
����������
�������

Citation: Shi, Y.; Xu, X. Deep

Federated Adaptation: An Adaptative

Residential Load Forecasting Approach

with Federated Learning. Sensors 2022,

22, 3264. https://doi.org/10.3390/

s22093264

Academic Editor: Hossam A. Gabbar

Received: 21 March 2022

Accepted: 21 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Federated Adaptation: An Adaptative Residential Load
Forecasting Approach with Federated Learning

Yuan Shi and Xianze Xu *

Electronic Information School, Wuhan University, Wuhan 430072, China; shiyuan@whu.edu.cn
* Correspondence: xuxianze@whu.edu.cn

Abstract: Residential-level short-term load forecasting (STLF) is significant for power system oper-
ation. Data-driven forecasting models, especially machine-learning-based models, are sensitive to
the amount of data. However, privacy and security concerns raised by supervision departments and
users limit the data for sharing. Meanwhile, the limited data from the newly built houses are not
sufficient to support building a powerful model. Another problem is that the data from different
houses are in a non-identical and independent distribution (non-IID), which makes the general
model fail in predicting accurate load for the specific house. Even though we can build a model
corresponding to each house, it costs a large computation time. We first propose a federated transfer
learning approach applied in STLF, deep federated adaptation (DFA), to deal with the aforemen-
tioned problems. This approach adopts the federated learning architecture to train a global model
without undermining privacy, and then the model leverage multiple kernel variant of maximum
mean discrepancies (MK-MMD) to fine-tune the global model, which makes the model adapted to
the specific house’s prediction task. Experimental results on the real residential datasets show that
DFA has the best forecasting performance compared with other baseline models and the federated
architecture of DFA has a remarkable superiority in computation time. The framework of DFA is
extended with alternative transfer learning methods and all of them achieve good performances
on STLF.

Keywords: electric load forecasting; transfer learning; federated learning; domain adaptation

1. Introduction

The International Energy Agency has identified energy efficiency in buildings as one
of the five methods to secure long-term decarbonization of the energy sector [1]. In addition
to environmental benefits, the improvement of the building energy efficiency also presents
vast economic benefits. Buildings with efficient energy systems and management strategies
have much lower operating costs [2]. The activities of humans in residences occupy a large
portion of energy consumption and CO2 emission [3]. Residential load forecasting can
assist sectors in balancing the generation and consumption of electricity, which improves
energy efficiency through the management and conservation of energy.

Several uncertain factors, such as historical load records, weather conditions, popula-
tion mobilities, social factors and emergencies, influence electricity usage. Due to the high
volatility and uncertainties involved, short-term load forecasting for a single residential
unit may be more challenging than for an industrial building [4]. Machine-learning-based
methods, driven by data, are applied to mitigate these challenges more and more frequently.
However, the scope of machine-learning-based applications will be hindered due to the
privacy and security concerns raised by more and more supervision departments and
users. Even in some countries, many users refuse the installation of smart meters because
users are reluctant to disclose their private data. In addition, newly built houses cannot
provide sufficient data to build effective models. In summary, the data exist in the form of
isolated islands, which makes it difficult to merge the data from different users to train a
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robust model. Hence, one of the problems in this paper we focused on is data availability
and privacy.

A number of researches have achieved good results on STLF, such as support vector
regression (SVR) [5], the artificial neural network [6] and boosted tree [7]. Additionally,
some hybrid methods that combine artificial intelligence methods with traditional methods
are proposed to achieve better forecasting performance, such as hybridizing extended
Kalman Filter and ELM [8]. Fan et al. [9] proposed a SVR model hybridized with differential
empirical mode decomposition (DEMD) method and auto regression (AR) for electric load
forecasting. Transformer is a novel time series prediction model based on the encoder–
decoder structure. Originating from this structure, many methods have yielded good
results in the field of energy forecasting, such as STA-AED [10] and informer [11]. However,
these approaches do not consider user privacy and modeling with limited data.

