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Abstract: As a key enabler of the access traffic steering, switching and splitting (ATSSS) feature,
multipath transport can leverage the simultaneous use of several network paths and support seamless
failover to improve both communication throughput and resilience. Therefore, a traffic scheduling
strategy is necessary to determine the best network path combination that may improve the per-
formance of multipath transport. To address this need, we developed a multiservice-type based
transmission (MSTT) traffic scheduling optimization strategy, which involves three steps. First, the
user equipment (UE) selects the number of data stream transmission paths, considering the service
utility function, and either transmits all data streams via the 3GPP network or sends two streams,
one via the 3GPP network and the other via the non-3GPP network. Second, the proposed method
is used to select the transmission path for each data stream based on load balancing. Finally, an
algorithm for optimizing traffic scheduling is formulated by applying the convex optimization prob-
lem to maximize the effective network capacity under a Delay Quality of Service (DQoS) constraint.
The proposed traffic scheduling strategy is validated through simulation experiments. The results
indicate that user satisfaction and effective capacity realized are always better than when using the
always-best-connected and fixed-ratio power-allocation algorithms.

Keywords: ATSSS; multipath transport; multiservice; effective network capacity

1. Introduction

To meet diverse user needs for information communication, satisfy the associated
bandwidth requirements, and fully utilize the characteristics and advantages of various
types of access networks, such as long-term evolution (LTE), new radio (NR), and wireless
local-area network (WLAN), heterogeneous network convergence has become popular
in fifth-generation (5G) networks [1]. The Access traffic steering, switching, and splitting
(ATSSS) feature offers significant advantages for existing mobile networks, and is the prin-
cipal solution for achieving multi-network convergence. ATSSS is an optional feature that
may be supported by user equipment (UE) and 5G Core networks. ATSSS also enables a
multi-access protocol data unit (PDU) connectivity service, which can exchange PDUs be-
tween the UE and a data network by simultaneously using one third-generation partnership
project (3GPP) access network and one non-3GPP access network [2]. Among non-3GPP
access networks, WLAN has become the preferred method for convergence with cellular
networks in the communications industry owing to advantageous features, such as its high
bandwidth, low cost, and flexible deployment [3–6]. Therefore, technology for the NR and
WLAN has attracted significant attention from industries and academia due to its potential
to alleviate data traffic congestion in licensed frequency bands using unlicensed frequency
bands [3]. The two types of networks (3GPP and non-3GPP) exhibit strong complemen-
tarity, using unlicensed frequency bands to compensate for insufficient cellular network
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bandwidth and relying on the high-security features of cellular networks to complete
user-identity-access authentication. The authors of [4] have proposed that data offloading
should be seriously considered in 4G LTE networks. To date, several studies on LTE and
WLAN aggregation (LWA) have been conducted to explore different interface designs
and mechanisms for transport, resource-scheduling, and security [7–12]. Additionally, NR
and WLAN aggregation (NWA) technology has been developed, which enables UE to
implement data offloading and aggregation on both WLAN and NR network links within
a 5G-specific scenario. However, its technical feasibility and network capacity gain has not
yet been explicitly verified.

For the design, demonstration, and verification of an NWA system, the data splitting
and merging mechanism would be the crucial step. During this process, we must consider
the performance characteristics of the underlying link between the NR and WLAN, and
efficiently utilize the capabilities of the physical layers of multiple networks by reasonably
balancing load and allocating power and rate. It is also necessary to reduce delay in data
convergence packet aggregation protocol to improve user experience.

1.1. Background

With the introduction of the latest 3GPP R17, 5G system architecture was expanded to
support ATSSS, as shown in Figure 1. According to the ATSSS rules, provided by the traffic
scheduling strategy model, the UE supports traffic steering, switching, and splitting across
3GPP and non-3GPP access. Furthermore, several theoretical studies using NWA have been
implemented. The data transmitted from the UE to the data network have parallel links
to the 3GPP (NR) and non-3GPP (WLAN) networks. Therefore, following a reasonable
traffic scheduling strategy, the UE can choose between passing all its data in a single stream
through the NR network or dividing it into two streams, one that passes through the NR
network and another that passes through the WLAN. Given that NR networks and WLANs
exhibit significantly different network coverage, signal-to-noise-ratio (SNR) reliability, and
user distance, a reasonable allocation of the power and network resources is necessary to
optimize the network capacity [13].
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The service type of the UE determines the characteristics of its uplink data. Additionally, the
development of new mobile applications gives rise to different services, including tradi-
tional voice services and multimedia services, such as data and video streaming. Thus, user
service requirements are gradually demanding more broadband, diversification, and indi-
vidualization. Moreover, different Quality of Service (QoS), i.e., data transmission rates
and time delays, are required for different technologies and terminals [14–16]. Access to
a technology that meets all user-service requirements is difficult, and the contradiction
between complex service requirements and inefficient resource scheduling has become
increasingly prominent. Conversely, services in heterogeneous converged networks face
burstiness, which results in an asymmetric network service distribution. Presently, users
mostly connect to a single network to transmit all business data according to their personal
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preferences and habits. This can easily lead to problems, such as access congestion and low
QoS, in a single network, while large amounts of alternative network resources remain idle.

1.2. Related Work

Multipath management, traffic scheduling, and congestion control are the main topics
being studied by the 3GPP SA2 working group. There are also technical difficulties in
implementing the ATSSS feature currently under research. Fortunately, traffic scheduling
methods in LWA and multipath transmission control protocol (MPTCP) have received
significant research attention over the years. Owing to the similarity between LWA and
ATSSS, traffic scheduling strategies for the former can be used as a reference for the
development of new ones for the latter.

