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Abstract: An important function of the construction of the Brain-Computer Interface (BCI) device
is the development of a model that is able to recognize emotions from electroencephalogram (EEG)
signals. Research in this area is very challenging because the EEG signal is non-stationary, non-linear,
and contains a lot of noise due to artifacts caused by muscle activity and poor electrode contact.
EEG signals are recorded with non-invasive wearable devices using a large number of electrodes,
which increase the dimensionality and, thereby, also the computational complexity of EEG data. It
also reduces the level of comfort of the subjects. This paper implements our holographic features,
investigates electrode selection, and uses the most relevant channels to maximize model accuracy.
The ReliefF and Neighborhood Component Analysis (NCA) methods were used to select the optimal
electrodes. Verification was performed on four publicly available datasets. Our holographic feature
maps were constructed using computer-generated holography (CGH) based on the values of signal
characteristics displayed in space. The resulting 2D maps are the input to the Convolutional Neural
Network (CNN), which serves as a feature extraction method. This methodology uses a reduced
set of electrodes, which are different between men and women, and obtains state-of-the-art results
in a three-dimensional emotional space. The experimental results show that the channel selection
methods improve emotion recognition rates significantly with an accuracy of 90.76% for valence,
92.92% for arousal, and 92.97% for dominance.

Keywords: electroencephalogram; Brain-Computer Interface; ReliefF; Neighborhood Component
Analysis; deep learning; computer-generated holography; gender specific emotion recognition;
valence-arousal-dominance model

1. Introduction

Given the importance of emotions in everyday human life, emotion recognition is a
key function in the construction of Human-Computer Interaction (HCI) devices. Emotion
is a physiological state that reflects human feelings, thoughts, and behavior and plays
an extremely important role in the way humans create perceptions and make rational
decisions. Recognition of emotions can be achieved by analyzing non-physiological signals
such as speech [1], facial expression [2], and body posture [3]. However, these signals
are often difficult to recognize. The application of wearable sensors may overcome this
problem. Physiological signals that can be collected using these wearable sensors are
photoplethysmogram, electrocardiogram (ECG), electrodermal activity, electromyogram,
and electroencephalogram (EEG). Data collected via wearable sensors are used as inputs
for analyzing emotions. These data are often considered to be more reliable because they
are based on unconscious body changes, which are controlled by the sympathetic nervous
system, which makes them difficult to manipulate.

One of the key steps toward emotional intelligence is the recognition of emotions from
brain signals because the EEG signal can directly detect brain dynamics responding to dif-
ferent emotional states. The development of reliable and accurate Brain-Computer Interface

Sensors 2022, 22, 3248. https://doi.org/10.3390/s22093248 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8553-1537
https://orcid.org/0000-0002-9363-6723
https://doi.org/10.3390/s22093248
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093248?type=check_update&version=2


Sensors 2022, 22, 3248 2 of 25

systems has been a topic of numerous pieces of research in the last few decades [4,5]. BCI
systems are based on EEG signals that represent the voltage difference between the active
and reference electrodes over time. The recorded brain signals have various disadvantages
caused by artifacts due to muscular activity and poor electrode contact. The EEG signal
is non-stationary, non-linear in nature, and contains a lot of noise, which is one of the
main challenges for researchers in this field. How to effectively process EEG signals, single
out critical features, and build a model for extracting and classifying emotions is another
major challenge.

The frontal, parietal, temporal, and occipital are the four lobes of the cerebral cortex.
EEG devices can be categorized according to the number of electrodes into a low-resolution
group (1–32), a medium-resolution group (33–128), and a high-resolution group (>128) [6].
An international 10–20 system [7] of placing electrodes on the scalp is commonly used in
which the locations of each electrode are known by its relative location. By placing EEG
electrodes on the most optimal regions of the brain from the perspective of recognizing
emotions, the number of electrodes can be reduced and the level, of comfort in people
wearing a sensor can be increased. It is precisely this problem that researchers have been
focusing on recently to enable the use of the EEG headset in real-world practice usage.

From the emotion recognition point of view, the optimal channels for EEG-based emo-
tion recognition are not fully determined. Therefore, the motivation for this work is to give
another view of the aforementioned challenges that researchers face today. In particular,
we focused on exploring the most relevant channels that consequently reduce computa-
tional complexity and mitigate noise in the process of recognizing human emotional states.
Additional research was undertaken between men and women using previously selected
channels. For this purpose, we created R-HOLO-FM and N-HOLO-FM holographic feature
maps created from the various characteristics of the EEG signals utilizing ReliefF and NCA,
respectively. Deep learning and machine learning techniques were used to extract features
and classify them into a three-dimensional space of valence, arousal, and dominance. We
conducted our experiments on four publicly available emotion datasets: DEAP, DREAMER,
AMIGOS, and SEED. By using the proposed approach, we have achieved results that
outperform most studies that have used comparable methods. This paper investigates the
use of ReliefF and NCA to select the most optimal channels in the process of recognizing
emotions from the EEG signals and provides insight into the classification of emotions in
3D emotional space from the EEG signals depending on gender.

The rest of this paper is structured as follows. Section 2 describes the related work.
Section 3 gives a description of the used datasets, the 3D emotional space, and the signal
characteristics. The procedures for creating the holographic feature maps with a reduced
set of EEG channels and model construction are described in Section 4. Furthermore,
the selection of the most optimal channels by gender, as well as by individual dataset, is
described in the same chapter. The results are discussed in Section 5, and the conclusion is
presented in Section 6.

2. Related Work

Today’s EEG sensors use wearable devices to collect raw data and wireless data
transmission, even for web-based applications [8]. Although signals from all EEG channels
are traditionally used for analysis, electrode set reduction is commonly investigated mainly
for the use of EEG headsets in daily life. The five main categories of channel selection
algorithms for EEG signal processing are filtering, wrapping, embedded, hybrid, and
human-based techniques [9]. In terms of emotion classification, channel selection methods
can be categorized as filtering and wrapper techniques. Numerous papers show that it is
possible to reduce the number of electrodes without a drastic drop in performance. For
example, the authors in [10] propose a method based on synchronization likelihood (SL)
and anatomical knowledge for the automatic selection of optimal electrodes. They reduced
the number of electrodes from 64 to five with a slight loss in the classification accuracy
rate. This was also confirmed earlier by the authors of [11], who showed that the frontal
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pairs of channels give a better result than the channels located in the other head area
by obtaining a classification accuracy of 85.41%. Based on the above, the authors in [12]
selected 12 channels located near the frontal lobe.