A lot of privacy-preserving solutions relying on data aggregation and obfuscation
have been proposed to ensure privacy [12]. However, these solutions are not suitable for
residential short-term energy forecasting since they often introduce extra procedures to
obfuscate and reconstruct the data [13]. In addition, as the solutions based on machine
learning are computationally intensive in the step of model training, most works consider
only centralized training approaches. Clients’ data should be collected onto a central
server where the model is trained, which leads to a heavy burden on communication.
Especially when the model needs to be constantly updated with new data, as the data from
millions of distributed meters are required. Under this circumstance, federated learning
has been proposed to overcome these challenges. Federated Learning is a distributed
machine learning approach where a shared global model is trained, under the coordination
of a central entity, by a federation of participating devices [14]. The peculiarity of the
approach is that each device trains a local model with the data never leaving each local
machine. Only the parameters of models are sent to the central computing server for
updating the shared global model. Hence, the federated architecture can protect privacy
effectively. Federated learning has been demonstrated to be effective in the area of load
forecasting, federated learning with clustered aggregation is proposed in [15], and has good
performance for individual load forecasting. Federated learning applied in heating load
demand prediction of buildings also has a high capability of producing produce acceptable
forecasts while preserving data privacy and eliminating the dependence of the model on the
training data [16]. Furthermore, federated learning has been applied in several application
successfully, such as human–computer interaction [17], natural language processing [18],
healthcare classification [19], transportation [20,21], and so on, where privacy and scalability
are essential.

Another critical problem for residential load forecasting is that the general model is
not adapted to each house since the datasets are non-IID, which the federated architecture
and conventional machine learning algorithms do not well handle with [22]. The problem
is particularly acute in the case of newly built houses. Even though the dataset bias
and unbalance are inevitable [23], many researchers classify users according to different
attributes to deal with this challenge, but it does not fit well with a federated learning
architecture [24]. This situation is particularly suitable for applying transfer learning.
Transfer learning aims at establishing knowledge transfer to bridge different domains of
substantial distribution discrepancies. In other words, data from different houses have
domain discrepancies which is a major obstacle in adapting the predictive model across
users. STLF models based on transfer learning are discussed in [4,25,26].

A representative transfer learning method is domain adaptation, which can leverage
the data in the information-rich source domain to enhance the performance of the model in
the data-limited target domain. As a well-known algorithm applied for domain adaptation,
deep neural network [27] is capable of discovering factors of variations underlying the
houses’ historical data, and group features hierarchically in accordance with their related-
ness to invariant factors, and it has been studied extensively. A lot of research has shown
that deep neural networks can learn more transferable features for domain adaptation [28].
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It is shown that deep features must eventually transition from general to specific in the
network, with the transferability of features decreasing significantly at higher levels as
domain discrepancies increase. In other words, the common features between different
users are captured in lower layers, and the features of the specific user hide in higher layers
which depend greatly on the target datasets and are not safely transferable to another user.

In this article, we address the aforementioned challenges within a novel user adapta-
tive load forecasting approach. The approach is the combination of federated learning and
transfer learning. The architecture of federated learning in this approach aims at building a
CNN-LSTM based general model, which does not compromise privacy and works well
with the limited data. Then, MK-MMD, a distance to measure domain discrepancies, is
used to calculate the domain discrepancies between houses, then optimize the general
network which can reduce the domain discrepancies effectively and reduce the forecasting
error. The contributions of this paper are summarized as follows:

1. We propose a novel federated transfer approach DFA for residential STLF, which
adopts a federated architecture to address the problems of data availability and pri-
vacy, and leverages transfer learning to deal with the non-IID datasets for improving
forecasting performance;

2. DFA is investigated for STLF of residential houses and has shown remarkable advan-
tages in forecasting performance over other baseline models. Especially, the federated
architecture is superior to the centralized architecture in computation time;

3. The framework of DFA is extended with alternative transfer learning methods and all
of them achieve good performances on STLF.

2. Technical Background
2.1. Federated Learning Concepts

Due to security and privacy concerns, data exist in the form of isolated islands, making
it difficult for data-driven models to leverage big data. One possible approach is federated
learning, which can train a machine learning model in a distributed way.

Let matrix Di denote the data held by the partner i, each row of the matrix represents
one sample, and each column is a feature. Since the feature and sample spaces of the data
parties may not be identical, federated learning can be classified into three classes: horizon-
tally federated learning, vertically federated learning and federated transfer learning.