In [17], a novel radio access technology (RAT) selection method was proposed that
can maximize the total throughput by simultaneously selecting optimal RATs for a group
of UEs. In [18], it was proved essential that the network should intelligently switch a
data radio bearer (DRB) to utilize either LTE or Wi-Fi. The authors of [18] proposed two
types of switched LWA policies: guaranteed bandwidth and equal sharing. Their study
indicated that switched LWA can effectively reduce the blocking probability of the DRBs.
Both [17,18] provided efficient and high-capacity mode selection methods and solutions
to the handover problem between different access technologies that do not support the
simultaneous operation of multiple access technologies. The traffic load balancing and
resource-allocation scheme proposed in [19] is set to play a crucial role in leveraging the
dense and increasingly heterogeneous deployment of multi-radio wireless networks. A sce-
nario is considered in [19], where the traffic for each user may be split across macro-cells or
small Wi-Fi cells, connected by non-ideal backhaul links. The fraction of the user’s traffic
sent over macro-cells is proportional to the ratio between the peak capacity of that macro-
cell and the throughput of the small cell. Reference [20] focuses on the MPTCP scheduler,
with the goal of providing a good user experience for latency-sensitive applications when
interface quality is asymmetric. Two novel scheduling techniques are presented in [20],
which reduce web object transmission times and provide faster communication for inter-
active applications, compared to MPTCP’s default scheduler. However, Refs. [19,20] only
focus on the performance with one user, and neither considers fairness between all users,
nor achieves an optimal system. In a previous study [21], linear programming techniques
were used to optimize the bandwidth of a licensed spectrum, using the bandwidth of an
unlicensed spectrum to maximize the overall network throughput. In study [22], the convex
optimization theory was applied to the power of a licensed spectrum, and the duration of
an unlicensed one was used to maximize the total utility for users.

In [23], delay-tolerance service was proposed for the first time for LWA, and a cross-
system learning method was also proposed to optimize power, cell-range extension bias,
sub-band selection, and service scheduling. In study [24], a semi-Markov model, based on
a distributed coordinated function channel-access mechanism, was proposed to establish
a Wi-Fi network between closely related network resources capable of meeting the QoS
requirements. Musavian et al. [25] proposed a rate-efficient power allocation strategy for
delay outage limited applications with constraints on energy-per-bit consumption of the
system. Roy et al. [26] proposed computationally efficient algorithms based on threshold
structures for the association and offloading of users in LWA HetNet.

Although traditional radio resources include user-transmit power, bandwidth, time,
and spectrum, since the development of 5G, the focus of traffic scheduling has shifted
to resource blocks and transmit power. In the traditional traffic scheduling algorithm,
the optimal allocation of network resources is mostly achieved by maximizing the total
network throughput. However, for a multiservice network, when a user requests distinct
services simultaneously, the delay-type QoS (DQoS) characteristics that match the service
requirements must also be considered when scheduling traffic. Recently, the application
of an optimal resource-allocation algorithm, based on the maximization of the effective
network capacity, yielded good performance in several networks. The use of Karush–Kuhn–
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Tucker (KKT) conditions to maximize the effective network capacity for mobile video traffic
has been proposed [27]. The use of a semi-Markov model has been proposed to derive
the effective network capacity under LWA, which is achieved using the delay constraint
to offload the network traffic from a licensed frequency band to an unlicensed one [28].
These algorithms demonstrated the feasibility of fusing licensed spectrum-based 3GPP
networks with unlicensed spectrum-based non-3GPP networks to realize superior network
capacity. With the development of ATSSS technology and the rise of multiservice user
applications, major telecommunications operators have invested considerable amounts
of resources in the development and verification of NWA technologies, including the
scheduling and optimization of resources.

Spurred by both economic and operational considerations, and by environmental
concerns, energy efficiency has now become a key pillar in the design of communication
networks [29]. In [30], a deep reinforcement learning-based power control scheme is
proposed for improving the system-level energy EE of two-tier 5G heterogeneous and
multi-channel cells. The algorithm aims to maximize the EE of the system by regulating
the transmission power of the downlink channels and reconfiguring the user association
scheme. By introducing a machine learning (ML) algorithm from classical RL to solve the
objective problem, the authors of [31] propose a joint power control and channel allocation
scheme, based on combining an RL algorithm with statistical CSI, to reduce interference
adaptively. In the future, we will incorporate ML and RL methods into our research by
training agents to “learn” favorable policies to increase the effective capacity of the system,
and thus improve EE.

In our previous study [32], we optimized network throughput and various busi-
ness utility functions to obtain optimal power- and bandwidth-allocation mechanisms.
Experimental simulations also confirmed that the use of NWA could effectively improve
network throughput and user satisfaction. However, the parameters of the wireless channel
are constantly changing with time, frequency, and space making it difficult to determin-
istically guarantee service quality in an actual wireless communication system. With the
continuous development of statistical service quality assurance theories, the resolution
of deterministic service quality assurance in traditional wireless networks is improving.
On this basis, this study was focused on meeting the various business QoS requirements
of users. In wireless communication, end-to-end delay is a parameter that directly affects
QoS and user experience. Therefore, delay cannot be ignored in wireless communication
channels, and the guarantee of end-to-end delay has become a crucial objective of hetero-
geneous multi-connectivity networks. Although traditional channel modeling, with the
primary objective of maximizing network throughput, does not reflect the delay index,
the effective network capacity derived from the effective network bandwidth in a wired
network describes the relationships among service delay, bandwidth, power, and data rate.

1.3. Our Contribution

In this study, we considered and investigated an optimization problem related to traffic
scheduling in NWA systems. The novelty of this study is highlighted by the following
facts: (1) Our algorithm breaks the existing strategy, which offers users the possibility to
connect to only one type of network (3GPP or non-3GPP) so that the transmitted data
can be dynamically transmitted over one or two networks simultaneously, based on the
service type; (2) The data stream transmission corresponding to each service can avoid
high-load paths and choose alternative low-load paths; (3) Through distributed power-
and bandwidth-allocation strategies, the effective capacity of the system can be maximized,
while satisfying the specific service delay requirements of different users.

Additionally, this study makes the following contributions:

1. A smart mode selection module was employed to choose between 3GPP and non-
3GPP access. A model for the selection of the transmission path, based on the utility
function, was developed.
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2. A method for determination of the suitable service network, based on the network
load, which quickly and effectively discards high-load networks, was developed.
This method comprises three steps: (a) determination of the service network candidate
set; (b) elimination of the poor link quality network; and (c) elimination of the high-
load network, based on a sigmoid function.

3. An effective network capacity maximization problem was formulated under specific
DQoS, statistical bandwidth and power constraints. Using the Lagrangian function
and the sub-gradient algorithm, the original problem was solved and an optimal
resource allocation solution for 3GPP access and non-3GPP was derived.

The rest of this paper is organized as follows. Section 2 introduces the system model,
including the network and service utility components, as well as the calculation of the
effective network capacity. In Section 3, we describe the proposed resource optimization
scheme, which is divided into three steps: (1) determination of the number of connection
links; (2) selection of the transmission path; and (3) distribution of resource allocation.
In Section 4, we show the convergence of the link adaptations and provide simulation
results corresponding to our scheme. Finally, Section 5 presents the conclusions drawn
from the simulation results.