In general, emotions can be classified into discrete values [13] or in dimensional emo-
tional space, thus distinguishing between the two-dimensional Valence-Arousal [14] and
the three-dimensional Valence-Arousal-Dominance space [15] we used in this research. An
example of a study focused on optimizing EEG channels and classifying emotions into nine
discrete values: happy, pleasant, relaxed, calm, excited, neutral, distressed, miserable, and
depressed, was performed by [16] on the DEAP dataset. Using the zero-time windowing
method, the authors extracted the current spectral information of each of the four bands:
alpha, beta, delta, and gamma, for the adaptive number of channels per participant (from
two to ten) and achieved an accuracy of 89.33%. Some of the reported studies used only
a few channels (<5), defining them from previous studies that experimentally showed
which brain lobes are active during emotion recognition. A similar study was performed
in [17], where the data from 16 participants was recorded and classified into six basic
emotions using Fp1, Fp2, F3, and F4 positions for the EEG acquisition. The HAF-HOC
(Hybrid Adaptive Filtering–Higher Order Crossings). The methodology applied provides
classification rates of up to 85.17%. In terms of channel selection, the study [18] obtained
a pool of eight electrodes: AF3, AF4, F3, F4, F7, F8, T7, and T8 and achieved an average
accuracy of 87.50% by classifying emotions in four emotional states: amused, disgusted,
sad, and neutral.

Zhang et al. [19] investigated a channel selection scheme based on ReliefF in EEG-
based emotion recognition and showed that the channels involved in the classification task
could be dramatically reduced with an acceptable loss of accuracy. They systematically
investigated different strategies to select the best channels, classifying four emotional states
(joy, fear, sadness, and relaxation). For instance, they explored Subject-Dependent and
Subject-Independent Channel Selection by applying the mean-ReliefF-channel-selection
(MRCS) method with an SVM classifier. Nineteen channels based on the DEAP dataset
achieved the best classification accuracy of 59.13%. Another use of the ReliefF algorithm
based on the DEAP dataset for channel selection was presented in [20]. They used the
Relief-FGSBS (Floating Generalized Sequential Backward Selection) EEG channel selection
method and experimented on a self-collected data set and on the publicly available DEAP
dataset. The results of the research showed that the most optimal EEG channels are mainly
located in the frontal lobe and the posterior occipital region. The SVM used to classify
emotions had 10-channel EEG signals and achieved an average classification accuracy
of 91.31%.

Channels can be selected either manually based on previous research or by applying
methods to optimize the selection of the most relevant channels, which are usually the
channels with the highest weighting factors. Li et al. [21] concluded that the classification
accuracy of emotional states increases with the number of channels. They investigated
the EEG classification with 10, 14, 18, and 32 channels of the DEAP dataset, where the
channels were selected based on the experience of other authors. Entropy and energy were
calculated as characteristics on four frequency bands decomposed using discrete wavelet
transformation. The classification was performed into valence and arousal dimensions
using k-Nearest Neighbor (kNN). A similar technique for decomposing EEG signals into
gamma, beta, alpha, and theta subbands, and the application of various classifiers, including
kNN, was used in [22]. Spectral features were extracted from ten channels from the frontal
cortex and obtained state-of-the-art results on the beta subband in the 2D emotional model.
The research undertaken in [23] applied the same pool of electrodes as in [22] but obtained
slightly worse results in both valence and arousal dimensions. Another approach in which
channels are selected manually is [24], in which the five EEG channels having the highest
performance in emotion recognition: P3, FC2, AF3, O1, and Fp1, were used to investigate
valence, i.e., positive and negative emotions. The authors demonstrated the superiority of
the MultiLayer Perceptron Neural Network (MLPNN) method over the SVM.
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Article [25] proposes to use information from the time-frequency domain using nor-
malized mutual information (NMI) as a channel selection method to select an optimal
subset of EEG channels. The Short-time Fourier transform (STFT) is adopted to capture
the EEG spectrogram, which is actually a matrix that reflects the energy distribution of the
signal at different frequencies. The channels were selected by connection matrix analysis
using an inter-channel connection matrix with NMI. The challenge with the proposed
methods is that most of the tests were based on individual data sets, which makes them
difficult to compare. The papers [26–28] verified their proposed methods on two or three
datasets, while this paper conducts research on four publicly available datasets. The study
performed in [26] examined which brain areas are active during emotional processing and
concluded that out of a total of eight channels used, they are the frontal (F8), parietal (P7),
and temporal (T8 and T7). Furthermore, under emotional stimulation, the areas around
the AF4, F8, O1, P7, T7, and T8 channels have been shown to be activated in the brain. An
iterative methodology was used to analyze nonlinear and nonstationary time series, i.e.,
the Empirical Mode Decomposition (EMD) technique for the division of time-series signals
into separate components referred to as Intrinsic Mode Functions (IMFs). The validity
of the method was proven on three different datasets, DEAP, DREAMER, and AMIGOS,
using the Linear Support Vector Classifier (LSVC) classifier. In addition to [26], the EMD
technique was also used in [29], but with a multivariate extension (MEMD) for emotion
recognition. It has been shown that with various time and frequency domain features on
18 channels and Artificial Neural Networks (ANN), positive results can be obtained.

It is common to use a fusion of EEG signals with other physiological signals as has
been performed by, for instance, Menon et al. [27], who calculated various features from
the time and frequency domains for each signal separately EEG, ECG, and Galvanic Skin
Response (GSR). The signals were preprocessed and mapped to hyperdimensional (HD)
space and inserted and fused into the spatial encoder to finally obtain a single feature
channel vector set representing information from all the channels. This method, based on
the efficient brain-inspired Hyperdimensional computing (HDC) early fusion paradigm,
has yielded promising results. Another example of using multiple datasets for the model
validation process was performed in [28]. The authors provided a method based on Flexible
Analytical Wavelet Transform (FAWT) that decomposes the EEG signal into different sub-
band signals. They used twelve channels on the SEED dataset and signals from six channels
on the DEAP dataset. Information potential (IP) was used to extract the features from the
decomposed subband. The random forest classifier on the SEED dataset yielded results
that outperformed the results on the DEAP dataset.