Horizontal federated learning is applicable in the conditions in which different part-
ners have the same or overlapped feature spaces but different spaces in samples. It is
similar to the case of dividing data horizontally in a tabular view, hence horizontal feder-
ated learning is also known as sample-partitioned federated learning. Horizontal federated
learning can be summarized as Formula (1):

Xi = Xj,Yi = Yj, Ii 6= Ij, ∀Di,Dj, i 6= j (1)

let X , Y , I denote the feature space, the label space and the sample ID space.
Different from horizontal federated learning, partners in the vertically federated

learning share the same spaces in samples, but different ones in feature spaces. We can
summarize vertically federated learning as shown in Formula (2):

Xi 6= Xj,Yi 6= Yj, Ii = Ij, ∀Di,Dj, i 6= j (2)

Federated transfer learning is applied in the conditions in which datasets differ not
only in sample spaces but also in feature spaces. For example, a common representation
or model is learned from different feature spaces and later used to make predictions for
samples with only one-side features. Federated transfer learning is summarized as shown
in Formula (3):

Xi 6= Xj,Yi 6= Yj, Ii 6= Ij, ∀Di,Dj, i 6= j (3)
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In this paper, the federated learning framework is a horizontal federated learning
architecture since the data collected by devices is in the same feature space. It uses a
master–slave architecture, as shown in Figure 1. In this system, N participant devices
collaborate to train a machine learning model with the help of the master server.

Figure 1. A horizontal federated learning architecture.

In step 1, each participant computes the model gradient locally and masks the gradient
information using cryptographic techniques such as homomorphic encryption, and sends
the results to the master server. In step 2, the master server performs a secure aggregation
operation. In step 3, the server distributes the aggregated results to each participant. In step
4, each participant decrypts the received gradients and updates their respective model
parameters using the decrypted gradients. The above steps continue iteratively until the
loss function converges or the maximum number of iterations is reached. We can see that
the data of the participants are not moved during the training process, so the federated
learning can protect user privacy that distributed machine learning models trained on
Hadoop do not have. In the training process, an arbitrary number of devices can concur
to model training without the need of transferring collected data to a centralized location.
The federated model can tackle the increasing data without consideration of communication
bandwidth since only local gradients need to be sent.

2.2. Transfer Learning Concepts and MK-MMD

Firstly, it is hard to collect sufficient data from domains of interest, referred to as
target domains. Meanwhile, a large number of data may be available for some related
domains called source domains. Secondly, machine learning algorithms work well based
on a fundamental assumption: the training and future data must be in the same feature
space and follow the same distribution. However, this assumption is not held in real-world
applications. For these reasons, transfer learning is introduced to address these problems.
Transfer learning can leverage similarities between data, tasks, or models to conduct
knowledge transfer from the source domain to the target domain. These similarities are
considered a representation of the distance between domains. Then the key issue is to
introduce the standard distribution distance metric and minimize the distance.

MK-MMD is a type of distance metrics. This distance is computed with respect to a
particular representation φ(·), a feature map function. This function can map the original
data into a reproducing kernel Hilbert space (RKHS) endowed with a characteristic kernel
k. The RKHS may be infinite dimensions that can transform non-separable data to linearly
separable. The distance between the source domain with probability p and the target
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domain with probability q is defined as dk(p, q). The data distribution p = q iff d2
k(p, q) = 0.

Then, the squared expression of MK-MMD distance [29] is denoted as Formula (4):

d2
k(p, q) ∆

=
∥∥Ep[φ(xS)]− Eq[φ(xT)]

∥∥2
Hk

(4)

whereHk denotes the RKHS endowed with a characteristic kernel k.
Kernel technique, as Formula (5) shows, can be used to compute Formula (4), which

can convert the computation of the inner product of the feature map φ(·) to computing the
the kernel function k(·) instead.

k(xS, xT) = 〈φ(xS), φ(xT)〉 (5)

As mean embedding matching is sensitive to the kernel choices, MK-MMD uses multi-
kernel k to provide better learning capability and alleviate the burden of designing specific
kernels to handle diverse multivariate data. It provides more flexibility to capture different
kernels and leads to a principled method for optimal kernel selection.

