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Received: 9 March 2022

Accepted: 13 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Calibration-Free pH Sensor Using an In-Situ Modified Ir
Electrode for Bespoke Application in Seawater
Yuqi Chen and Richard Compton *

Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK; yuqi.chen@sjc.ox.ac.uk
* Correspondence: richard.compton@chem.ox.ac.uk; Tel.: +44-(0)-1865-275957; Fax: +44-(0)-1865-275-410-1

Abstract: A bespoke calibration-free pH sensor using an in situ modified Ir electrode for applications
in seawater is reported. The electrochemical behaviour of an iridium wire in air-saturated synthetic
seawater was studied and the formation of pH-sensitive surface layers was observed that featured
three pH-sensitive redox couples, Ir(III/IV), IrOxOI−/IrOxOII−H, and Hupd/H+, where Hupd is
adsorbed hydrogen deposited at underpotential conditions. The amperometric properties of the
electrochemically activated Ir wire were investigated using linear sweep voltammetry first, followed,
second, by square wave voltammetry with the formation conditions in seawater for the optimal
pH sensitivity of the redox couples identified. The sensor was designed to be calibration-free by
measuring the “super-Nernstian” response, in excess of ca 60 mV per pH unit, of Ir(III/IV) relative
to the less sensitive upd H oxidation signal with the pH reported on the total pH scale. The pH
dependency of the optimised sensor was 70.1 ± 1.4 mV per pH unit at 25 ◦C, showing a super-
Nernstian response of high sensitivity.

Keywords: calibration-free; pH sensor; in-situ modification; Ir electrode; seawater

1. Introduction

pH measurements in chemistry are ubiquitous. As defined by IUPAC [1], pH is a
function of the activity of the hydrogen ion in a solution:

pH = − log aH+ = − log
(mH+γH+

mθ

)
(1)

where aH+ is the single ion activity (measured on the molality scale in mol kg−1), γH+ is the
activity coefficient of the hydrogen ion (H+) at a molality of mH+ , and mθ is the standard
molality (1 mol kg−1). Note that the pH is defined by IUPAC in terms of the single ion
quantities and so IUPAC regard Equation (1) as a ‘notional definition’. The development
of primary pH standards utilises a ‘primary method of measurement’ that is based on the
Harned cell, which comprises a hydrogen electrode and a silver/silver-chloride electrode
in a cell containing hydrochloric acid electrolyte and without a liquid junction [2]. Debye–
Hückel theory [3] is used for the required chloride ion activity coefficient estimation via
the Bates–Guggenheim convention with the latter restricted to ionic strengths of less than
0.1 mol kg−1 [4]. This leads to uncertainties of at least 0.003 in pH. It is noteworthy that
the seawater has a high ionic strength (I ~0.7 mol kg−1) [5] so that pH measurements in
seawater are expected to require specific procedures.

Seawater comprises about 97.2 percent of the Earth’s known water and covers approx-
imately 71 percent of its surface. Seawater compositions vary with their biological content,
as well as reflecting local coastal industry and geology [6]. pH is an important oceano-
graphic parameter, which is essential for investigating the dynamic state of the chemical
and biological processes. First, there is a close interplay between pH, chlorophyll-a (chl-a),
and dissolved oxygen (DO) [7]. The pH value of seawater is normally 8.1 but can be higher
for eutrophic waters [8] because of the emission of nitrogen- and phosphorous-containing
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species resulting from human activities [9]. A high pH may inhibit the photosynthesis of
algae [10,11]. Chl-a is an important indicator for the presence of algae, notably for assessing
eutrophication, and, via satellite imaging of fluorescence from plankton, concentrations. pH
variations can thus reflect direct changes in chl-a concentration [7]. Note that phytoplank-
ton are made up of both single-celled algae and cyanobacteria [12], the concentration of
which can be monitored at the single entity level by fluoro-electrochemical microscopy [13].
Second, and of current vital importance, the pH of seawater is a significant reference for
ocean acidification as a result of carbon emission and reflects its ecological effects [9,14].
Carbon uptake via seawater is a major sink of CO2, during which the formation of car-
bonic acid from atmospheric carbon dioxide lowers the pH of seawater (Equation (2)). For
example, the pH of seawater is thought to have decreased from 8.2 before the Industrial
Revolution in Western Europe to about 8.1 today [9].

CO2 + H2O→ H2CO3 (2)

Meanwhile, carbonate in seawater is important for marine life to build shells and skeletons.
Under conditions of severe acidification, shells and skeletons can dissolve (Equation (3)).