There were several studies that took advantage of the feature and channel weights
acquired through the application of the ReliefF algorithm based on the DEAP dataset.
For instance, the research in [30] used Principal Component Analysis (PCA) to find the
main directions of the EEG features mapped to the low-dimensional space. The research
performed in [19,31,32] applied a ReliefF-based channel selection algorithm to reduce the
number of used channels for convenience in practical usage. Using the Probabilistic Neural
Network (PNN) as a classifier, the results show that high accuracy for valence and arousal
can be obtained with nine channels. To obtain approximately the same results with the
SVM classifier, 19 channels for valence and 14 for arousal had to be used.

Numerous papers investigated the optimal selection process based on the SEED
dataset. The authors of [33] proposed a channel selection method through weighted
distributions instead of statistical parameters. Using Differential Entropy (DE) calculated
from an EEG signal of only 12 electrodes, they demonstrated its superior performance
over the original full pool of electrodes (62). Four different profiles (four, six, nine, and
twelve channels) of the selected electrode placements according to the features of high
peaks in the weight distribution and asymmetric properties in emotion processing are
selected. For instance, the four electrodes selected are FT7, FT8, T7, and T8, and the other
three profiles expand these for channels. The best result on the SEED dataset using the
Linear Discriminant Analysis (LDA) classifier with the selected 15 channels was achieved
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by Pane et al. [34]. They also, as [33], calculated the DE over five subbands. The selection
criteria in the Stepwise Discriminant Analysis (SDA) statistics tool were based on Wilks’
Lambda score to find the optimal channel. They then conducted several scenarios from
the different number of selected channels in experiments, such as three, four, seven, and
fifteen channels that were differently selected depending on which subband the DE was
calculated. Transfer learning with very-deep convolutional neural networks was applied to
the SEED dataset in [35] to obtain the ten best electrode positions for emotion recognition.
The research performed in [36] proposed Group Sparse Canonical Correlation Analysis
(GSCCA) for simultaneous EEG channel selection and concluded that both the lateral and
frontal brain areas are important areas of emotional activities.

The Neighborhood Component Analysis has been used in several research papers [37–41]
for the selection of the most significant features and the reduction in the dimensionality
of the feature vectors. In particular, [37] chose the most discriminative features by using
NCA weights to classify emotions into a discrete model in the Speech Emotion Recognition
(SER) process, and [38] used an iterative NCA for SER to select the features prior to SVM
classification into a discrete model. The paper [39] applied NCA to identify the optimal
feature set from time, frequency, and statistical domain-based features for the computer-
automated detection and classification of focal and non-focal epileptic seizures, [40] studies
recognition of emotions from ECG signals, [41] applied NCA with a modified regularization
parameter to enhance the classification performance of motor imagery tasks. To the best of
our knowledge, so far, there are no published studies with the NCA for selecting the most
optimal channels in recognizing emotions, so we used it for that purpose.

It is confirmed by many gender-related studies that men and women differ in emo-
tional processes; that is, they perceive emotional stimuli in different ways. In the amygdala
is an integration of sensory information that is given the appropriate emotional importance
and context, and electrical stimulation results in the experience of positive or negative
emotions. Study [42] researched gender differences in the neural basis of emotional memo-
ries, and [43] investigated gender-related influences on the neurobiology of emotionally
influenced memory. Both studies concluded that the right amygdala in the brain is more
active in women than in men in processing emotional stimuli. These studies are not directly
related to the recognition of emotions based on gender but show differences in the experi-
ence of emotions in women and men. Furthermore, women show a greater physiological
response than men to emotional stimuli [44–46].

There are many differences in emotional processing between genders, and therefore it
is important that the number of respondents by gender in the dataset is balanced. However,
many studies use an unbalanced number of respondents when creating a dataset. Generally,
there are more men (68%) in the sample than women (32%) [47]. DREAMER with fourteen
males and nine females, and AMIGOS, which consists of 17 males and 12 females, belong
to this group. On the other hand, DEAP and SEED datasets recorded data on 17 men and
15 women, and seven men and eight women, respectively. From the data sets used in
this paper, it is evident that the number of participants is different. Some studies have
conducted research on only a single gender. For example, the authors in [48] conducted
research on female emotions during motherhood and parental status, and [49] conducted a
study on the development of emotional intelligence in men.

There is a distinction between research that recognizes gender based on EEG and other
physiological signals and research that recognizes emotions from EEG signals depending
on gender. The first approach was, for example, discussed in [50–52]. In particular, the
study [50] showed that theta and gamma bands contain more discriminate gender infor-
mation, research conducted in [51] showed that by using four entropy measurements of
EEG signals, gender could be classified with very high accuracy, and [52] used deep con-
volutional neural networks and concluded that the main distinctive attribute was the fast
beta subband. The second approach recognizes emotions from the EEG signals depending
on gender. It was, for example, shown by [53] that Speech Emotion Recognition, i.e., a
two-level hierarchical system, consists of a gender recognition module aimed at recognizing
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the speaker’s gender from the audio file and an SER module to decode the emotional state
of the speaker. To the best of our knowledge, there is no scientific research in the available
literature on EEG-based emotion recognition that is gender-specific on the four datasets
utilized in this work.

3. Materials
3.1. Selected Datasets

Datasets are important in the process of recognizing emotions because they give
researchers the opportunity to verify their models on a various number of participants
of different gender, age, and culture. The datasets contain signals recorded by different
measuring devices, which differ in the number of electrodes, sampling frequency, etc. In
the last ten years, a large number of datasets have been presented. Four publicly available
datasets have been used in this paper, namely DEAP [54], DREAMER [55], AMIGOS [56],
and SEED [33]. The datasets were used to evaluate the proposed emotion recognition model,
and their comparison is given in Table 1. EEG signals were collected from participants with
different measuring devices that have a different number of electrodes placed according to
the standard international system 10–20 [7]. Because the size of the heads may vary per
participant, the distances between the positions of the electrodes are given in percentages,
specifically 10% and 20%.

Table 1. Comparison between datasets.

Dataset DEAP DREAMER AMIGOS SEED

Participants 32 23 40 15
Trials 40 18 16 10

Channels 32 14 14 62

Affective states
Valence
Arousal

Dominance

Valence
Arousal

Dominance

Valence
Arousal

Dominance
Valence

Rating scale range
(threshold)

1–9
(4.5)

1–5
(2.5)

1–9
(4.5) N/A

This paper investigates devices that have 14, 32, and 62 electrodes. It can be seen
from the table below that the datasets differ in almost all parameters and, accordingly, the
number of features will be different for each of them.