Multi-kernelK is defined as the convex combination of kernels {ku} as in Formula (6) [28]:

K ∆
=

{
k =

m

∑
u=1
Buku :

m

∑
u=1
Bu = 1,Bu ≥ 0, ∀u

}
(6)

where the constraints on coefficients {Bu}make the derived multi-kernel k characteristic.

3. The Proposed Method
3.1. The Overview of the Proposed Approach

The overview of the proposed approach is shown in Figure 2. Without loss of general-
ity, there are 3 households which need to be predicted, the number can be extended without
too much work. Each household has a device for computing models and communicating
with the master server. The approach mainly consists of 6 procedures as follows:

Step 1: The master server constructs the initial global model with public datasets.
Step 2: The master server distributes the global model to all users.
Step 3: The master server selects a fraction of users, then the selected devices train

models with their local data.
Step 4: The selected devices upload models to the master server.
Step 5: The master server updates the global model by aggregating the uploaded

models. Repeat Step 2 to Step 5 until the global model convergence.
Step6: Each device fine-tunes the convergent global model using user adaptation with

local data.

3.2. Federated Learning Process

Deep neural networks are selected in the federated learning process since neural
networks update models based on gradient descent. The federated learning process can get
a pre-trained model for the latter user adaptation. Firstly, in the training process, the model
is initialized on the master server with public datasets. The initial global model is denoted
as fG, then the learning objective function is defined as shown in Formula (7):

arg min
ΘG
L =

n

∑
i=1

`(yi, fG(xi)) (7)

where `(·) denotes the loss for the neural network, the loss used in this paper is mean
squared error (MSE) loss since load forecasting problem is a regression problem. {xi, yi}n

i=1
are samples from datasets, and Θ are the parameters learned.
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Figure 2. Overview of the deep federated adaptation. The top box is the master server while the
3 bottom boxes denotes 3 houses. Each house contains one computing device connected to the
master server for processing the data. The data collected by the smart meter is locked and cannot be
transmitted to the master server.

After the initial global model is trained, the master server will distribute the model to
all remote devices. Then, a subset of remote devices are chosen for training user model fu
with local data. Let {xu

i , yu
i }nu

i=1 denote samples from datasets u. Technically, the learning
objective function for each user is denoted as Formula (8):

arg min
Θu
L =

nu

∑
i=1

`(yu
i , fu(xu

i )) (8)

Then, all the user models are uploaded to the master server for averaging based on
the algorithm FedAVG [30], and the formulation of averaging is as Formula (9):

fG
′(w) =

1
K

n

∑
k=1

fuk (w) (9)

where w are parameters of the network and K is the number of devices in the chosen subset.
Then, let fG = f ′G on the master server, after adequate rounds of iterations, the updated
server model fG has better performance on generalization ability. When devices of newly
built houses are connected to the federated system, the master server can distribute the
global model to help new devices take part in the next iteration, hence, federated learning
can deal with cold start problems and is extensible. It is worth noting that the network
is trained by the federated learning using data from different houses, which expands the
training data and makes the model more robust, and has better generalization ability.

3.3. User Adaptation with Multiple Kernel Variant of Maximum Mean Discrepancies

Federated learning solves problems of data availability and privacy. However, another
important problem is personalization. Even if the cloud model can be directly used, it
still performs poorly on a particular house. The weights of this network have been pre-
trained by the federated learning process, then the user adaptation process will fine-tune
the pre-trained network. Since the network does not need to update all weights from
scratch for new tasks, it costs less in computation and time, which is especially suitable for
edge devices.

Figure 3 shows the architecture of the proposed network. This is a classic hybrid
model of convolutional neural network (CNN) and Bi-directional Long Short-Term Memory
(BiLSTM), referred to as CNN-LSTM, more details can be found in [31]. This network is
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a two-stream architecture, thus the source data and the target data can be fed into the
network simultaneously. Two streams of data go from the CNN layers to the Bi-LSTM
layers and finally through the fully connected (FC) layers to compute the forward loss. We
consider that sections of CNN can extract low-level features about a series of load values
and BiLSTM aims at capturing sequential relationships.