2. System Model

A multi-cell network with a set of UEs, M ={m1, m2 · · ·mm}, which need to send their
data to the core network, was considered. The set of all the NR base stations (BSs) was
denoted by L ={l1, l2, · · · ll}, and the set of all the WLAN access points (APs) was denoted
by W ={w1, w2, · · ·ww}. Each UE could accommodate two parallel links, one to the NR
network and another to the WLAN. Additionally, since WLAN cannot exist independently
(without association with the NR network) in our model, a UE maintains its connection
to the NR network through its first link, which is referred to as the dedicated link, and
ensures the transmission of its control commands. The NR network chosen by each UE as
its dedicated link is then introduced in the next module. On its second link, referred to
as the adaptive link, the UE may choose the WLAN AP to send data to the core network.
The WLAN chosen by each UE as its adaptive link is the one from which the strongest
pilot signal is received on a downlink control channel. All the links in the network (i.e.,
UE to NR and UE to WLAN) can allocate their transmit power and, consequently, their
data rate. Considering the available power vector of the UEs as Pmax = [Pmax,1, · · · Pmax,m]
(unit: W), the transmit powers of the UEs, with respect to their dedicated and adaptive
links, are represented by the vectors Pl =

[
P(l)

1 , P(l)
2 · · · P

(l)
m

]
and Pw =

[
P(w)

1 , P(w)
2 · · · P(w)

m

]
,

respectively, where P(l)
i + P(w)

i ≤ Pmax,i.

2.1. Network Model

The channel gain between UE, i, and the intended receiver, which depends on several
factors, such as shadowing, path loss, and fading, is represented as hi,l (hi,w). We ignored
the band allocation differences between cell-edge users and central users. The WLAN
adopted the carrier sense multiple access/collision avoidance (CSMA/CA) mechanism,
and the main purpose of converging the WLAN was to reduce the burden on the NR
network. To better manage intra-cell interference, we assumed that the NR dedicated
links may suffer intra-cell interference due to frequency reuse, but WLAN links operate
on channels that are not on the same frequency as NR. Therefore, only limited noise is
present. For UE, i, with x(l)i and x(w)

i as the unit-power complex-valued input symbols sent
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over the dedicated and adaptive links, respectively, the output symbols y(l)i and y(w)
i can be

expressed as follows [33]:

y(l)i = hi,l

√
P(l)

i x(l)i + ∑
∀j 6=i

hj,l

√
P(l)

j x(l)j + v(l)i ,

y(w)
i = hi,w

√
P(w)

i x(w)
i + v(w)

i ,

(1)

where v(l)i and v(w)
i denote the zero-mean complex Gaussian noise on the dedicated (NR)

and adaptive (WALN) links, respectively. Owing to the existing frequency characteristics,
there was no interference between the dedicated and adaptive links. Thus, we assumed
that interference exists only when users access the same bandwidth resource block, and the
effective interference is then defined as follows:

N(l)
i =

m
∑

j=1
hj,l P

(l)
j + ns,

N(w)
i = nw,

(2)

where ns = Var[v(l)i ] and nw = Var[v(w)
i ] are the thermal noise powers. The corresponding

signal to interference plus noise ratio can be expressed as follows:

γ
(l)
i =

P(l)
i

N(l)
i

=
P(l)

i
m
∑

j=1
hj,l P

(l)
j +ns

,

γ
(w)
i =

P(w)
i

N(w)
i

=
P(w)

i
nw

.

(3)

2.2. Service Utility Model

The utility function is derived from economics and is used to express the quantita-
tive relationship between the utility obtained by consumers during consumption and the
combination of commodities consumed, i.e., it measures the degree of satisfaction that
consumers obtain from the consumption of a given combination of commodities. In recent
years, utility functions have been increasingly adopted in research on wireless network
resource allocation to effectively characterize the users’ preferences and network perfor-
mances [34,35]. The utility function is also used in delay-critical businesses. For example,
Ref. [36] considered a multi-path routing problem of maximizing the aggregate user utility
over a multi-hop network. Furthermore, Ref. [37] studied delay-optimal packet scheduling
strategies for a M2M uplink, with heterogeneous data arriving at a M2M Application Server
via multiple M2M Aggregators. In these studies, the utility function measures the impact
of any time delay on user satisfaction. In our research, the utility function is used for
performance evaluation of the end-to-end communication delay. Generally, UEs initiate
multiple services simultaneously, and the completion of each service is subject to different
QoS requirements. Since the utility function can quantify QoS and measure user satisfaction
in recent years it has increasingly been employed to realize resource allocation, power
control, and flow control [38,39]. We define three utility functions, namely the constant
bit rate (CBR), download service (DS), and variable bit rate (VBR). Ui and Vi represent
the utility function and transmission rate, respectively, corresponding to service i, and Tdi
represents the threshold that service i must reach to be successfully completed.

CBR

Usually, CBR services do not require a high rate and only need to meet a threshold
to ensure normal data transmission. However, if this threshold is not reached, the user
experience is drastically impaired. For voice services, users are more sensitive to delay than
to transmission rate. Therefore, normal voice communication only needs to meet an 8 Kbps
threshold; however, if this threshold is not reached, the communication is interrupted, and
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this further impacts the user experience. The utility function for CBR services is represented
by the following step function:

Ucbr =

{
0 , i f Vcbr < Tdcbr,
1 , i f Vcbr ≥ Tdcbr .