A three-dimensional model of emotions was used, as shown in Figure 1 [57]. The
three dimensions are valence (ranged from sad to joyful), arousal (ranged from calm to
excited), and dominance (submissive to empowered). The trials have a binary classification,
i.e., they can be either high or low. The limit is set to 4.5 for the DEAP and AMIGOS
datasets since the range of the rating scale is from 1 to 9. For the DREAMER dataset, the
limit is 2.5 because the range rating scales from 1 to 5. EEG signals are resampled to 128 Hz
regardless of the sampling frequency in order to ensure the data between datasets remain
comparable.

The DEAP (Dataset for Emotion Analysis using Physiological signals) dataset was in-
troduced in 2012. In total, 32 people aged between 19 and 37 (mean age 26.9) participated in
its creation, i.e., 17 men and 15 women recorded EEG, electromyography, electrooculogram
(EOG), and pulse blood volume signals while watching 40 one-minute videos. The BioSemi
ActiveTwo measuring device was used to record EEG signals on which the three-second
pre-trial baseline was removed. The blind source separation technique was applied to
remove the EOG artifacts. In this study, we used male participants (i.e., 1, 5–7, 12, 16–21, 23,
26–30), and female participants (i.e., 2–4, 8–11, 13–15, 22, 24, 25, 31, 32) in gender-specific
emotion recognition experiments. Participants 27 and 32 were removed from the analysis
because they only demonstrated high dominance.
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The EEG and ECG signals collected from 23 participants are an integral part of the
multimodal DREAMER dataset. Fourteen male (1, 3, 6, 8, 10–15, 19, 21–23) and nine
female (2, 4, 5, 7, 9, 16–18, 20) participants, aged between 22 and 33 years, watched
each of the 18 emotional films clips and assessed self-emotion with the self-assessment
manikins (SAM) [58] in the valence, arousal, and dominance space. EEG signals were
recorded with the Emotiv EPOC wireless headset with a sampling rate of 128 Hz based
on 14 electrodes. When dominance was calculated, participants 6 and 15 were excluded
because both participants did not have a low dominance value.

During the construction of the AMIGOS (A dataset for Mood, personality, and affect
research on Individuals and GrOupS) dataset, two experiments were conducted in which
EEG, ECG, and GSR signals were recorded. In the first experiment, which is also used in
this paper, 40 participants aged between 21 and 40 (mean age 28.3) watched 16 clips lasting
less than 250 s. The second experiment investigated the impact of the group watching
long emotional videos. Participants 9, 12, 21–24, 29, and 33 had missing data in their
trials [59], and according to [60], the participants 5, 11, 28, and 30 are missing high or low
valence and/or arousal, so we did not use them in our study. In addition, this research also
excluded data from participants 10 and 11 because these two participants only showed high
dominance values. After watching each video, the participants performed a self-assessment
in seven basic emotions (neutral, disgust, happiness, surprise, anger, fear, and sadness) and
in the space of valence, arousal, dominance, familiarity, and liking. Seventeen male 4, 6,
13–15, 17, 19, 20, 25–27, 29, 31, 37–40, and twelve female participants 1–3, 7, 8, 10, 16, 18, 32,
34–36 were used for gender-specific emotion recognition.

The SJTU emotion EEG Dataset (SEED) contains EEG signals recorded by the ESI
Neuro Scan System measuring device from 15 participants aged 23.27 ± 2.37 (mean ± std)).
Each participant conducted the experiment three times to achieve better reliability. EEG
signals, lasting approximately four minutes, were collected on seven men (1, 4–6, 9, 12, 14)
and eight women (2, 3, 7, 8, 10, 11, 13, 15) using 62 electrodes while participants watched
Chinese film clips. Each of the three emotional categories: negative, positive, and neutral,
appears in five corresponding movie clips. In this paper, only positive and negative trials
from participants that can be mapped as high and low valence affective states were used,
as the study authors used in [60–64].
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3.2. Selected Features

To achieve the best possible information on the complexity, energy, power, standard
deviation, and irregularity of the signal, various authors use signals from the time-frequency
(e.g., Discrete Wavelet Transform, entropy) or spatial domain (e.g., Differential Asymmetry,
Rational Asymmetry). This research applies six features from the time domain to describe
the EEG signal: fractal dimension, Hjorth activity, mobility and complexity, peak-to-peak,
the root-mean-square, and three from the frequency domain: band power, the differential
entropy, and the power spectral density. This research uses a different set of features from
different domains compared to related studies in this area. The features used in this paper
provide state-of-the-art accuracy in the models where they have been used. We briefly
present the nine selected features since we made a detailed analysis in a previous study [60].

The sum of the squares of the time domain samples divided by the signal length is a
common feature that represents the band power [65–67]. A measure of signal complexity
that is related to minimum description length is called differential entropy [68–70]. Its
equation for the Gaussian distribution can be formulated as (1).

h(X) = −
+∞∫
−∞

1√
2πσ2

exp
(x− µ)2

2σ2 log
1√

2πσ2
exp

(x− µ)2

2σ2 dx =
1
2

log 2πeσ2 (1)

where X follows the Gaussian distribution N
(
µ, σ2), x is a variable, and π and e are constants.

A measure of the signal complexity and irregularity can be expressed by a fractal
dimension, and a fractal Brownian motion [71], Minkowski–Bouligand (box-counting
dimension) [72], or the Higuchi algorithm [73], which was shown to generate optimal
results [72] and is also applied in this research. In order to compute the fractal dimension
with the Higuchi algorithm, let X (1), X (2), . . . , X (N) be a finite set of time series samples.
The newly constructed time series is then defined as shown in (2) and (3).