To minimize domain discrepancy, domain loss is also introduced to optimize the
network. MK-MMD is used to measure domain loss in which the source data is aligned
with the target data for computing. Multi-kernel k is used to adapt to different feature
domains and hidden representations of higher layers are embedded in a RKHS where the
mean embeddings of distributions in different user data can be explicitly matched. The loss
of MK-MMD is defined as shown in Formula (10) [23]:

Figure 3. The architecture of proposed network, from top to bottom, consists of CNN layers, BiLSTM
layers and fully connected layers.

LMK−MMD(XS, XT)=

∥∥∥∥∥ 1
|XS| ∑

xs∈XS

φ(xs)−
1
|XT | ∑

xt∈XT

φ(xt)

∥∥∥∥∥
2

H

(10)

where xs ∈ XS denote source data points from source datasets and xt ∈ XT denote target
points from datasets of houses need to be adapted. Gaussian kernels are selected as the
kernel function k in this paper since they can map features to infinite dimensions. We
use a combination of Gaussian kernels by varying bandwidth γ with a multiplicative step
size of 21/2. The Gaussian kernel function with the bandwidth γ is defined, as shown in
Formula (11):

k(xs, xt) = e−
‖xs−xt‖2

γ (11)
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let η denote the trade-off parameter, then the total loss function of the network during user
adaptation is computed by Formula (12):

arg min
Θu
Lu =

n

∑
i=1

`(yi, fu(xi)) +
nu

∑
i=1

`(yu
i , fu(xu

i )) + ηLMK−MMD(Xs, XT) (12)

Since learned features transition from general to specific along the network with
increasing domain discrepancies, the lower CNN and BiLSTM layers catch general features
that can transfer from different houses. Hence, the parameters in the first dashed box in
Figure 3 are frozen during user adaptation, whereas the weights of FC layers are updated
by the total loss, as shown in Formula (12).

3.4. Learning Process and Summary

The learning procedures of DFA are summarized in Algorithm 1. Furthermore, we can
consider the algorithm as a general process applied in STLF and separate the procedures
into two sections. Section 1 of step 1 to step 8 is a federated learning process, while Section 2
of step 9 is for transfer learning. Other federated learning methods (e.g., vertically federated
learning) can replace the horizontal federated learning method in Section 1 to deal with
heterogeneous features from diverse organizations. Meanwhile, other effective transfer
learning methods can also be embedded in Section 2 for better personalization. The neural
network used in this framework can also be replaced according to the computing power of
real-world devices or the features of datasets.

Algorithm 1: DFA: Deep Federated Adaptation

Require: Data from different houses {D1,D2, · · · ,DN}
Ensure: Adaptative forecasting models fu

1: Build an initial global model fG with public datasets using (7)
2: repeat
3: Distribute fG to all computing devices
4: Use local data to train fu based on fG with (8)
5: Devices upload fu to the model server
6: Average models with (9)
7: Update the global model fG = fG

′

8: until |ΘG −ΘG
∗| < ε

9: Use (12) to optimize the convergent global model fG, get adaptative models fu

4. Experiments
4.1. Datasets Description and Pre-Processing

The experimental datasets are electricity consumption readings for a sample of 5567
London Households that took part in the UK Power Networks led Low Carbon London
project between November 2011 and February 2014. Readings were taken at half-hourly
intervals. The customers in the trial were recruited as a balanced sample representative
of the Greater London population. The dataset contains electricity consumption, in kWh
(per half hour), unique household identifier, date and time [32]. As an example, a period
of records from 4 households are shown in Figure 4. It can be seen that the records
are in different patterns which means a general model is not suitable for forecasting
electricity consumption for a particular house. Meteorological variables recorded in London
collected from Dark Sky API [33] are introduced to enrich our datasets. We merge electricity
consumption datasets and meteorological datasets in terms of timestamps to generate a
new feature table for each household.
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Some discrete features (e.g., ’weekday’, ’icon’) should be encoded to embedding
features. Then, feature normalization is implemented for all features with min–max nor-
malization, as shown in Formula (13):

x̂j
i =

xj
i − xi,min

xi,max − xi,min
(13)

where xj
i denotes the value for feature i at the time step j, xi,min and xi,max denote the maxi-

mal and minimal value for feature i, respectively. x̂j
i is the value for xj

i after normalization.
We consider the feature table as time-series data according to the timestamps, each

row of the table denotes a record sampled at half-hourly intervals. We implement a sliding
window with a look back at 24 records to forecast the next record. Hence, the proposed
network can give a half-an-hour-later load value prediction, one training sample consists
of features of 24 records and the value of the next electricity consumption. The input
dimension is |X | × L, where |X | is the number of expected features in the merged table X ,
L denotes the width of the sliding window.