H2CO3 + CO2−
3 → 2HCO−3 (3)

Third, pH is also directly linked to the solubility of heavy metals [15,16]. The lower
the pH, the more toxic the water possibly is as the metals tend to be more soluble. Thus,
significant attention needs to be paid to the pH variation of seawater in order to maintain
the environmental ecological balance.

The concept and measurement of pH was initiated over a century ago [17] by Sorensen
working in the Carlsberg Laboratory, leading ultimately to the IUPAC definition. The latter,
however, is not recommended for seawater because of its high ionic strength. Instead, three
scales were developed using proton concentration scales rather than the activity scale as
defined by IUPAC [18–22]. Specifically, the three scales are the free hydrogen ion scale
(Equation (4)), the total hydrogen ion scale (Equation (5)) and the seawater scale.

The free hydrogen ion scale [23–25] is defined by:

pHF = − log mH+ (4)

where the total amount of H+ is calculated in terms of its concentration (molality) rather
than activity. In contrast, the total hydrogen ion scale accounts better for the complex
chemical environment of seawater in which SO2−

4 ions, if present, can react with H+ to form
the ion HSO−4 [19,26], so in terms of the addition of HCl, the resulting H+ concentration is
less since some protons form HSO−4 . With this definition:

pHT = − log mH+ − log mHSO4− = − log{mH+ [1 + m(SO2−
4 )/K(mHSO−4

)]} (5)

where mSO2−
4

is the stoichiometric concentration of sulphate and K(HSO−4 ) is the dissocia-
tion constant for bisulphate ion [18,21,25,27,28].

The seawater scale recognises the possible presence of both sulphate and fluoride
ions [27,29], but this scale was suggested to be unhelpful by Dickson [30] in 1993, who
suggested that fluoride should simply be treated as a minor acid base species [18]. Clearly,
however, in reporting seawater measurement data it is necessary to state which units and
scales are used.

Millero et al. [18] proposed an experimental approach in which pH was studied in
terms of the proton concentration with a unit of kg-H2O−1, while the buffers were prepared
in seawater using Bis(2-amino-2-methyl-1,3-propaneldiol), Tris(2-amino-2-hydroxymethyl-
1,3-propaneldiol), Morpholine, or 2-Aminopyridine referring to the recipes suggested by
Bates and co-workers [23,31–33]. Then, the corresponding potentials of the buffers with
different pH were measured with a Harned cell approach and the resultant pH values were
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in good agreement with the total pH scale [30,31] Bates’s work provided a good insight for
the results discussed below; Tris/HCl buffers prepared in synthetic seawater are applied
for the experiments reported later in this paper.

In addition to optical fibre sensing applied for marine environment monitoring [34],
spectrophotometry is commonly used to measure the pH of seawater [35,36]. Spec-
trophotometry is based on different absorbance characteristics of the basic and acidic
forms of sulfonephthalein indicators, L2− and HL− (from the secondary dissociation

HL−
K2↔ H+ + L2−), the relative amounts of which alter measurably within the range of pH

values seen in normal seawater environments. The selection of the specific indicator used,
commonly a sulfonephthalein derivative, ref. [37] is decided by the specific pH range of
candidate analyte. The log of the secondary dissociation constant (log K2) of the sulfoneph-
thalein indicator should be comparable to the expected pH of the sample solution, i.e.,
(log K2 (indicator)−1) < pH (sample)≤ log K2 (indicator) [36,38]. For example, bromocresol
green (K2 ≈ 10−4.4) [38,39] is appropriate for acidified samples used in determinations
of seawater alkalinity [40], while thymol blue (K1 ≈ 10−8.6) [41] is most appropriate for
surface waters, where generally 7.90 ≤ pH ≤ 8.40 [36,42]. The relationship between the pH
and the measured parameters is represented by Equation (6):

pH = pH2 + log[L2−]/[HL−] = pH2 + log
(

Aλ −AλMin

AλMax −Aλ

)
(6)

where pH2 = − log K2, K2 is the HL− dissociation constant; Aλ is the absorbance at
wavelength λ and is related to pathlength (l), total indicator concentration (DT) and molar
absorbance (aλ) through the well-known Beer-Lambert relationship Aλ = aλ∗DT∗l [38,41].

