant speed, the degrees of observability
of the accelerometer biases were lower. In general, it can be seen that maneuvers in which
there were no changes of direction or oscillation resulted in lower degrees of observability
for the accelerometer biases.

Figure 4 shows that the degrees of observability of ey, ez, and s f were higher for the
straight-line with acceleration maneuver, lawn mower, and zigzag. For the stationary,
straight-line with constant speed, and mooring maneuvers, the degrees of observability
of ey, ez, and s f were lower. Regarding ex, the degree of observability was higher for the
mooring and lawn mower with zigzag and swing maneuvers.

It is interesting to note that the degree of observability of ex was improved for the
mooring and lawn mower with zigzag and swing maneuvers, as these scenarios induced
velocity components in the y and z axes of the vehicle.

6.3. Comparison Results for INS/DVL/PS Integration

Unlike the INS/GPS/DVL/PS integration, Table 2 shows that the INS/DVL/PS
integration made the system unobservable for all of the maneuvers evaluated. This result
was already expected, as the longitude and latitude errors were unobservable states for
INS/DVL/PS integration. Furthermore, for the stationary maneuver, the rank of QSOM was
found to be 10, whose value was in agreement with the rank of Qo obtained in Section 6.1.

The comparative results of the degree of observability for the INS/DVL/PS integration
are illustrated in Figures 5–8. Figure 5, in particular, shows that the degrees of observability
of the attitude errors were higher for lawn mower, zigzag, and straight-line with accelera-
tion maneuvers. The degrees of observability of φN and φE were lower for stationary and
straight-line with constant speed maneuvers. Concerning φD, the degree of observability
was smaller for stationary maneuver, straight-line with constant speed, and mooring.
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Table 2. Observability and final rank of QSOM (j = 100). INS/DVL/PS integration.

Maneuver QSOM Rank System Observability

Stationary 10 Unobservable

At Mooring 17 Unobservable

Straight-line 16 Unobservable

Straight-line with acceleration 17 Unobservable

Zigzag 17 Unobservable

Lawn Mower 17 Unobservable

Lawn Mower with zigzag and swing 18 Unobservable

Figure 5. Degrees of observability of the attitude errors. INS/DVL/PS integration.

Figure 6. Degrees of observability of the gyro biases. INS/DVL/PS integration.
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Figure 7. Degrees of observability of the accelerometer biases. INS/DVL/PS integration.

Figure 8. Degrees of observability of the IMU/DVL misalignment and the DVL scale factor error.
INS/DVL/PS integration.

Figure 6 shows that the lowest degrees of observability for bgx were obtained for
the stationary and straight-line with constant speed maneuvers, and the highest degrees
for mooring, lawn mower, and zigzag maneuvers. Regarding bgy, the lowest degrees
of observability were obtained for the stationary, mooring, and straight-line maneuvers,
and the highest degrees were for lawn mower and zigzag. For bgz, the lowest degrees of
observability were obtained for the stationary, mooring, and straight-line with constant
speed maneuvers, and the highest were for lawn mower, zigzag, and straight-line with
acceleration maneuvers.

Concerning the accelerometer biases, Figure 7 shows that the degree of observability of
bax was higher for lawn mower maneuvers, straight line with acceleration, and zigzag, and
lower for stationary, mooring, and straight line with constant speed maneuvers. For bay and
baz, the degree of observability was higher for maneuvers with acceleration or oscillation.
It is worthy of note that, although the degrees of observability of the accelerometer biases
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were increased with lawn mower and zigzag maneuvers, the differences with respect to
the remaining maneuvers were not significant.

Lastly, and as also observed for INS/GPS/DVL/PS integration, Figure 8 shows that
the degrees of observability of ey, ez, and s f were higher for the lawn mower, zigzag, and
straight-line with acceleration maneuvers. The degrees of observability were lower, in turn,
for the stationary, straight-line with constant speed, and mooring scenarios. Regarding ex,
the degree of observability was higher for the mooring and lawn mower with zigzag and
swing maneuvers.

6.4. Comparison Results for INS/DVL Integration

Table 3 shows that the system was unobservable for all of the maneuvers evaluated
using the simplified INS/DVL integration scheme. This result was again already expected
as the position errors were unobservable states for the INS/DVL integration. In addition,
for stationary maneuver, the rank of QSOM was 9, whose value was equal to the rank of Qo
obtained in Section 6.1.

Table 3. Observability and final rank of QSOM (j = 100). INS/DVL integration.

Maneuver QSOM Rank System Observability

Stationary 9 Unobservable

At Mooring 17 Unobservable

Straight-line 15 Unobservable

Straight-line with acceleration 16 Unobservable

Zigzag 16 Unobservable

Lawn Mower 16 Unobservable

Lawn Mower with zigzag and swing 17 Unobservable

Figures 9–12 show the comparative results of the degree of observability for the
INS/DVL integration. As illustrated in Figure 9, the highest degrees of observability for
φN and φE were obtained for the zigzag maneuver. The lowest degrees of observability for
φN and φE, in turn, were obtained for the stationary maneuver. Regarding φD, the highest
degrees of observability were obtained for the lawn mower and zigzag maneuvers. On the
contrary, the lowest degrees were obtained for the stationary, mooring, and straight-line
with constant speed scenarios.

Figure 9. Degrees of observability of the attitude errors. INS/DVL integration.
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Figure 10. Degrees of observability of the gyro biases. INS/DVL integration.

Figure 11. Degrees of observability of the accelerometer biases. INS/DVL integration.

Figure 12. Degrees of observability of the IMU/DVL misalignment and the DVL scale factor error.
INS/DVL integration.
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Concerning the gyro biases, the degrees of observability were lower for the stationary
maneuver, and higher for zigzag, as illustrated in Figure 10. For the accelerometer biases,
Figure 11 shows that the degrees of observability were higher for zigzag and mooring (baz),
and lower for the stationary maneuver.