Figure 4. Load data of four houses for one day from the used datasets.

4.2. Implementation Information

The proposed network is composed of two convolutional layers, two pooling layers,
two BiLSTM layers and two FC layers. The network adopts a convolution size of 1× 17 and
a kernel size of 3 for pooling layers. The proposed network is trained with the MSE loss
and adopts stochastic gradient descent (SGD) with an initial learning rate of 0.01 and 0.9
momentum for optimization. Batch size is set to 32. The training process is early stopped
within 10 epochs and the rate of dropout is set to 0.1 to prevent overfitting.

In the following experiments, cross validation and grid search are used to select the
hyperparameters and the hyperparameters with the lowest average forecasting MAPE will
be used. During the training process, we use 70% of the data for training while the rest 30%
is for evaluation. All experiments are repeated five times to ensure reliability, implemented
in Pytorch, and conducted on a single NVIDIA GeForce RTX 2080 GPU.

A single machine is used to simulate the federated learning process and we can set the
number of user nodes Nnodes according to the experimental requirements. Table 1 shows
some symbol definitions of the experiments. Since a single machine is used to simulate the
federated process, the training process is serial. However, this has no effect on comparing
model forecasting accuracy and computation time between the federated architecture and
the centralized architecture. Centralized learning means data are gathered from all devices
to train a single model on the central server, which does not secure the privacy of users.
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Table 1. Symbol definitions of the experiments.

Name Description

Nnodes Number of computing nodes
Nround Number of iterations
Sdata Size of the trained data

Smodel Size of the model

To evaluate the forecasting performance of DFA, four baseline models are used for
comparison purposes. The following are simple introductions for these models.

1. LSTM network : the model is an artificial recurrent neural network (RNN) architecture
with feedback connections used in the field of deep learning.

2. Double seasonal Holt–Winters (DSHW): DSHW is a kind of exponential smooth-
ing method which can accommodate two seasonal patterns besides parts of trend
and level.

3. Transformer: it is a deep learning model that adopts the mechanism of self-attention,
differentially weighting the significance of each part of the input data.

4. Encoder–Decoder: the model encodes the input as embedding features which are
decoded by the decoder, adopting a sequence-to-sequence architecture.

4.3. Model Evaluation Indexes

The mean absolute percentage error (MAPE) is used to evaluate forecasting accuracy.
The evaluation equations are defined as shown in Formula (14):

MAPE =[
N

∑
i=1

(ŷi − yi)/yi]/N × 100% (14)

where ŷi is the forecast load consumption value, yi is the actual load consumption value
and N is the total number of sampling points for evaluation.

To evaluate whether a particular model m has skill with respect to a baseline model r
the MAE ratio, we use skill score, as shown in Formula (15):

s = 1− MAEm

MAEr
(15)

where MAE is the mean absolute error. MAE is calculated as shown in Formula (16):

MAE = [
N

∑
i=1
|ŷi − yi|]/N (16)

4.4. Experimental Forecasting Performance

The proposed DFA and four baseline models are evaluated on 10 randomly chosen
target houses. For each target house, the load records from June 2012 to June 2013 are used
as training data, and 720 load records in September 2013 for prediction to calculate MAPE
values. DFA makes use of all datasets of ten houses in the federated process and leverages
the datasets from the target house to operate user adaptation. Baseline models are trained
with the data from the target house. Table 2 shows the MAPE values of DFA and baseline
models for 10 houses. Figure 5 shows the MAPE values for direct observation.
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Table 2. MAPE values of DFA and baseline models for 10 houses.