It is noteworthy that spectrophotometry can realise measurements to within±0.001 pH
units while potentiometry has a precision no better than ±0.02 pH units depending on
multiple parameters [20,43]. In terms of potentiometric techniques for pH sensing, a H+

ion-selective glass electrode-based pH meter is common in the laboratory. However, it
requires regular calibrations by standard buffers. More importantly, the use of low ionic
strength buffers to calibrate a glass electrode for use in high ionic strength solutions, namely
seawater, may cause errors [19,21]. Beyond the glass pH meter, in the case of potentiometric
titrations, an all-solid-state ion-selective electrode (ISE), with functionalised multiwalled
carbon nanotubes being drop casted on a glassy carbon electrode, were developed by
Cuartero et al. [44]. This ISE was applied in a 600 mM NaCl to mimic seawater environ-
ments. However, similarly to the glass pH meter, calibrations are recommended to be made
every hour prior to and during the measurements to compensate for electrode drift and
for changes in temperature. Finally, pH is calculated referring to the measured potential E
using the calibrated linear relationship (Equation (7)):

E = E0 + s× log
[
a1
(
H+

)]
(7)

where the slope s is equal to 2.303 ×RT
zF (R is the gas constant, T is the temperature, z is the

charge of the ion, and F the Faraday constant) based on the Nernst equation [44].
Even when conducted with the greatest expertise and diligence, potentiometry simply

reports a single number from which it is often difficult, if not impossible, to ascertain
the quality or validity of the measurement (Figure 1). This consideration is especially
important in complex matrixes such as seawater and blood where electrode fouling is often
encountered. In response to this need, we have suggested the use of voltammetry where
the response in the form of a current-voltage plot allows for a measure of the quality of
response to be judged [45–48]. The concept is shown schematically in Figure 1 from which
it is apparent that the peak shape and width allow for a measure of measurement ’quality’
and for deciding whether the electrode needs to be repositioned, cleaned, or replaced.
For example, as shown by the right part of Figure 1, the black voltammogram obtained
by amperometry is better-defined than the red one and the associated measurement is
more reliable.
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Whilst amperometric pH sensors have found wide application [49–55], there has
been only limited application of amperometric pH measurements in seawater, although
Sisodia et al. [56] recently reported an electropolymerised 2-(methylthio)phenol modified
glassy carbon based electrode as an voltammetric pH sensor in seawater that had a sub-
Nernstian response in buffers (pH = 4–9.2) of 51 mV/pH unit. The measured pH (8.28) of
seawater using the electrode had a good match compared to that obtained by a conventional
glass pH probe (8.30).

In this paper we develop a metal oxide microelectrode for amperometric pH detection
based on pH-sensitive anodic iridium oxide film (AIROF) synthesised by cyclic voltam-
metry in seawater on the surface of an iridium wire. Noteworthy is that in contrast to the
iridium oxide with a near-Nernstian response (ca. 60 mV per pH unit) prepared by other
methods, e.g., sol-gel [57,58] chemistry, sputtering [59,60], and thermal methods [61,62],
AIROF formed on the bespoke electrode is able to respond with a super-Nernstian slope as
reported [63–65]. The observed pH responses are summarised in Table S1 Supplementary
Materials. Second, the bespoke sensor is calibration-free. All the electrochemical reactions
investigated in this project take place in a three-electrode system [66]. The basis of cali-
bration free amperometric pH measurement is the recording of two or more voltammetric
peaks with different sensitivity to pH. Then the difference of the associated peak potentials,
if measured in the same voltammogram at essentially the same time, is independent of
any drift for example in the reference potential [49,52,67,68]. In the case of the iridium
wire-based sensors, the analytical pH responses arise from the pH dependency of the
potential of the strongly pH sensitive Ir3+/4+ redox couple measured relative to the much
less pH-sensitive hydrogen underpotential re-oxidation. As the potentials of these redox
reactions are collected during one measurement and only the relative potentials between
them are used analytically, the stability and accuracy of the reference electrode are not
important. Linear sweep voltammetry was investigated first, followed by square wave
voltammetry to explore the relative sensitivity of the pH dependency to the two techniques.
The super-Nernstian relationship coupled with the capability of assessing the measurement
quality imply the validity and merit of the bespoke sensor.