(4)

DS

DSs, including file transfer and multimedia streaming, have relatively high throughput
requirements. As the data rate increases, user satisfaction increases and user sensitivity
reduces. Therefore, the relationship between data rate and user satisfaction is not linear.
Thus, the utility function of data services is expressed as follows:

Uds = 1− e
− Vds

Tdds . (5)

VBR

Although the usefulness of VBR services improves with increase in data rate, much like
with DSs, VBR services have more stringent requirements for packet loss rate. For example,
the utility of video services changes smoothly when the data rate is very low or very high.
This is because at very low data rates packet loss rate is high and increases the link failure
rate, while at very high data rates packet loss rate is low and can ensure video quality.
We use a sigmoid function to express the utility function of VBR services as follows:

Uvbr =
1

1 + e−ω(Vvbr−Tdvbr)
. (6)

2.3. Effective Network Capacity

Most services use data packet-switching technology, which requires a guaranteed
QoS to ensure the order of control-information resources during data transmission across
the network. An effective and practical QoS support mechanism requires an accurate
and simple channel model [40]. For this reason, it is necessary to model the wireless
channel based on QoS indicators, such as data rate, delay, and delay violation probability.
The queuing system model in Figure 2 shows that the source traffic and the network service
are matched using a first-in first-out buffer (queue). Thus, the queue prevents the loss
of packets that could occur when the source rate exceeds the service rate, at the expense
of an increased delay. Using the effective capacity and statistical delay service quality
parameters proposed in [41], the end-to-end delay of each user is modeled. The model
aims to characterize wireless channels in terms of functions that can be easily mapped
to link-level QoS metrics, such as delay-bound violation probability. This transmission
model is also the theoretical basis of our heterogeneous network multiservice transmission.
During data-packet queuing, multiple services, such as those pertaining to voice, data, and
video, are ordered, and different network resources are allocated to each.
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Consequently, we assume that end-to-end communications are modeled based on a
queuing system, wherein the DQoS index, θ, is given by Equation (7) [42]:where

− lim
x→∞

log(Pr{Q(∞) > x})
x

= θ, (7)
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x represents the queue-length threshold. According to the large-deviation theory, the prob-
ability that the queue-length process Q(t) exceeds the threshold x decreases exponentially
as x increases. Additionally, the DQoS index, θ, is used to measure the exponential decay
rate of the current link-violation service; the larger the θ value, the greater the possibility
that the link satisfies strict delay service requirements. Conversely, the smaller the θ value,
the greater the possibility that the channel is guaranteed only by a loose delay service [43].
Furthermore, Equation (7) shows that the probability that the queue-length violates the
threshold, x, can be expressed as follows [44]:

Pr{Q(∞) > x} = e−θx. (8)

The instantaneous data rate on link i, Ri, which can be determined using Shannon’s
formula, is expressed as follows:

Ri = B log2(1 + Piγi). (9)

where B represents the bandwidth of link i, Pi represents the transmission power allocated
by the user to link i, and γi represents the instantaneous SNR obtained by the uplink
i. Assuming that θi represents the DQoS index for link i, the effective network capacity
E(θi) of link i can be represented according to Equation (10), where Eγi (·) represents the
expectation of γi.

E(θi) = −
1
θi

log
(

Eγi

{
e−θi Ri

})
= − 1

θi
log
(

Eγi

{
e−θi B log2 (1+Piγi)

})
. (10)

3. Multiservice Type-Based Transmission (MSTT)

Based on the foregoing DQoS guarantee mechanism, we proposed a scheme to opti-
mize resource allocation by maximizing the total effective network capacity of the NR and
WLAN links. The algorithm comprises three steps. First, the UE determines the number of
data transmission paths to either (a) transmit its two data streams through the NR or (b)
send one stream through the NR and the other through the WLAN. Then, a method to select
the transmission path based on load balancing is used to plan the data streams transmission
path of each service. Finally, a traffic scheduling scheme under the delay service quality
constraint is developed to determine user power decomposition and bandwidth allocation.
A schematic diagram of the algorithm is shown in Figure 3.
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The total utility function of all services is expressed as follows:

Uall = ∑
r∈R

log2(Ur), (11)

where r ∈ R(CBR, DS, VBR). To maximally satisfy the user QoS requirements and obtain
the maximum overall utility, in the MSTT scheme, it is necessary to first ensure that the rate
of the CBR service exceeds the basic transmission threshold. Therefore, according to the
characteristics of the CBR utility function, all the CBRs are set to adopt a single connection.
Additionally, users implement a single connection when the WLAN network is occupied.
Thus, the number of upload paths for all the service data streams is expressed as{

1 CBR or WLAN collision
2 {DS, VBR} and WLAN idle

(12)

Step 2. Selection of dedicated path.

In this subsection, a dynamic dedicated path selection scheme, which allows a user
to dynamically adjust the dedicated path based on channel-state information and NR
BS load, is proposed. The UE estimates the channel quality of the serving BS and the
neighboring cells using the reference signal received power (RSRP) report, which is the
most common parameter in mobility decisions for heterogeneous networks. The averaged
UE measurement, Mu,c, of UE u from BS c at the nth time step is calculated as

Mu,c = (1− a)·Mu,c(n− 1) + a·Ru,c(n), (13)

where Ru,c(n) represents the RSRP instantaneously measured by UE u from BS c, and a
is the filter coefficient configured by the network [45,46]. It should be clarified that the
Mu,c of each UE is acquired only once, whereas the location of the UE is updated at every
time step.

The UE u first initializes the uplink candidate set according to a preset threshold, then
removes the BSs with poor channel quality based on the relative threshold, and finally
removes the overloaded BSs. This not only ensures the throughput requirements of UE u
but also achieves load balancing for the entire system.

(1) Uplink candidate set initialization: For each u, we assumed that, if Mu,c is greater than
the threshold Mth, the BS c can be added to the candidate set of UE u, i.e., min

c∈Au
(Mu,c) ≥ Mth.

Conversely, if Mu,c is less than Mth, no connection between UE u and BS c can be established.
Considering the typical urban scene layout and the sensitivity of the UE receiver, Mth is
usually set to −109 dBm.

(2) Removing weak BSs: Very weak links may not yield additional benefits but un-
necessarily increase complexity. If the difference between Mu,c and the strongest RSRP
BS is greater than the removal offset, Mrmv, BS c will be deleted from the candidate set.
However, if it can remain in the candidate set, the following condition must be satisfied:

Mu,c ≥ max
c∈Au

(Mu,c)−Mrmv, (14)

where Au represents the candidate set of UE u. A previous study showed that when
Mrmv = 9dB, the radio link failure (RLF) is fully resolved [32].

(3) System load balancing: The aforementioned threshold can effectively limit the
size of the candidate set, but this limitation can be further enforced. In this study, to
realize system load balancing, the following sigmoid function, which consists of a BS load,
is proposed:

S(Lc, ω, Lmax) =
1

1 + e−ω(Lc−Lmax)
, (15)
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where ω is a parameter that affects the shape of the sigmoid function, Lc is the load of BS c,
and Lmax represents the maximum service carrying capacity of the BS c. We assume that Lc
represents the amount of data transmitted by the current BS c.