DataSets DFA Transformer DSHW Encoder–
Decoder LSTM

House 1 4.92% 8.86% 13.76% 13.59% 14.74%
House 2 4.56% 8.43% 18.94% 11.27% 15.47%
House 3 4.77% 9.02% 16.72% 13.34% 16.43%
House 4 5.23% 8.56% 15.36% 14.67% 16.86%
House 5 5.13% 8.31% 16.88% 15.67% 15.92%
House 6 4.88% 8.73% 18.23% 12.39% 15.13%
House 7 4.89% 8.64% 19.89% 13.17% 14.62%
House 8 4.78% 8.52% 21.88% 13.40% 14.33%
House 9 4.47% 9.16% 17.94% 15.17% 15.31%

House 10 4.67% 8.68% 15.46% 15.55% 15.26%

Average 4.83% 8.69% 17.51% 13.82% 15.41%

From Table 2, we can see that the proposed DFA consistently outperforms the baseline
models for ten houses. On average, it shows 38.28%, 69.83%, 58.81% and 63.65% relative
improvements over Transformer, DSHW, Encoder–Decoder and LSTM, respectively, based
on skill scores. The performances of LSTM and Encoder–Decoder are similar to each
other and worse than Transformer since the number of parameters is less compared to
Transformer. Performances of DSHW fluctuate widely and are inferior to the other models
based on deep learning. We believe this is due to the differences in the cyclical characteristics
in different spans which are influenced by many uncertain factors in residential loads. In
summary, DFA has the best performance. We conclude that one of the reasons for the
remarkable superiorities is DFA uses all datasets from ten houses to learn a model in the
federated architecture. Additionally, we calculate the curve of MAPE values by varying the
number of houses as shown in Figure 6. It can be seen that MAPE values of DFA gradually
decrease with the number of houses increasing whereas other models do not vary much.
This means that the model will be more robust when more devices are connected to the
systems in the reality. More discussions about the superiorities in forecasting performance
can be found in Section 4.6.

Figure 5. MAPE values of DFA and four baseline models for 10 houses.
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Figure 6. MAPE values of four baseline models and DFA with different numbers of houses connected
to the federated system for 10 houses.

To evaluate the persistence of DFA, we conduct day-ahead and week-ahead forecasting
tasks of DFA and four baseline models on one house, the results are shown in Table 3. It can
be observed that although the forecasting performance of DFA decreases as the period goes
from one day to one week, DFA outperforms all baseline models no matter how long is the
forecasting period. We attribute this decline to the fact that DFA uses a sliding window for
training and forecasting: the value forecasted by DFA will be added to the end of the sliding
window for the next forecasting. Forecasting errors are cumulative as the period grows.

Table 3. Forcasting MAPE values of DFA and baseline models for day-ahead and week-ahead.

Model Day 3 Day 11 Day 15–Day 21

DFA 6.43% 6.17 % 8.83 %
DSHW 16.85% 17.23% 17.61%

Transformer 8.77% 9.22 % 10.24%
Encoder–Decoder 13.64% 14.56 % 16.79%

LSTM 18.23% 17.64 % 21.54%

4.5. Performance of Federated and Centralized Architecture

Table 4 shows the forecasting performance and computation time comparison of the
federated and centralized architecture. CNN-LSTM, as shown in Figure 3, is chosen as the
test model. The different number of records in Table 3 means how many records for each
node are used to train the model. For federated learning, the training time can only be
estimated, the training time can be estimated as shown in Formula (17):

Ttraining = T̄round · Nround (17)

where Ttraining denotes the training time, T̄round indicates average computation time for all
devices involved in each round.

From Table 3, it can be seen that the forecasting performance of the federated architec-
ture is superior to the centralized while making predictions for STLF in the conditions of
the different numbers of local records with Nnodes = 10. When Nnodes and records increase,
the federated architecture can make use of more data to train the model, the forecasting
performance will improve.

The federated architecture outperforms the centralized architecture on computation
time comprehensively, with great advantage. As the federated architecture leverages
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devices involved in each round for training at the same time. It can be seen that the compu-
tation time fluctuates only slightly when Nnodes increases. This is because in each round,
each device only processes the local data simultaneously and does not care about data from
other devices in the system. Meanwhile, it also can be observed that the computation time
rises at a lower rate than the centralized method as the number of records increases because
for the centralized architecture, the incremental data of each device should be collected for
training, the increment of data is decided by Nnodes.

Table 4. MAPE values and computation time of the federated and centralized architecture.