2. Experimental Section

Chemicals and Reagents. Solutions were prepared using deionised water with a resis-
tivity of 18.2 MΩ cm at 298 K (Millipore, Millipak Express 20, Watford, UK). All chemicals
were of analytical grade and were used as received without any further purification. Three
synthetic seawater samples with defined pH values were prepared for the calibration of a
HACH LANGE Sension+ PH31 pH meter, one of 2-Aminopyridine (99.0%, Sigma-Aldrich,
Saint Louis, MO, USA), Tris(hydroxymethyl) Aminomethane (Tris, 99.0%, Sigma-Aldrich,
Saint Louis, MO, USA), and 2-Amino-2-methyl-1,3-propanediol (Bis, >99%, Alfa Aesar,
Heysham, Lancashire, UK) was dissolved in synthetic seawater separately with a molarity
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of 0.08 M. These solutions have been shown to give good correlation with the total pH
scale as discussed above [18,30]. The composition of synthetic seawater and correspond-
ing buffers is presented in Table 1 following a literature recipe [30]. Sodium chloride
(NaCl, 99.5%), potassium chloride (KCl, 99.5%), magnesium chloride (MgCl2, 98%), cal-
cium chloride (CaCl2, 97%), and sodium sulphate (Na2SO4, 99%) were purchased from
Sigma-Aldrich. The 0.04 M equimolar buffers were finally obtained by adding 0.04 M
hydrochloric acid (Fisher Scientific UK Limited, Loughborough, Leicestershire, UK~37%) to
synthetic seawater. The pH values of ‘standard seawater buffers’ were defined as 6.77, 8.07,
and 8.81, respectively, for 2-Aminopyridine, Tris, and Bis. To study the pH dependency
of the bespoke electrode, various buffer solutions were prepared with their pH values
adjusted by adding a trace of HCl.

Table 1. Chemical composition of synthetic seawater.

Constituent Moles Weight/g in 0.5 L Final pH

Synthetic Seawater

NaCl 0.388 11.32

N/A

KCl 0.011 0.39
MgCl2 0.055 2.61
CaCl2 0.011 0.60

Na2SO4 0.029 2.08
HCl 0.04 1.73 (mL in vol.)

One of
2-Aminopyrine 0.08 3.76 6.77

Tris 0.08 4.84 8.07
Bis 0.08 4.20 8.81

Electrochemical apparatus and methods. Electrochemical measurements were per-
formed using a µAutolab II potentiostat (Metrohm-Autolab BV, Utrecht, The Netherlands).
A standard three-electrode set-up was used, consisting of a saturated calomel reference
electrode (SCE + 0.244 V vs. SHE, BASi Inc., West Lafayette, IN, USA), a graphite rod
counter electrode, and an iridium wire (0.1 mm in diameter, GoodFellow, UK) as the work-
ing electrode. The Ir electrode was pretreated by heating the metal using a Bunsen burner
for 10 s to remove surface contamination and impurities. The electrochemical set up was
thermostated at a constant value of 25.0 ± 0.2 ◦C. High purity N2 flow (BOC Gases plc, UK)
was used to remove oxygen from aqueous solutions as needed prior to the electrochemical
measurements. Cyclic voltammetry (CV) was used to study the electrochemical behaviour
of the Ir electrode and for the potential cycling activation. Linear sweep voltammetry (LSV)
and square wave voltammetry (SWV) were conducted to determine the pH dependency of
in situ modified Ir wire after a potential cycling activation.

3. Results and Discussion

In the following sections, we first analyse the voltammetry of an iridium wire in
synthetic seawater under conditions of controlled pH. We demonstrate that it is possible
to reproducibly form layers of iridium oxide in synthetic seawater and assign the various
pH-sensitive redox couples, which are subsequently used as the basis for the amperometric
calibration-free pH sensing without the need for any degassing to remove dissolved oxygen.
Next, potential cycling is developed as a simple method of electrode activation directly
within seawater and this is optimised in terms of the potential window used. Further
electrode optimisation is made in respect of recording the various relevant redox couples
pertinent to pH measurements and characterising the corresponding pH dependency of
a calibration-free sensor. Linear sweep voltammetry was investigated first, followed by
square wave voltammetry to improve sensitivity and precision.