Concerning ey, ez, and s f , Figure 12 shows that the degrees of observability were
higher for the maneuvers of lawn mower, zigzag, and straight-line with acceleration. The
degrees of observability were lower, however, for the stationary maneuver, straight-line
with constant speed, and mooring. Regarding ex, finally, its degree of observability was
found to be higher for the mooring and lawn mower with zigzag and swing maneuvers.

7. Discussion

The observability decomposition performed for the stationary case showed that the
addition of the position errors in the observation vector decoupled the biases bgx, bgz, and
baz from the latitude (bgx and bgz) and altitude errors (baz). Furthermore, maneuvers includ-
ing changes of direction and speed excitation in the three axes increased the dimension of
the observable subspace. For the INS/GPS/DVL/PS integration, in particular, the system
became fully observable for these types of maneuvers.

In addition, the simulation results showed that the alignment errors obtained higher
degrees of observability for the lawn mower, zigzag (especially for INS/DVL), and straight-
line with acceleration maneuvers, while the lower degrees of observability for the stationary
and straight-line at constant speed maneuvers. In particular, φD was shown to possess the
lowest degree of observability among the attitude errors.

For the three integration schemes evaluated, the degree of observability of φD was
increased by accelerating the AUV in the local navigation frame, especially in the horizontal
plane (which corresponds to the straight-line with acceleration, zigzag, and lawn mower
maneuvers). For the lawn mower with zigzag and swing maneuver, the change of orienta-
tion in the horizontal plane additionally provoked velocity variations in the NED frame,
which produced acceleration components in the north and east directions. The influence
of such accelerations on the degree of observability of φD has also been observed by other
authors [12,14,15,27].

Regarding the gyro biases, the simulation results showed that the degree of observabil-
ity of bgz was increased with vertical oscillation or acceleration in the x-axis. Particularly
for INS/DVL integration, the degree of observability of bgz was higher for the zigzag
maneuver. Furthermore, the zigzag and lawn mower maneuvers also improved the degrees
of observability of the accelerometer biases. As demonstrated in [18], the estimations of the
accelerometer biases were improved with angular movements.

Finally, the degrees of observability of the IMU/DVL misalignment in the y and z
axes, as well as, the DVL scale factor error, were significantly increased by the occurrence
of translational motion. Specifically, for ex, the degree of observability was improved with
translational movements in the y and z axes of the AUV. This condition was also evidenced
in [19] for a simplified model, in which the orientation and the velocity of the vehicle were
perfectly known. In [18], it was demonstrated that the AUV displacement in the z-axis with
constant attitude enabled the estimation of ex in single-thruster AUVs. It is noteworthy
that ex, ey, ez and s f were individually unobservable for the stationary case, regardless of
the three integrations schemes evaluated, which means that the calibration of the DVL with
stationary AUV is not possible to be performed.

Despite being relevant, the degree of observability analysis did not allow us to visual-
ize the couplings between the state variables. This has only been possible for the stationary
case, via observability decomposition, which evidenced the existence of the couplings{

φN , bay
}

and {φE, bax}, as well as the couplings between φD, bgy, and bay. These results
are in agreement with the traditional literature [21–23,28].

Additionally, the observability decomposition for the stationary case showed that
bax, bay, and bgy are variable states of the unobservable subspace. Regarding bgx and
bgz, they can be considered individually observable, as their couplings with bax, that is,
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{
bgx,−Ω sin(L)bax

g

}
and

{
bgz,−Ω cos(L)bax

g

}
, are negligible, given that the magnitudes of the

weighting coefficients of bax are less than 10−5 rad.s/m.
It is also noteworthy that the degree of observability obtained for bgy was close

to bgx and significantly higher than bgz. Such results are in agreement with previous
works [12,14,15], but raises the question that the degree of observability may not be directly
related to the estimation accuracy of the states, given that bgx and bgz are recognizably
known to be better estimated than bgy in the AUV initial alignment and calibration prob-
lem [23].

Therefore, the simulation results presented in this paper suggest that the exclusive
analysis of the degree of observability may not be a suitable metrics for the “estimability” of
the states. As defined by Baram and Kailath [29], the estimability of a system is the ability to
reduce the mean squared error in the estimation of the states. As suggested by the authors,
the estimability analysis can be seen as a complementary tool to the observability analysis.
In [9], for instance, observability and estimability analyses were carried out separately for
the space situational awareness (SSA) problem. The observability analysis, in terms of the
observability matrix rank, aimed to inform whether the measurements were sufficient for
the estimation of the states. Conversely, the estimability analysis aimed to evaluate the
performance of the estimation.

8. Conclusions

In this work, the effects of different maneuvers and integration schemes on the AUV
initial alignment and calibration were analyzed in terms of system’s observability and state
variables’ degree of observability. The simulation results showed that the system became
fully observable for INS/GPS/DVL/PS integration when lawn mower with zigzag and
swing maneuvers were carried out.

For the three investigated integrations, the observability degrees of the IMU/DVL
misalignment and the DVL scale factor error were increased with translational motion. In
addition, the degrees of observability of the inertial sensor biases and the vertical alignment
error were increased with maneuvers encompassing changes of direction. The observability
degrees of the vertical alignment error and the gyro bias in the z-axis, lastly, were increased
by accelerating the AUV along its longitudinal axis.

Finally, the simulation results presented in this article suggest that the exclusive
analysis of the degree of observability may not be an adequate metric for the “estimability”
of the states. In this sense, a thorough investigation on the physical meaning of the degree
of observability and its relation with the estimability of states, specifically in the scope of
the AUV initial alignment and calibration problem, will be a topic for future investigation
by the authors.
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