Approach Forecasting Performance Computation Time (s)
Number of Local Records 5000 8000 15,000 5000 8000 15,000

Federated (Nnodes = 1) 13.82% 13.42% 13.38% 5.26 5.58 5.73
Federated (Nnodes = 4) 12.83% 12.33% 11.89% 5.38 5.73 5.84
Federated (Nnodes = 7) 11.57% 11.35% 10.87% 5.23 5.46 5.91

Federated (Nnodes = 10) 10.24% 10.13% 9.83% 5.47 5.62 5.88
Centralized (Nnodes = 10) 12.13% 12.24% 12.07% 8.32 11.74 25.63

Figure 7 shows the correlation between accuracy and the number of rounds for these
two architectures. Federated learning shows a higher rate rise at the beginning of the
iterations while the centralized accuracy rises slowly because multiple devices compute
simultaneously in one round of iterations of federation learning. As can be seen from the
trend of the curves, the federated architecture uses fewer iterations to achieve a satisfac-
tory accuracy and achieve the state of convergence, which is also reflected in the shorter
computation time in Table 3.

Figure 7. Correlation between accuracy and number of rounds for the federated and centralized architecture.

Now, we analyze the communication overhead of these two architectures. For the fed-
erated architecture, the calculation of communication overhead is defined in Formula (18):

TransFed = 2Nround · Nnodes · Smodel (18)

meanwhile, the communication overhead of the centralized architecture is defined as
shown in Formula (19):

TransCen = Nnodes · Sdata (19)

From the aforementioned formulas, the communication complexity of the federated
architecture isO(Nround ·Nnodes · Smodel) and the centralized architecture isO(Nnodes · Sdata).
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Since Nnodes is presented in both equations, it can be reduced. Therefore, the complexity
is O(Nround · Smodel) and O(Sdata) respectively. When the Sdata is much larger than Nnodes ·
Sdata, the federated architecture has less communication burden than the centralized, which
is common in practical applications. We can easily infer that the computation time will
increase in the reality since the incremental communication overhead. In a summary,
DFA is scalable with increasing data and has lower computation time and communication
bandwidth requirements.

4.6. Ablation and Extensibility Experiments

To validate the superiority of DFA, we conduct the ablation and extensibility exper-
iments based on datasets of five houses, other experiment settings are consistent with
Section 4.4.

We use Fed to denote the DFA without MK-MMD optimization which is a CNN-LSTM
network trained by the federated architecture. NoFed denotes the CNN-LSTM model
trained by the centralized architecture with data only from the target house. We can see
from Figure 8 that Fed achieves a better performance than NoFed on each target house.
This indicates that each target house benefits from the federated architecture which makes
it possible to leverage datasets from other houses, ensuring privacy simultaneously. It
also can be seen that DFA has remarkable improvements in performance compared with
Fed. We conclude that the transfer learning method can successfully conduct knowledge
transfer from the federated model to the target houses to improve forecasting performance.

Figure 8. Ablation experiments of the federated architecture and MK-MMD optimization on 5 houses.

Furthermore, we extend DFA to different versions in which the part of MK-MMD
is modified by the alternative transfer learning methods. Maximum mean discrepancy
(MMD) is the single kernel version of MK-MMD. CORAL [34] is one of transfer learning
methods that use the covariance matrices of the source and target features to compute the
domain loss. It can be seen from Figure 9 that DFA can achieve satisfying performances
on forecasting with different transfer learning methods. The results indicate that DFA is
extensible with other transfer learning algorithms according to the real applications.

Figure 9. Extensibility experiments with alternative transfer learning methods on 5 houses.
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5. Conclusions

In this paper, we propose a federated transfer learning approach for residential STLF.
This approach addresses data availability and privacy by using a federated architecture.
We implement a transfer learning method, multiple kernel variant of maximum mean
discrepancies, to adapt to the non-IID data among different houses. The experimental
results show that DFA shows a huge improvement in forecasting performance over other
models. We also evaluate the federated architecture DFA used; it shows that the architecture
is superior to the centralized architecture in computation time and has a small burden on
communication. In the future, it would be promised for subsequent studies to adopt the
state-of-the-art federated and transfer learning algorithms to achieve better forecasting
performance with the framework of DFA.
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