3.1. Cyclic Voltammetry of Iridium and Iridium Oxides

Cyclic voltammetry was conducted to study the formation of iridium oxides on the
surface of an iridium wire and other redox reactions that occur during potential cycling. It
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was discovered that to ensure reproducible data, the surface of the Ir wire should be free of
oxide prior to voltammetric measurements. Accordingly, as reported in previously [48],
the Ir surface was treated by pre-flaming to renew the surface of the metal electrode
between experiments. To explore the voltammetric behaviour of an Ir wire and the effect
of degassing, the pre-flamed Ir electrode was first immersed in air-saturated synthetic
seawater buffered by Tris(hydroxymethyl) Aminomethane/HCl to give a pH close to
typical natural seawater (8.1 [9]), and then the same process was repeated in a degassed
solution. Cyclic voltammetry was conducted for 100 cycles starting at a potential of −0.2 V
vs. SCE with scan reversal at a potential of 0.9 V with a subsequent sweep to −0.8 V vs.
SCE where the potential was again reversed as shown in Figure 2a. In Figure 2b, the 40th
scan of cyclic voltammograms obtained in synthetic seawater with and without degassing
are overlaid. It is thought that this procedure leads to the steady build-up of a surface
layer, the thickness of which increases with each potential cycle, which displays several
redox features in conventional electrolytes [69–71] and are closely mirrored in the data
obtained in seawater as shown in Figure 2. Note that comparison of the data with and
without degassing shows no difference of peak shape or numbers of peaks between the
two, with four clearly discernible voltammetric features labelled as A, B, C, and D. This
comparison implies that degassing has no effect on the voltammetry and represents an
important step in respect of developing amperometric pH measurements for direct use in
seawater without the need for removal of oxygen from dissolved air.
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Figure 2. (a) Cyclic voltammograms showing the activation of an Ir wire at a scan rate of 0.5 Vs−1

for multiple cycles. The start potential was −0.2 V vs. SCE in air-saturated synthetic seawater with
pH = 8.1. (b) Overlaid 40th cyclic voltammograms in synthetic seawater with pH = 8.1 using an Ir
wire at a scan rate of 0.5 Vs−1; degassed: black line, without degassing: red line.

Feature A was assigned to the re-oxidation of underpotential deposited (UPD) ad-
sorbed hydrogen, Hupd, formed at very negative potentials (more negative than −0.32 V vs.
SCE). It is notable that it is a one proton–one electron transfer reaction with the reductive
formation described by Equation (8) and the oxidative desorption by Equation (9) [72–75]:

M(s) + H3O+ + e− 
 M−Had + H2O 

1
2

H2 + M−H2Oad (8)

M−Had 
 H+ + e− + M (9)

where M is an empty adsorption site on the surface.
Feature B was attributed to an Ir(III/IV) redox transition, previously confirmed by

XPS [48,70,71,76], associated with the formation of hydrous oxides, where the oxidation
peak is at a potential of ca. 0.08 V vs. SCE and the reduction peak is at ca −0.04 V vs. SCE.
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Note that this process involves various possible redox reactions and the exact stoichiometric
composition of the hydrous film is reported as hard to determine [47,65,77]. The redox
process is known to involve numbers of electrons and protons with a ratio of 2:3 leading to
a “super-Nernstian” pH dependency of ca 89 mV per pH unit [47,78,79], as implied in the
reaction suggested by Olthuis et al. [65]:

Ir2O(OH)3O3
3− + 3H+ + 2e− 
 2Ir(OH)2O− + H2O (10)

where “super-Nernstian” means a response of greater than 60 mV per pH unit. The
average transfer of 1.5 protons per electron are understood in terms of two iridium ions
each gaining an electron and the associated oxide ions gaining three. Note that the redox
reaction between Ir2O(OH)3O3

3− and Ir(OH)2O− is denoted as Ir(III/IV) for simplification
in this paper.

Feature C shows an oxidation peak at about 0.42 V with the corresponding reductive
peak at 0.37 V vs. SCE. Pickup et al. [80] and Kasian et al. [81] suggested that the redox
couple in Feature C can be attributed to further oxidation of the Ir hydrous oxides, e.g.,
from Ir (IV) to Ir (V/VI), while Pfeifer et al. [70,71,76] assigned it to the oxidation of the
oxide anion O2−, contained in the IrOx matrix in form of adsorbed OH groups, to O−:

IrOxOII−H 
 IrOxOI− + H+ + e− (11)

Feature D is related to the oxygen evolution reaction (OER) [70]:

2H2O→ O2 + 4H+ + 4e− (12)

As the number of potential cycles increases as shown in Figure 2a, a build-up of the
Ir hydrous oxide layer was inferred with scans increasing because of the repeated redox
process as explained by the mechanism reported in the previous paper [48]. It is noteworthy
that the four features are all pH sensitive but have different pH dependencies, which is
significant for the development below of a bespoke pH sensor for seawater in respect to
facilitating calibration-free measurements.