In Figure 4, a family of sigmoid functions with a different ω is compared with
the linear increment function for Lmax = 5. Cell c can remain in Au if it satisfies the
following condition:

Mu,c

max
c∈Au

Mu,c
≥ S(Lc, ω, Lmax). (16)
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For BS c, Figure 4 shows that, as the BS load increases, the constraints become more
stringent. In other words, the smaller the load of BS c, the greater the probability of it
staying in Au. Finally, the UE selects the link with the largest Mu,c in the candidate set as
the dedicated path. This method can effectively remove overloaded cells and achieve load
balancing in the whole system.

Step 3. Distributed power and bandwidth allocation.

With the rapid growth of services required owing to the high network latency of users,
improving DQoS has become an effective strategy to enhance user experience [47–51].
Additionally, ensuring that the delay requirements of different services on communica-
tion networks are achieved has become an urgent problem that needs to be addressed.
Moreover, the combination of NR and WLAN has enabled users to achieve higher peak
data-packet transmission rates. Thus, a method to maximize the total effective network
capacity, while satisfying the quality requirements of different services, when the number
of service paths is equal to 2 is detailed in this section.

In the model, it is assumed that there are L NR BSs occupying licensed frequency
bands in the network, and that each BS bandwidth is set to BL. Further, based on unlicensed
frequency bands, it is also assumed that there are W WLAN APs in the NR BS coverage
area, and each WLAN AP bandwidth is set to BW . The channels of both frequency bands
are assumed to be ideal quasistatic channels, i.e., the channel gain does not change within
a given frame. The frames exhibit mutual independence; thus, users can receive ideal
channel-state information. Service requests from UEs follow the file transfer protocol (FTP)
data generation mechanism with a data-arrival rate α.

The proportion of data allocated to each of the two links depends on the type of service.
We define the binary variable bL

k to indicate whether service k selects the NR link to upload
data. If it does, bL

k = 1, otherwise, bL
k = 0. Similarly, we define the binary variable bW

k to
indicate whether service k selects the WLAN link to upload data. If so, bW

k = 1, otherwise,
bW

k = 0.
The effective network capacity describes the relationships among the channel and the

data transmission time, power, and bandwidth under the constraints of different service
DQoS conditions. It was assumed that UE i selects the two uplinks from L NR BSs and
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W WLAN APs via a two-step process. Thus, the effective network capacity, EL
k
(
θL

k
)
, for

service k of UE i on the NR link is expressed as follows:

EL
k

(
θL

k

)
= − 1

θL
k

log
(
EγL

k

{
e−θL

k RL
k

})
= − 1

θL
k

log
(
EγL

k

{
e−θL

k BL
k log2 (1+PL

k γL
k )
})

, (17)

where θL
k is the impact factor of the characteristics of service k on the effective network

capacity of the NR link, i.e., the DQoS index of the service is θL
k . BL

k is the uplink bandwidth
allocated to service k on the NR link, PL

k is the power allocated to the UE in the NR uplink,
γL

k is the instantaneous rate when service k is transmitted over the NR link, and EγL
k
(·) is

the expectation regarding γL
k .

Similarly, the effective network capacity, EW
k
(
θW

k
)
, for service k of UE i on the WLAN

link can be expressed as follows:

EW
k

(
θW

k

)
= − 1

θW
k

log
(
EγW

k

{
e−θW

k RW
k

})
= − 1

θW
k

log
(
EγW

k

{
e−θW

k BW
k log2 (1+PW

k γW
k )
})

, (18)

where θW
k is the impact factor of the characteristics of service k on the effective network

capacity of the WLAN link.BW
k is the uplink bandwidth allocated to service k on the WLAN

link, PW
k is the power allocated to the UE in the WLAN uplink, γW

k is the instantaneous
rate when service k is transmitted over the WLAN link, and EγW

k
(·) is the expectation

regarding γW
k .

For simplicity, it was assumed that service k has the same influence on the effective
network capacities of the NR and WLAN links, i.e., θk = θL

k = θW
k . Thus, the total effective

network capacity of service k on the NR and WLAN links can be expressed as follows [43]:

E(θk) = EL
k (θk) + EW

k (θk) = −
1
θk

[
log
(
EγL

k

{
e−θk BL

k log2 (1+PL
k γL

k )
})

+ log
(
EγW

k

{
e−θk BW

k log2 (1+PW
k γW

k )
})]

. (19)

Therefore, for the multiservice NWA uplink traffic scheduling problem, the following
optimization problems can be established as Equation (20):

argmax
P∗ ,B∗

{
k=K

∑
k=1
− 1

θk

[
log
(
EγL

k

{
e−θk BL

k log2 (1+PL
k γL

k )
})

+ log
(
EγW

k

{
e−θk BW

k log2 (1+PW
k γW

k )
})]}

, (20)

s.t. PL
k + PW

k ≤ Pmax, (21)

k=K

∑
k=1

BL
k ≤ BL, (22)

k=K

∑
k=1

BW
k ≤ BW , (23)

PL
k , PW

k , BL
k , BW

k ≥ 0. (24)

The optimization objective function is a summation of multiple log functions, and,
given that the constraints are linear, the problem is a convex optimization one. To reduce
complexity, it is assumed that the minimum granularity of UE power allocation is repre-
sented by the link. Additionally, the constraint in Equation (21) indicates that the sum of
the transmit power allocated by the user to the NR and WLAN links does not exceed the
total maximum transmit power. The constraint in Equation (22) indicates that the total
bandwidth on the NR link occupied by simultaneous requests for multiple services by
the current user should not exceed the total uplink bandwidth of the NR. Similarly, the
constraint in Equation (23) indicates that the total bandwidth on the WLAN link that is
simultaneously occupied by the multiple service requests of the current user should not
exceed the total uplink bandwidth of the WLAN. Moreover, the constraint in Equation (24)
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indicates that each service can upload data on both NR and WLAN links simultaneously.
Although Equation (20) is already a convex optimization problem, it is difficult to determine
the closed optimal solution using KKT conditions. Therefore, the optimization problem in
Equation (20) can be transformed into a joint optimization problem of distributed optimal
power and bandwidth mechanisms [43].