Xm
k : X(m), X(m + k), . . . ,

(
m +

[
N −m

k

]
·k
)

(2)

(m = 1, 2, . . . , k) (3)

where m is the initial time and k is the interval time.
k sets of Lm(k) are calculated by (4):

Lm(k) =

{(
∑
[ N−m

k ]

i=1 |X(m + ik)− X(m + (i− 1)·k)|
)

N−1
[ N−m

k ]·k

}
k

(4)

where 〈L(k)〉 denotes the average value of Lm(k), and a relationship exists as follows in (5):

〈L(k)〉 ∝ k−D (5)

Moreover, the fractal dimension can be obtained by logarithmic plotting between
different k and its associated 〈L(k)〉. Hjorth parameters [74] for a signal x of length N are
the commonly used features in signal processing [75,76]. Hjorth Activity represents the
squared standard deviation of the amplitude (mean power of the signal), which is shown
in (6):

Activity(x) = ∑N
n=1(x(n)− x)2

N
(6)
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where x stands for the mean of x. Hjorth Mobility measures a standard deviation of the
slope with reference to the standard deviation of the amplitude (mean frequency of the
signal) and can be calculated by (7):

Mobility(x) =

√
var(x′)
var(x)

(7)

where x’ denotes the derivate of signal x. The third parameter, Hjorth Complexity, is the
number of standard slopes, i.e., the measure of the deviation of the signal from the sine
shape (8):

Complexity(x) =
Mobility(x′)
Mobility(x)

(8)

The Root-Mean-Square [77–79] and the Peak-to-Peak [65,80] are ordinary methods that
are frequently used for measuring the amplitude of the signal. The latter feature represents
the difference between the maximum and minimum values in signal x. A well-known
method for calculating average energy from different frequency bands is Power Spectral
Density [81–84]. This research uses the mean value of Welch’s method.

4. Methodology

This chapter describes the methodology used in the emotion recognition process. The
first subchapter describes how two-dimensional holographic feature maps are created from
the values of the signal characteristics represented in space. ReliefF and NCA methods
for automatic selection of EEG channels containing the most relevant information about
emotions are then described. Finally, it is described how a model was constructed consisting
of modules for extracting and merging features and classification into a three-dimensional
emotional space.

As there is still no model that will be maximally reliable given the person and the
environment in which the person is at the time of reading the EEG signal, it is necessary to
make additional efforts to improve these models. The nature of the EEG signal, which has a
large amount of noise, makes it difficult for researchers to construct the optimal and efficient
model of emotion recognition. Discrete wavelet transformation (DWT) decomposed signals
into delta, theta, alpha, beta, and gamma subbands, and the characteristics of the signal in
the time and frequency domain are calculated from them. In this study, we used our model
to recognize emotions by using the advantages of holographic feature maps (HOLO-FM)
that can be used to represent spatial and spectral information of the signal. With our
holographic feature maps, we aimed to give a new perspective to this research area. We
used them because of their proven efficacy compared to studies that have reached the
state-of-the-art level of accuracy.

In order to optimize the model and improve the accuracy of the classification, this
paper focuses on investigating the most relevant channels for efficient EEG-based emotion
recognition. This paper suggests using ReliefF and Neighborhood Component Analysis
methods to deal with the aforementioned challenges. Holographic feature maps constructed
with critical channels that were selected by means of the ReliefF method are defined as R-
HOLO-FM. The feature maps based on the NCA methodology are defined as N-HOLO-FM.
The analysis of the effectiveness of the R-HOLO-FM method is extended to the study of
men and women in the three-dimensional space of valence, arousal, and dominance.

4.1. Feature Maps Creation

Gabor [85] invented holography in 1948, which is a method of capturing and repro-
ducing a three-dimensional image of an object using light interference and diffraction with
the help of coherent light without the use of optical lenses [60]. The hologram is created by
recording the interference fringes between the reference wave coming from a coherent light
source (laser) and the wave diffracting from the object and going to the recording medium,
where it interferes with the reference wave. Complete spatial information about the object
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is contained in the amplitude and phase of the object wave. Therefore, this research also
applies the same principle to map a three-dimensional object into the plane and show it as
a two-dimensional image [86]. This is performed with Computer-Generated Holography,
which is a technology suitable for generating holograms from a synthetic three-dimensional
graphic model [87].

The HOLO-FM method is based on the creation of two-dimensional feature maps
from the spatial characteristics of the signals by using computer-generated holography.
As shown in Figure 2, the EEG signal was divided into delta (0–4 Hz), theta (4–8 Hz),
alpha (8–16 Hz), beta (16–32 Hz), and gamma (32–64 Hz) subbands using a ‘db5′ mother
wavelet of the DWT. Nine signal characteristics are then calculated for each subband, and
the position of the point in the 3D space is defined by displaying this value at the electrode
location, which is defined by a standard international 10–20 system. Thus, nine feature
maps are obtained for each subband, and 45 for each EEG signal.
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mother wavelet.

Figure 3 [60] shows the HOLO-FM method, i.e., the construction of holographic feature
maps using Computer-Generated Holography. Unlike a photograph that can record the
distribution and intensity of light waves, a hologram can additionally record their direction
and phase and is able to distinguish between “very distant light” and “dimmed near light”,
thus achieving a three-dimensional effect. We used a CGH algorithm [86] to create an off-
axis hologram to obtain a two-dimensional feature map. The scene of the object is rotated
in such a way that the illumination comes along the Z-axis. Each individual point in space
represents the value of the signal characteristic. The classical hologram is calculated for
each individual point in space, and the procedure is repeated for all points of all electrodes.

Figure 4 shows an N-HOLO-FM example for the first participant of all datasets. Ten
electrodes selected by the NCA method are shown for Differential Entropy (DE) signal
characteristics on the gamma subband. The red color represents active electrodes, while
the dark blue color denotes that the electrode is not active at all.
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4.2. Channel Selection

The electrodes are attached to the scalp to obtain brain signals. The number of
electrodes varies from 1 to 256 for different EEG headsets. The international 10–20 system
indicates the position of the electrodes on the human head in such a way that the letters
F, P, T, and O denote the frontal, parietal, temporal, and occipital lobes. The letter C does
not represent a lobe but is used to identify the central part of the head, A represents the
position of the front electrode, while the letter Z (zero) is used to indicate the position of
the electrode on the midline between the two hemispheres of the brain. The electrodes in
the left hemisphere are denoted by odd numbers 1, 3, 5, and 7, while the positions of the
electrodes in the right hemisphere are denoted by even numbers 2, 4, 6, and 8. The most
commonly used electrodes, according to the research conducted in [47], are presented in
Table 2. This shows that most researchers are of the view that the frontal lobe plays an
important role in the emotion recognition process.
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Table 2. The percentages of use of each EEG channel.