3.2. Optimization of Potential Cycling Activation

The different redox processes encountered during potential cycling were identified
and explained in the previous section. To obtain better resolved pH-sensitive redox couples
and improve the sensitivity in respect of pH detection, the most effective potential window
of potential cycling was studied in the following. To be specific, the effect of the cathodic
limit potential was investigated first, followed by that of the anodic limit potential.

As shown in Figure 3a, cyclic voltammograms with different potential windows using
a pre-flamed Ir wire were measured at a scan rate of 0.5 Vs−1 in an air-saturated Tris/HCl
solution prepared in synthetic seawater (pH = 8.14, corresponding to natural seawater [9]).
Note that as the potential window shifts as pH changes, conducting the optimisation in
synthetic seawater of a typical and average pH results in a potential window applicable
to a wide range of seawaters, the pH of which can vary from 7.5 to 8.5 depending on the
local conditions [43]. The cyclic voltammetry starts at a potential of −0.2 V and is first
swept anodically to a fixed potential of 0.9 V, then swept to different cathodic limits varying
from −0.8 V to −0.6 V vs. SCE. To find the optimised cathodic potential, the 40th cycles
of each voltammogram were displayed in Figure 3a. Figure 3b shows the 40th scans of
the CVs with the cathodic potential being fixed at −0.8 V, while the anodic potential was
progressively increased to 0.7 V from 0.9 V vs. SCE.
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Figure 3. Cyclic voltammograms of the 40th cycle SCE in air-saturated synthetic seawater with
pH = 8.14 starting at a potential of −0.2 V for activation of an Ir wire with different (a) cathodic and
(b) anodic potentials at a scan rate of 0.5 Vs−1.

The signal to the background level of the most dominant Ir(III/IV) redox couple is
assigned to be the reference for determining the effectiveness of the potential window as it
is the best defined and most prominent. The effectiveness was judged on the basis that the
higher the signal to background level, the better for pH detection. In Figure 3a, the redox
couple of the 40th cycle becomes better defined with a reductive limit of −0.8 V whilst,
in Figure 3b, the highest resolution is achieved with an anodic potential limit extended
to 0.9 V. It is significant that the anodic limit has a greater effect on Feature C compared
to the cathodic limit. To be more specific, the trend for Feature C to disappear was more
obvious as the anodic side was narrowed while the Feature B stayed relatively constant.
Pfeifer et al. [70] reported that the IrOxOI− formed during the redox reaction in Feature C
is the catalyst for OER (Equation (13)):

IrOxOI− + H2O → IrOxOI− −OI− −H + H+ + e−

→ IrOx + O2 + 2H+ + 3e−
(13)

Thus, the redox feature of interest correlates with the onset of the ORR. Meanwhile,
the trend of signal to background level improvement gets less significant when the po-
tential limit is extended either more anodically or cathodically, consistent with literature
reports [80,82]. Noting that Pickup et al. [80] reported that the hydrous oxide begins to dis-
solve when more positive potentials were applied, so no further extension of the potential
window was explored. Considering the data in Figure 3, we infer that potential sweeps
within the ranges (A) −0.6 V to −0.8 V (Hupd region) and (B) 0.7 V to 0.9 V (OER region)
are both important for the growth of the Ir hydrous oxide. To be specific, anodic sweeps to
0.9 V and cathodic to −0.8 V vs. SCE must be embraced by the potential window, so that
the in situ fabrication method of an Ir wire responds well to pH.

3.3. pH Dependency of the Voltammetric Responses of the Iridium Hydrous Oxide Layers

Following the activation of the Ir wire by potential cycling under the potential win-
dow optimised above, the pH dependencies of the two redox signals within the iridium
hydrous oxide layer (Ir3+/4+, IrOxOI−/IrOxOII−H) and the H underpotential deposition
are investigated for the pH range 7.5–8.5 in this section. Linear sweep voltammetry (LSV)
was first applied, followed by square wave voltammetry (SWV) to explore the relative
sensitivity of the pH dependency to the two techniques.
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3.3.1. Linear Sweep Voltammetry