(1) Optimal power-allocation mechanism

If the DQoS index of service k for user i is θk, the optimal power-allocation problem
obtained according to Equation (20) can be expressed as follows:

argmax
PL

k ,PW
k

{
− 1

θk

[
log
(
EγL

k

{
e−θk BL log2 (1+PL

k γL
k )
})

+ log
(
EγW

k

{
e−θkTBW log2 (1+PW

k γW
k )
})]}

, (25)

s.t. PL
k + PW

k ≤ Pmax, (26)

PL
k , PW

k ≥ 0. (27)

These expressions are equivalent to the convex optimization problem, which is ex-
pressed as follows:

argmin
PL

k ,PW
k

{
log
(
EγL

k

{
e−θk BL log2 (1+PL

k γL
k )
})

+ log
(
EγW

k

{
e−θk BW log2 (1+PW

k γW
k )
})}

, (28)

such that Equations (26) and (27) are satisfied. Since the NR and WLAN are independent of
the two links, Equation (28) becomes equivalent to the following:

argmin
PL

k ,PW
k

{
EγL

k

{
e−θk BL log2 (1+PL

k γL
k )
}
EγW

k

{
e−θk BW log2 (1+PW

k γW
k )
}}

= argmin
PL

k ,PW
k

{
Eγk

{(
1 + PL

k γL
k
)−θk BL

ln 2
(
1 + PW

k γW
k
)−θk BW

ln 2

}}
, (29)

where γk =
[
γL

k , γW
k
]

is the NR- and WLAN-link channel SNR vector. Since θk, BL, and

BW are all known, α = −θk BL

ln 2 , and β = −θk BW

ln 2 ; the Lagrangian function in Equation (29) is
expressed as follows:

L
(

PL
k , PW

k , λ1

)
= Eγk

{(
1 + PL

k γL
k

)α(
1 + PW

k γW
k

)β
}
− λ1

(
PL

k + PW
k − Pmax

k

)
. (30)

Setting the result to 0 yields the following results:

αγL
k

(
1 + PW

k γW
k

)β(
1 + PL

k γL
k

)α−1
− λ1 = 0, (31)

β
(

1 + PL
k γL

k

)α(
1 + PW

k γW
k

)β−1
γW

k − λ1 = 0, (32)

PL
k + PW

k − Pmax = 0. (33)

Finally, solving Equations (31)–(33) yields the optimal uplink power allocation: PL∗
k =

BLγL
k (1+PmaxγW

k )−BW γW
k

γL
k γW

k (BL+BW)

PW∗
k = Pmax − PL∗

k .
, (34)

Next, we study the optimal bandwidth-allocation mechanism based on the optimal
power-allocation mechanism.

(2) Optimal bandwidth-allocation mechanism

After determining the optimal uplink power allocation, based on the impact of a
service on the data-packet transfer rate, we reasonably allocate the bandwidth to obtain
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the total maximum effective network capacity. Thus, the optimal bandwidth-allocation
mechanism can be obtained by solving the following convex optimization problem:

argmin
BL

k ,BW
k

1≤k≤K

EγL
i

 K

∏
k=1

(
1 + PL∗

k γL
k

)−θk BL
k

ln 2

+EγW
k

 K

∏
k=1

(
1 + PW∗

k γW
k

)−θk BW
k

ln 2


, (35)

s.t.
k=K

∑
k=1

BL
k ≤ BL, (36)

k=K

∑
k=1

BL
W ≤ BW , (37)

BL
k , BL

W ≥ 0. (38)

The constraint in Equation (36) indicates that the bandwidth occupied by all the
services on the NR link is smaller than the total uplink bandwidth of the NR. A similar
constraint in Equation (37) indicates that the bandwidth occupied by all the services on
the WLAN link is smaller than the total uplink bandwidth of the WLAN. Additionally, the
constraint in Equation (38) indicates that each service has an opportunity to upload data.

To solve the convex optimization problem, the optimal bandwidth-allocation mecha-

nism should satisfy
k=K
∑

k=1
BL∗

i = BL. The reason is as follows: with BL∗
i as the optimal uplink

bandwidth-allocation mechanism and E∗L(θi) as the maximum effective network capacity

of the NR, if
k=K
∑

k=1
BL

i < BL, the surplus bandwidth remains in the network. Any additional

capacity owing to the remaining network bandwidth will reduce the objective function.

Thus, the optimal bandwidth-allocation mechanism should satisfy
k=K
∑

k=1
BL∗

i = BL.

Further, the sub-gradient algorithm is used to determine the optimal solution of the
optimal bandwidth-allocation mechanism. The Lagrangian function in Equation (35) is
expressed as follows:

L2
(

BL
k , BW

k , p, q
)
= EγL

k

{
K
∏
i=k

(
1 + PL∗

k γL
k
)−θk BL

k
ln 2

}
+EγW

k

{
K
∏
i=k

(
1 + PW∗

k γW
k
)−θk BW

k
ln 2

}

+p
(

k=K
∑

k=1
BL

i ≤ BL
)
+ q
(

k=K
∑

k=1
BW

i − BW
)

,

(39)

where p and q are the nonnegative Lagrangian multipliers. After obtaining L2 for the partial
derivatives, BL

k and BW
k , the results are set to 0 to obtain the following:

∂L2
∂BL

k
= − θk

ln 2

K
∏
i=k

(
1 + PL∗

k γL
k
)−θk BL

k
ln 2 ln

(
1 + PL∗

k γL
k
)
= 0,

∂L2
∂BW

k
= − θk

ln 2

K
∏
i=k

(
1 + PW∗

k γW
k
)−θk BW

k
ln 2 ln

(
1 + PW∗

k γW
k
)
= 0.

(40)

The pointwise convergence of the lower bound of the Lagrangian function L2 yields
the Lagrangian dual function as follows:

D(p, q) = inf
(BL

k ,BW
k )

1≤i≤K

L2 (41)
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The sub-gradient method is employed to solve the dual problem, and the Lagrangian
multipliers are solved in each iteration using the following: p(s + 1) = p(s) + v(s) ∂L3

∂p ,

q(s + 1) = q(s) + v(s) ∂L3
∂q ,

(42)

where s represents the number of iterations, ∂L2
∂p and ∂L2

∂q represent gradients, and v(s)
represents the gradient step size for each iteration, s.

In summary, Equation (20) is an optimization problem, for maximizing the total effec-
tive capacity of users in the system, where the limiting conditions are the bandwidth and the
user power. As the two resources do not affect each other, the total optimization problem
is decomposed into two sub-problems, as Equations (25) and (35). Equations (28) to (34)
detail the process of solving the sub-problem in Equation (25), using the Lagrangian equa-
tion method. Equations (39) to (42) detail the solution methods of the sub-problem in
Equation (35), using the sub-gradient method.