Percentage Channels

>75% F4, F3

60–75% T7, FP1, FP2, T8, F7, F8

45–60% O1, P7, P8, O2

30–45% FC5, FC6, C4, C3, AF3, AF4

<30% P3, P4, Pz

Considering the number of electrodes, the level of comfort of wearing the EEG mea-
surement device, the time required to mount the device on the subject’s head, the complexity
and processing time of all recorded signals, it is reasonable to use as few electrodes as
possible to solve these problems, and that is a major task of the EEG channel selection
process. We conducted additional research, and through the procedure, we reached the
optimal number of the ten most relevant electrodes using the ReliefF and NCA methods
which are briefly described below.

With the aim to select the most optimal channels, we used the ReliefF method proposed
by Kononenko [88] because it showed its effectiveness in the works [19,30,31]. The ReliefF
algorithm is a widely used feature selection method that has a lot of advantages, such
as simple principles and fast computing speed. It is used to compute the weights of
features based on sample learning. The basic idea of the algorithm is to determine the
weight of features, i.e., to assess the quality of the features according to their ability to
distinguish between samples that are close to each other. The assessment of feature quality
is determined by the ability of the nearest neighbor of one class to distinguish the nearest
neighbors of any two classes. Channel selection can be performed based on the feature
selection results. The Algorithm 1 is represented by pseudocode [89]:

Algorithm 1. Pseudocode of ReliefF algorithm:

Inputs: Instance set S and the number of classes C
Output: Weight vector w
Step 1: For any feature fa, a = 1, 2, . . . , d, set the initial weight wa = 0
Step 2: for i = 1 to m do
Randomly select xi from S;
Select the k-nearest neighbors hj from the same class of x;
Select the k-nearest neighbors mj(c) from different class from x
for a = 1 to d do
Update the weight by (9):

w(a) :=
w(a)−∑k

j=1
dist(a,xi ,hj)

m−k + ∑c 6=class(xi)

{
P(c)

1−P[class(xi)]
×∑k

j=1 dist
[

a, xi, mj(c)
]}

(m− k)
(9)

End
End

where dist(a, x, y) is the distance between instances x and y under the feature a, P(c) denotes
the probability of the c-th class which can be obtained as the ratio between the size of the
c-th class and the total number of instances, mj(c) denotes the j-th sample from the c-th
class, m is the number of iterations, and k is the number of nearest neighbors.

Features can be ranked by their weight. A high weight means that the feature is
important for distinguishing samples and vice versa. Firstly, N features were selected
according to the rank of each feature. Secondly, the channels that contain those features
were selected.
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Goldberger et al. [90] proposed Neighborhood Component Analysis, a distance-based
method that uses the Mahalanobis distance in the kNN classification algorithm. The idea is
that with a certain probability pij each point i selects its neighbor point j and inherits its
class label (10):

pij =
exp
(
−‖Axi − Axj‖2)

∑k 6=i exp(−‖Axi − Axk‖2)
, pii = 0 (10)

with objective function defined as (11)

f (A) = ∑
i

∑
j∈Ci

pij = ∑
i

pi (11)

where A is the transformation matrix, xi are real-valued input vectors in RD, and Ci denotes
the corresponding class labels c1, . . . , cn.

With this scheme, the NCA is able to extract data that contains useful information
and consequently reduce the dimensionality of the data. The NCA is an effective feature
selection model that generates and selects positively weighted features. According to the
authors of the study [39], they were the first to use the NCA algorithm for the selection of
significant features for EEG signals.

In this study, the selection of the most significant EEG channels is aimed at improving
the accuracy of the classification. The weights are obtained with the proposed ReliefF
and NCA algorithms, and the most important channels are selected based on the highest
weights. The selection procedure was performed in such a way that for each trial, nine
signal characteristics were calculated on each individual sub-band for all channels. Recall
that DEAP has 32, DREAMER and AMIGOS 14 each, and SEED 62 channels. The channels
were sorted by weight. The top ten EEG channels that best reflect emotional characteristics
were selected. For the SEED dataset, we calculated the holographic feature maps separately
for each experiment with the ten most relevant channels previously selected. The results
are denoted in the percentage of accuracy and serve as the mean of all three experiments.
Figures 5 and 6 show the most relevant channels for SEED from all three experiments. The
top ten channels were selected with the same procedure as for the other datasets. Since
ReliefF and NCA are different methods, we wanted to investigate whether we would find
a different set of channels. Thus, although the electrodes in Figure 5 are not identical for
both methods, it is observed that the frontal electrodes dominate. That is, both methods
emphasized the importance of the frontal lobe in the process of recognizing emotions.

The channels selected by ReliefF and NCA methods on all datasets are consistent
with the conclusion given in [26], i.e., the most active areas of the brain during emotion
processing are the frontal, parietal, and temporal areas. Moreover, the survey study [47]
presented the percentage of use of certain channels in numerous previous papers, and the
data are also in line with our proposal.

4.3. Model Construction

A Convolutional Neural Network to extract features from the holographic feature
maps was constructed for each signal characteristic (in total, nine are used in this study).
The features extracted from each individual CNN are merged into a feature matrix from
which the machine-learning algorithm derives a classification of user emotional states.
The three-component model is shown in Figure 7. CNN is a feedforward network that is
often used for learning and extracting features but also for classification. Because deep-
learning-based methods can learn highly representative features [91], we used a deep CNN
to extract features from the input images that represent the holographic feature maps. We
used a Convolutional Neural Network consisting of two two-dimensional convolutional
layers, two activating Rectified Linear Unit (ReLU) layers, a max-pooling layer, and, finally,
a fully connected layer that was used to extract more significant features. The dimensions
of the color images used as input to the CNN are 200 × 200 × 3. The 2D convolutional
kernel is 2 × 2 pixels in size. The stride equals two, and no padding was used. The network
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options are 0.001, 0.04, and 32 for initial learn rate, L2 regularization, and mini-batch size,
respectively, and a Stochastic gradient descent with momentum was used for optimization.
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The extracted high-level features of all nine convolutional networks are merged into a
final matrix that is the input to the machine learning algorithm. The final part of the model
is needed to provide accurate, predicted results for emotion recognition. The Support
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Vector Machine classifier with a polynomial kernel was used to distinguish high and low
levels of valence, arousal, and dominance.
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The holdout and the k-fold cross-validation methods are generally the criteria for
evaluating the success of a model. The most commonly used method to evaluate the
success of a model is k-fold cross-validation. The data set is divided into k subsets where
the training set is formed from k–1 subsets, and the remaining k subset is used as a test set.
Accuracy is calculated for each test set, and the procedure is repeated k times. In this work,
a statistic 10-fold cross-validation technique was used to assess the accuracy of our model.
The idea is to divide the input set into ten equal parts, nine of which are used for training
and one for testing. The final accuracy of the model is obtained by calculating the average
value for all folds, and later for all participants.