Prior to the measurements, the pHs of buffers with pH = 7.50–8.50 were measured by
a pH meter calibrated by ‘standard seawater buffers’, which were defined as discussed
above, using the total hydrogen ion scale with an uncertainty of 0.01. LSVs were first
scanned cathodically from 0.90 to −0.80 V vs. SCE at a scan rate of 0.5 Vs−1 obtaining
reduction peaks for IrOxOI− and Ir4+ and for the formation of adsorbed (upd) hydrogen
(Figure 4a). Then, scans were immediately reversed to 0.90 V generating the corresponding
oxidation peaks (Figure 4b). All measurements were repeated more than three times. The
pH-sensitive redox couples obtained in synthetic seawater in the range of pH from 7.50–8.50
had peak potentials which shifted towards more negative potentials as the pH increased
for both oxidative and reductive scans. The reduction peak of Ir4+ shifted from ca 0.018
to −0.084 V when pH increased from 7.50 to 8.50, while Hupd signal moved from −0.66
to −0.72 V (Figure 4a). For re-oxidation peaks, that of Ir (III) occurred at ca 0.097 V vs.
SCE for pH = 7.50, and then shifted to 0.011 V when pH = 8.50, while the signals of H
desorption moved from −0.59 V to −0.61 V when pH increased from 7.50 to 8.50. The
IrOxOI−/IrOxOII−H LSV redox peak obtained by CV was not apparent by LSV so that its
pH dependency was not studied in this section. Thus, SWV was used to increase the signal
sensitivity, which will be discussed in the next section.
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Figure 4. Linear sweep voltammograms with a scan rate of 0.5 Vs−1 using an activated iridium
wire electrode with varying pH of different buffers ranging from 7.50 to 8.50 (a) reduction and
(b) oxidation.

To analyse the data, the oxidation and reduction peak potentials of Ir(III/IV) (Figure 5a)
and Hupd/Hox were recorded with the corresponding midpoint potentials of Ir(III/IV) being
calculated. Ir(III/IV) redox reaction showed a super-Nernstian relationship (93.7 ± 2.1 mV
per pH unit), which is a clear merit of the iridium oxide approach to pH sensing. Meanwhile,
the super-Nernstian pH dependency agrees with the equilibria proposed by Olthuis et al. [65]
as indicated in Equation (10), namely three proton–two electron transfer reaction. In
Figure 5b, the Hupd peak showed a near-Nernstian response (62.3 ± 1.5 mV per pH unit).
As discussed in Section 1, the pH dependency is consistent with the expected one proton–
one electron transfer [74,75]. The best-defined reoxidation peak pointed by an arrow was
studied and resulted in less pH sensitivity (23.6 ± 1.6 mV per pH unit). To develop a
calibration-free sensor, the super-Nernstian redox couple of Ir(III/IV) was reported relative
to one or another of the less pH-sensitive H redox signals (Equation (14) or Equation (15)):

ypotential = midIr − E(Hox) (14)

ypotential = midIr − E(Hupd) (15)
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x-axis error-bar is the uncertainty of pH measured by a pH meter.

In this way, the reported response becomes independent of the reference electrode
value and hence of any drift in the latter, for example, because of electrode fouling or
variable liquid junction potentials. Figure 5c shows the experimental data analysed ac-
cording to both Equations (14) and (15). The slope using Hox as the reference signal was
70.1 ± 1.4 mV per pH unit, while it was 31.3 ± 1.6 mV per pH unit referring to Hupd
peak potentials. One can conclude that referring to Hox results in a higher pH sensitivity
with a smaller uncertainty. In the next section, SWV was explored to identify any possible
improvements in the analytical responses.