The procedure to solve the optimal bandwidth allocation is presented as Algorithm 1.

Algorithm 1. Optimal bandwidth allocation using the sub-gradient method.

1. Declare, instantiate, and initialize s = 0 as a counter of the number of iterations s according to (35).
2. Input the initial values of BL

k , BW
k , p, q, and θk, 1 ≤ k ≤ K.

3. Initialize maximum tolerance threshold (ε) and v(0).
4. Calculate gradients ∂L2

∂BL
k

and ∂L2
∂BW

k
according to (39) and (40).

5. Solve ∂L2
∂BL

k
= 0 and ∂L2

∂BW
k

= 0 then calculate current optimal values

BL∗
k (s− 1) and BW∗

k (s− 1) based on P∗L and P∗W , as obtained from the optimal power-allocation
mechanism described by (34).
6. Calculate the current optimal effective network capacity, E∗i (s− 1).
7. Increment the counter for the next iteration of the algorithm: s = s + 1.
8. Continue solving ∂L2

∂BL
k
= 0 and ∂L2

∂BW
k

= 0 and obtaining current optimal values

BL∗
i (s) and BW∗

i (s) according to optimal power allocations P∗L and P∗W .
9. Calculate E∗i (s).
10. Update according to the iteration formula in (42).
11. Loop until |E∗(s)− E∗(s− 1)| ≤ ε.
12. End.

4. Simulation Results and Analysis
4.1. Simulation Parameters

In this study, the feasibility of using the proposed MSTT algorithm and the network
capacity realized with it were experimentally verified through simulations. To this end, an
NR network was deployed as a macro-BS, thereby representing 3GPP scenarios. Likewise, a
WLAN was deployed as a micro-BS, representing non-3GPP scenarios. In the proposed sim-
ulation platform, all UEs supported ATSSS, and the signaling interaction between the 3GPP
and non-3GPP networks followed ATSSS rules. In our system simulation, the network archi-
tecture, protocols, signaling, and simulation scenarios were constructed in full compliance
with 3GPP standards. During the simulation, all UEs were randomly distributed, moved
at a speed of 30 km/h, and changed position every 100 TTIs. The maximum transmitted
power of each UE was 21 dBm. The handover time for the UE in the candidate set was
called the intra-network handover delay, which was set to 10 m. If the BS to which the
UE was handed over to was not in the candidate set, the handover time was called the
inter-network handover delay and was set to 50 m.

Additionally, we simulated a configuration wherein no UE demonstrated multi-path
operation. This configuration is referred to as single connectivity (SC). In the SC scenario,
the UE u connected to only one path, with maximum Mu,c. According to the 3GPP and
the IEEE 802.11 g standards, the proposed channel model complied with 3GPP 38.901 The
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cellular network structure was represented by seven NR BSs, and three WLAN APs were
evenly distributed under each NR BS. The statistical window of the average load of the BS
was 200 m. The under-loaded and overloaded scenarios were simulated by distributing
different numbers of UEs for each BS, and an unevenly loaded scenario comprised a random
combination of the under-loaded and overloaded scenarios.

Each user-service type employed an FTP model with a service data-packet arrival
rate α. The total uplink bandwidths of the NR network and WLAN links were 10 M Hz
and 22 M Hz, respectively. Additionally, “normalized effective network capacity” in the
simulation results referred to the effective network capacity in Hz/s.

The most important parameters used in the simulations and their corresponding
values are listed in Table 1.

Table 1. Simulation parameters and corresponding values.

Parameter Value

Carrier frequency NR
WLAN

3.5 GHz
5 GHz

Propagation path-loss model NR
WLAN

Urban macro cellular
(Uma)Indoor

Bandwidth NR
WLAN

10 MHz
22 MHz

NR inter-site distance (ISD) 40 m

WLAN AP in a cell 3

Maximum transmit power (UE) 21 dBm

UE moving speed 30 km/h

Inter-network handover delay 50 ms

Intra-network handover delay 10 ms

File-transfer protocol (FTP) service
data-packet arrival rate α

1

Packet size 4 M

Window size (mathematically obtained from
expectation statistics) 200 ms

Tdcbr 8 kbps

Tdds 20 Mbps

Tdvbr 12 Mbps

ε 0.001

s 1

4.2. Simulation Results

During the simulation, the 5% of users who demonstrated the lowest throughput
were considered cell-edge users. The simulation results reveal that the average throughput
realized by the SC NR cell-edge users was 0.60 Mbps, while that of the corresponding multi-
path users was 9.52 Mbps. This confirms that the ATSSS feature significantly improves
the throughput of cell-edge users. Next, we focused our analysis on user satisfaction.
We used the bandwidth and power average distribution (AD) scheme as a comparison
scheme. 3GPP R-17 TS 23.501 defines three steering modes supported by ATSSS technology.
Correspondingly, there are three types of network switching. The three modes are: active-
standby, smallest delay, and load-balancing [52]. Among them, the AD algorithm is one of
the load-balancing steering modes. In load-balancing steering mode, each access network
receives a percentage of Multi-Access PDU (MA-PDU) session data, depending on the
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assigned weighting factor. The AD algorithm equally distributes the power of each UE in
the calculation of the weight factor.

We first analyzed the CBR service. The simulation results are shown in Table 2. For the
AD scheme, the number of users meeting the CBR threshold reached 100%, which means
that all CBR services were satisfied. In the MSTT scheme, this value slightly dropped, but
remained above 99.64%. This small sacrifice brought about a significant increase in the
average throughput of VBR and DS services, as shown in Figure 5a. Figure 5b shows the
mean value of satisfaction for VBR and DS services in the system. It shows that, compared
with the AD scheme, the MSTT scheme always greatly improves the satisfaction level of
the UEs’ services in the system to better meet their different requirements.

Table 2. Satisfaction of CBR.

UE Num 10 20 30 40 50

D utility (%) 100 100 100 100 100
MDT uility (%) 99.658 99.765 99.639 99.772 98.683
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The under-loaded and over-loaded scenarios were simulated by distributing 5 UEs
and 15 UEs, respectively, for each cell, and an unevenly loaded scenario corresponded
to a random combination of the under-loaded and over-loaded scenarios. RLF is one of
the main sources of service disruption and is critical to future mobile networks. Figure 6a
depicts the normalized RLF corresponding to the under-loaded, unevenly loaded, and
over-loaded scenarios for different ω. The figure shows that, for the under-loaded scenario,
the RLF is completely solved at ω = 1. For the unevenly loaded and over-loaded scenarios,
the RLF is completely solved at ω = 2. This is because as ω increases, the condition that
BS c continues to remain in the candidate set becomes relaxed, and the probability of it
remaining in the candidate set of UE u increases.