5. Results and Discussion

In emotion recognition, channel selection has proven to be an important factor in
helping machine learning algorithms work more efficiently. Hereinafter, we present the
experimental results of our model for emotion recognition based on a reduced set of
channels. Table 3 gives an overview of the accuracy and F1-scores (average of F1-score for
each class) for both R-HOLO-FM and N-HOLO-FM methods on all datasets in the valence,
arousal, and dominance space. It can be seen that the R-HOLO-FM method outperforms
N-HOLO-FM in the rate of accuracy and in F1-score results by up to four percentage points
in most cases. The expected values of classifying randomly, classifying according to the
majority class, and classifying by choosing a class with the probability of its occurrence in
the training data are given as baseline values. The best classifications rates and F1-scores on
all datasets in all three emotion dimensions are highlighted in bold. Using an independent
one-sample t-test (p < 0.01), it was obtained that all classification F1-scores are significantly
better than the class ratio baseline level. The results of the R-HOLO-FM and N-HOLO-FM
methods are not significantly different for any of the three affective states according to a
related two-sided t-test (p < 0.05).

Tables 4–7 provide an overview of the accuracy of both R-HOLO-FM and N-HOLO-
FM methods on all datasets in the valence, arousal, and dominance space. The best
accuracy score in each table is highlighted in bold. In our experiments, we used the top ten
channels selected by ReliefF and NCA methods, and recall that SEED has 62, DEAP 32, and
DREAMER and AMIGOS have 14 electrodes on their measuring devices. Thus, for DEAP,
we used 31.25% of the most optimal channels, for DREAMER and AMIGOS 71.43%, while
for SEED, we used only 16.13% of all available channels. R-HOLO-FM and N-HOLO-FM
methods achieved up to a seven percentage points better level of accuracy than our previous
work [60], which shows that we successfully improved the model performance with ReliefF
and NCA methods of selecting EEG channels containing the most relevant information
during the emotion recognition process. The comparison results for each dataset are given
in Tables 4–7. Abbreviations V, A, and D are used in the tables to denote valence, arousal,
and dominance. Apart from the basic ones, which are actually the studies of the authors
of the data sets, we chose studies where the authors used a reduced set of EEG channels,
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whether the channels were selected manually or selected by some automatic method, and
which classify human emotions in the dimensional space.

Table 3. Accuracy and F1-score for proposed and baseline methods in 3D emotional space per dataset.

DEAP DREAMER AMIGOS SEED

R-HOLO-
FM

Valence
Accuracy 83.26 90.76 88.54 88.19

F1-score 87.13 89.09 89.79 88.51

Arousal
Accuracy 83.85 92.92 91.51 N/A

F1-score 86.80 89.25 87.77 N/A

Dominance
Accuracy 88.58 92.97 90.34 N/A

F1-score 86.56 89.47 87.83 N/A

N-HOLO-
FM

Valence
Accuracy 81.88 86.12 88.53 88.31

F1-score 86.16 88.48 87.90 88.59

Arousal
Accuracy 82.45 89.07 91.32 N/A

F1-score 85.76 88.58 87.58 N/A

Dominance
Accuracy 88.35 89.82 86.10 N/A

F1-score 89.95 89.04 87.89 N/A

Random

Valence
Accuracy 51.33 48.79 49.57 43.33

F1-score 50.42 48.21 49.43 43.21

Arousal
Accuracy 49.06 51.45 49.78 N/A

F1-score 48.13 49.21 46.96 N/A

Dominance
Accuracy 50.70 51.21 57.33 N/A

F1-score 49.35 45.87 57.33 N/A

Majority

Valence
Accuracy 63.13 61.11 56.47 50.00

F1-score 38.70 37.93 36.09 33.33

Arousal
Accuracy 63.75 72.43 65.95 N/A

F1-score 38.93 42.02 39.74 N/A

Dominance
Accuracy 66.72 77.05 54.74 N/A

F1-score 40.02 43.52 35.38 N/A

Class ratio

Valence
Accuracy 45.94 48.79 51.72 50.67

F1-score 47.66 48.79 49.14 49.33

Arousal
Accuracy 45.94 39.61 45.69 N/A

F1-score 42.03 40.10 43.97 N/A

Dominance
Accuracy 42.03 35.75 51.72 N/A

F1-score 38.59 30.92 51.72 N/A

Table 4. Comparison with other studies with reduced channel set on DEAP dataset.

Study Used Feature(s) Classification
Method(s)

Number of
Channels

Best
Accuracy

Koelstra et al. [54] PSD NB 32 V: 57.60
A: 62.00

Li et al. [21] Entropy and
energy kNN 18 V: 85.74

A: 87.90
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Table 4. Cont.

Study Used Feature(s) Classification
Method(s)

Number of
Channels

Best
Accuracy

Bazgir et al. [22] * Entropy and
energy SVM 10 V: 91.10

A: 91.30

Mohammadi et al. [23] Entropy and
energy kNN 10 V: 86.75

A: 84.05

Özerdem et al. [24]
Various time and

frequency domain
features

MLPNN 5 V: 77.14

Wang et al. [25] Band energy
(spectrogram) SVM 8 for V

10 for A
V: 74.41
A: 73.64

Msonda et al. [26] EMD IMFs LSVC 8 V: 67.00

Menon et al. [27] **
Various time and

frequency domain
features

HDC Feature channel
vector set

V: 76.70
A: 74.20

Gupta et al. [28] IP RF 6 V: 79.99
A: 79.95

Mert et al. [29]
Various time and

frequency domain
features

MEMD + ANN 18 V: 72.87
A: 75.00

Zhang et al. [32] Band power PNN 9 for V
8 for A

V: 81.21
A: 81.76

Our method R-HOLO-FM CNN + SVM 10
V: 83.26
A: 83.85
D: 88.58

Our method N-HOLO-FM CNN + SVM 10
V: 81.88
A: 82.45
D: 88.35

V: Valence, A: Arousal, D: Dominance, PSD: Power Spectral Density, NB: Naïve Bayes, kNN: k-Nearest Neigh-
bor, SVM: Support Vector Machine, MLPNN: MultiLayer Perceptron Neural Network, EMD: Empirical Mode
Decomposition, IMF: Intrinsic Mode Function, LSVC: Linear Support Vector Classifier, HDC: Hyper-Dimensional
Computing, IP: Information potential, RF: Random Forest, MEMD: Multivariate Empirical Mode Decomposition,
ANN: Artificial Neural Network, PNN: Probabilistic Neural Network, CNN: Convolutional Neural Network.
* The average classification accuracy on Beta band. ** GSR, ECG and EEG signals were used.