3.3.2. Square Wave Voltammetry

In this section, the signal-to-background ratio of the redox peaks of interest was ex-
plored using square wave voltammetry (SWV) following potential cycling activation of the
iridium wire. The optimisation of the SWV parameters, including frequency, step potential,
and amplitude, was implemented to obtain the best-defined square wave voltammograms
for pH measurements as identified elsewhere [48]. The optimised SWV parameters, namely
a frequency of 90 Hz, an amplitude of 60 mV, and a step potential of 1 mV, were applied
for pH measurements in synthetic seawater with various pHs. First, an iridium wire was
activated by potential cycling activation with a potential window between −0.80 V and
0.90 V vs. SCE at a scan rate of 0.5 Vs−1 for 40 cycles in synthetic seawater solutions
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(pH = 7.50–8.50). Then, SWVs with optimised parameters were conducted following in
situ activation. All measurements were repeated three times. The reduction peaks were
recorded first, which initially swept to the negative potential, −0.80 V vs. SCE, from 0.90 V
(Figure 6a), and the scans were then reversed to obtain oxidation peaks (Figure 6b). The
peak potentials of the resulting pH-sensitive redox couples shifted towards more negative
potentials as the pH increased for both oxidative and reductive scans. Interestingly, whilst
a peak attributable to the IrOxOI−/IrOxOII−H redox couple was not apparent in the linear
sweep voltammetry, it was apparent in the SWV because of the increased resolution. The
redox couples occurred at similar potentials as observed in the CVs, with physically in-
significant differences of the order of 10−3 V. To be more specific in terms of pH dependency,
the reduction peak occurred at ca 0.42 V vs. SCE in a pH = 7.50 seawater and shifted to ca
0.33 V when the pH was 8.50. Meanwhile, the reduction peak of Ir4+ shifted from ca 0.044
to −0.062 V, and the Hupd signal moved from −0.60 to −0.65 V when the pH increased
from 7.50 to 8.50 (Figure 6a). In the cases of the reoxidation peaks, that of IrOxOII−H
appeared at ca 0.44 V vs. SCE for pH = 7.50 and shifted to 0.36 V when pH = 8.50, while the
Ir(III) oxidation peaks were shifted from ca 0.058 to −0.027 V. The signals of H oxidation
moved from −0.59 V to −0.63 V when pH increased from 7.50 to 8.50 (Figure 6b). Note that
capacitive effects can cause illusory peak-like features in addition to OER at high potentials
by SWV, which do not appear on LSV.
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Figure 6. Square wave voltammograms (frequency 90 Hz, step potential 1 mV, and amplitude 60 mV)
response using an activated iridium wire electrode in synthetic seawater with varying pHs ranging
from 7.50 to 8.50 (a) reduction and (b) oxidation.

Figure 7a and IrOxOI−/IrOxOII−H (Figure 7b) being calculated. The pH dependen-
cies of Hupd and H oxidation are shown in Figure 7c. Similar to the results obtained by
LSV, Ir(III/IV) showed a super-Nernstian relationship, 96.9 ± 2.0 mV. It is noteworthy
that IrOxOI−/IrOxOII−H redox reactions also showed a super-Nernstian pH dependency
(85.4 ± 5.4 mV per pH unit), which is in contrast to the one proton–one electron transfer
mechanism (Nernstian) proposed by Pfizer (Equation (11). However, because the formed
iridium hydrous oxide is amorphous, it is difficult to deduce the precise mechanism and
stoichiometric composition [81,83,84]. For consistency and convenience, we refer to this
redox couple as IrOxOI−/IrOxOII−H in the following but note the uncertainty in assign-
ment. The Hupd peak showed a close Nernstian relationship (52.0 ± 1.6 mV per pH unit),
again consistent with a one proton–one electron transfer mechanism [74,75], while the
best-defined reoxidation peak highlighted by the arrow in Figure 7 had a weaker pH
sensitivity, being 34.7 ± 1.2 mV per pH unit. Equation (14) was again used to calculate the
pH dependency to facilitate calibration-free sensing using SWV, being 61.8 ± 1.7 mV per
pH unit referring to Hox. It was concluded that SWV offered no benefit over LSV, with a
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small loss of sensitivity and a slightly higher uncertainty and requiring more complex and
costly instrumentation.
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to Hox; x-axis error-bar is the uncertainty of pH measured by a pH meter.

4. Conclusions

We have made and validated a bespoke pH sensor for use in seawater based on an
iridium wire electrode. The pH sensitive Ir oxide electrode is formed and activated using
an in situ fabrication method in synthetic seawater under neutral conditions by potential
cycling. This method can facilitate, by virtue of the in situ method of formation, remote and
more diverse pH measurements in contrast to formation via electrodeposition [47,85,86],
sol-gel [57,58] chemistry, sputtering [59,60], or thermal methods [61,62], which often require
complex conditions and processes; notably, a pre-treatment, hydroxylation [47,87,88], is
required for the latter three methods. The optimised potential cycling regime creates three
pH-sensitive redox couples on the electrode surface, namely Ir(III/IV), Hupd/Hox, and
IrOxOI−/IrOxOII−H. The former two are used so as to realise a calibration-free measure-
ment as coded in Equation (14). The combination of the measurements removes the effects
of drift of the reference electrode since both couple as measured almost simultaneously
relative to the same arbitrary reference electrode and the difference of the potentials leads
to a calibration-free pH sensor, responding to the total pH scale [18,30], for use in seawater
showing a super-Nernstian response of 70.1 ± 1.4 mV per pH unit at 25 ◦C over the pH
range of 7.50 to 8.50 corresponding to the usual range found in seawater [8,43].
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22093286/s1, Table S1: Performance of iridium oxide-based pH
electrodes made by different methods. References [89,90] are cited in the Supplementary Materials.
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