As an example of convergence, we randomly selected a UE in the system and plotted
the evolution of the corresponding bandwidth. Figure 6b shows that, after 10 iterative steps,
the bandwidth allocation of the NR BS finally converges to 10 MHz, and after 20 iterative
steps, that of the WLAN converges to 22 MHz. This indicates that the MSTT scheme is
convergent through a limited number of iterations.
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As already mentioned in the Introduction section, the size of the DQoS index, θ, reflects
the strictness of the network requirements for QoS. Figure 7 shows the effect of different
θ values on the normalized effective network capacity. Evidently, the larger the θ value,
the smaller the normalized effective network capacity. This is because, for larger DQoS
indices, more network resources are consumed to guarantee the service QoS index, thereby
reducing the normalized effective network capacity [43]. This result is consistent with that
obtained theoretically. Additionally, the total effective network capacity increases with
increasing transmission power.
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Figure 7. Relationship between size of DQoS index θ and normalized effective network capacity.

The network capacity obtained using the proposed MSTT algorithm was evaluated
and compared with those obtained using the always-best-connected (ABC) and fixed-ratio
power-allocation algorithms. The ABC algorithm is an extended steering mode that is
based on the smallest delay. The purpose of the ABC algorithm is to always connect
to the optimal link. If it is assumed that the link with the smallest delay is the optimal
link, the ABC algorithm is equivalent to smallest delay switching. The power-allocation
algorithm essentially obtains the maximum-power SC, with a core concept that includes
all the BSs. Thus, the user always connects to the BS receiving the largest RSRP and uses
the maximum UE transmit power when uploading data. The main advantage of this ABC
power-allocation algorithm is that, although the user can obtain a higher SNR, frequent
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network switching increases data transmission delay and greatly deteriorates the user’s
experience of a delay-sensitive service. In the fixed-proportion power-allocation algorithm,
users can allocate certain proportions of power to an NR link and a WLAN link. In our
simulation, F(x) was used to represent x% of the total user power allocated to the NR.

Figure 8 shows a comparison of the network capacities obtained based on the proposed
MSTT algorithm, the ABC algorithm, and the fixed-ratio power-allocation algorithm with
varying user-transmit power. The network users are evenly distributed, with θ = 10−3.
F(100), F(70), and F(50) represent fixed-ratio power-allocation algorithms, which indicate
that users have allocated 100%, 70%, and 50% of the total network power to the NR,
respectively. F(50) also represents the AD algorithm.
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Evidently, the NWA dual network connectivity is superior to a single network con-
nection. With increasing user-transmit power, the network capacity advantages of dual
connectivity became more pronounced given that dual connectivity can effectively offload
data on overloaded BSs, and increase the overall effective network capacity via the second
link, thereby improving the network capacity. Additionally, the simulation using F(100)
resulted in the worst network capacity because the large bandwidth and high capacity
of the WLAN were not fully utilized. The simulation results also indicate that the net-
work capacity achieved using the proposed MSTT algorithm is always better than those
obtained using other algorithms, because the MSTT algorithm distributes power as freely
and reasonably as possible to achieve the optimal network capacity.

Unlike the even distribution of network users in the previous scenario, users were
unevenly distributed close to the WLAN APs to simulate the indoor scenario. The other
simulation parameters were the same as those shown in Figure 8, and the simulation
results are shown in Figure 9. Evidently, the proposed MSTT algorithm always maintains
the best network capacity of the three employed algorithms. Furthermore, the WLAN
exhibits very similar network capacities for the ABC and F(0) power-allocation algorithms.
However, the user-transmit powers are different; this finding fully reflects the high network
capacity of the WLAN. Moreover, with increasing user-transmit power, some of the power
allocated to the NR can increase the effective network capacity, owing to saturation of the
WLAN, and sharing data on the NR may continue to increase the effective network capacity.
However, the network capacity was lowest when all the power was allocated to the NR
(i.e., the F(100) power-allocation algorithm) because users were too far away from the NR
BS and the signal attenuation was too high. The network capacity was observed to degrade
if the NR link continued to transmit data.
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Taken together, the simulation results shown in Figures 8 and 9 suggest that, although
the use of a fixed-ratio (i.e., proportional) power-allocation algorithm can enhance the
effective network capacity under certain conditions, it is difficult to define x% that is
suitable for all situations; thus, network robustness cannot always be guaranteed.

Further, the relationship between the effective network capacity and a service, when
one of the service QoS indices is fixed, is shown in Figure 10. The figure shows that the
normalized effective network capacity decreases as the DQoS index of another service
increases when a particular service QoS index is fixed. Furthermore, when two service QoS
indices simultaneously increase, the total effective network capacity decreases rapidly.
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5. Conclusions

We implemented and optimized the traffic scheduling in an NWA network to im-
prove user satisfaction and comply with service DQoS. Unlike the throughput in an actual
wireless channel, based on multiservice provision, network throughput was evaluated
using the effective network capacity obtained under DQoS constraints. First, the smart
terminal selected the data transmission path according to the service type. Then, the traffic
scheduling optimization problem was transformed into a constrained convex optimization
problem, which was, in turn. subdivided into power- and bandwidth-allocation optimiza-
tions. The user satisfaction and network capacity achieved using the proposed MSTT
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algorithm were evaluated through simulation experiments which showed an improvement
in user satisfaction. Additionally, the network capacity obtained using the proposed MSTT
algorithm was always superior to those achieved using the ABC and fixed-ratio power-
allocation algorithms. This is because the proposed algorithm distributes power as freely
and reasonably as possible to achieve the optimal network capacity. Furthermore, although
the use of a fixed-ratio (i.e., proportional) power-allocation algorithm can enhance the
effective network capacity under certain conditions, it is difficult to define percentage
of the total user power allocated to the NR link suitable for all situations; thus, network
robustness cannot always be guaranteed. This is a topic for further research. The proposed
traffic scheduling algorithm will be beneficial for optimizing 5G network resources, such as
network bandwidth and power.
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