Table 5. Comparison with other studies with reduced channel set on DREAMER dataset.

Study Used Feature(s) Classification
Method(s)

Number of
Channels

Best
Accuracy

Katsigiannis et al. [55] PSD SVM 14
V: 62.49
A: 62.17
D: 61.84

Msonda et al. [26] EMD IMF LSVC 8 V: 80.00

Our method R-HOLO-FM CNN + SVM 10
V: 90.76
A: 92.92
D: 92.97

Our method N-HOLO-FM CNN + SVM 10
V: 86.12
A: 89.07
D: 89.82

V: Valence, A: Arousal, D: Dominance, PSD: Power Spectral Density, SVM: Support Vector Machine, EMD:
Empirical Mode Decomposition, IMF: Intrinsic Mode Function, LSVC: Linear Support Vector Classifier, CNN:
Convolutional Neural Network.
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Table 6. Comparison with other studies with reduced channel set on AMIGOS dataset.

Study Used Feature(s) Classification
Method(s)

Number of
Channels

Best
Accuracy

Miranda et al. [56] PSD, SPA SVM 14 V: 57.60
A: 59.20

Msonda et al. [26] EMD IMF LR 8 V: 78.00

Menon et al. [27] *
Various time and

frequency domain
features

HDC Feature channel
vector set

V: 87.10
A: 80.50

Our method R-HOLO-FM CNN + SVM 10
V: 88.54
A: 91.51
D: 90.34

Our method N-HOLO-FM CNN + SVM 10
V: 88.53
A: 91.32
D: 86.10

V: Valence, A: Arousal, D: Dominance, PSD: Power Spectral Density, SPA: Spectral Power Asymmetry, SVM:
Support Vector Machine, EMD: Empirical Mode Decomposition, IMF: Intrinsic Mode Function, LR: Linear
Regression, HDC: Hyper-Dimensional Computing, CNN: Convolutional Neural Network. * GSR, ECG and EEG
signals were used.

Table 7. Comparison with other studies with reduced channel set on SEED dataset.

Study Used Feature(s) Classification
Method(s)

Number of
Channels

Best
Accuracy

Zheng et al. [33] Feature map
from DE DBN + SVM 12 V: 86.65

Gupta et al. [28] IP RF 12 V: 90.48

Pane et al. [34] DE SDA + LDA 15 V: 99.85

Cheah et al. [35] Extracted with
VGG14

VGG14 1D
kernel (T-then-S) 10 V: 91.67

Zheng [36] Raw EEG
features GSCCA 12 V: 83.72

Our method R-HOLO-FM CNN + SVM 10 V: 88.19

Our method N-HOLO-FM CNN + SVM 10 V: 88.31
V: Valence, A: Arousal, D: Dominance, DE: Differential Entropy, DBN: Deep Belief Networks, SVM: Support
Vector Machine, IP: Information Potential, RF: Random Forest, SDA: Stepwise Discriminant Analysis, LDA: Linear
Discriminant Analysis classifier, VGG: Visual Geometry Group, GSCCA: Group Sparse Canonical Correlation
Analysis, CNN: Convolutional Neural Network.

The results obtained by R-HOLO-FM and N-HOLO-FM methods with comparable
studies are given in Table 4. Out of a total of 12 studies, only [24,26] did not present results
in the arousal dimension, but none investigated the dominance dimension as is conducted
in this paper. The number of selected channels varies from paper to paper, so the least, only
five, were selected in [24], while [21,29] used 18 different channels, and the authors of the
DEAP dataset used all channels. Channels were mostly selected manually based on the
experience of other authors in [21–24,26,28,29], while the ReliefF method was used in [32],
and Wang et al. used the NMI method for selecting the most optimal channels [25].

The highest classification accuracy using ten channels from the frontal lobe of 91.10%
for valences and 91.30% for arousal was achieved in [22]. However, the results are not
shown over the whole EEG signal but only over subbands, so this result refers to the beta
subband. The approach of [23] proposed a similar method with the same set of channels
as [22], but using kNN classifiers, they achieved a worse accuracy rate by about five
percentage points for valence and about percentage points for arousal. Using 18 channels,
which is more than half of the total number of the DEAP dataset, studies [21] as well as [29]
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conducted research, and in comparison, they achieved results of 85.74% and 72.87% for
valence, while in arousal dimension they achieved 87.90% and 75%. The difference in
classification accuracy greater than 10 percentage points is significant, and it is obvious
that the proposed MEMD method with ANN classifier needs to be improved to achieve
the accuracy rate method used by Li. In addition to the aforementioned [21] undertook
additional research with 10 and 14 channels. The results obtained over all frequency bands
of each channel combination are 82.48% and 84.53% in the valence space and 83.27% and
85.26%, in the arousal space for 10 and 14 channels.

Wang [25] and Zhang [32] used the Normalized Mutual Information and ReliefF
methods for channel selection, respectively, and were the only ones to suggest the use of
different numbers of channels for both dimensions in 2D emotional space. An accuracy
of 74.41% for valence with eight channels and 73.64% for arousal with 10 channels were
obtained with support vector machines by Wang. On the other hand, Zhang used the
probabilistic neural network (PNN) as a classifier and showed that with nine channels,
an accuracy of 81.21% for valences and with eight channels, an accuracy of 81.76% for
arousal could be obtained. The same number of channels as in [25], in the study of emotion
recognition, was used by Msonda [26], who showed that the frontal, parietal, and temporal
are common brain areas that are active during emotion processing. The authors found an
accuracy rate of 67.00%, which is better by about 10% than the results published by the
authors of the DEAP dataset [54] but still worse than all other comparable studies presented
in this paper. The result suggests that using the Empirical Mode Decomposition technique
to split the time series signal into Intrinsic Mode Functions will not yield promising results.
However, on DREAMER and AMIGOS datasets, on which the authors also conducted
research, they achieved a classification accuracy of 78.00% and 80.00%, respectively, which
consequently means that it makes sense to further optimize the proposed method.

The smallest number of channels is used by studies [24,28]. Özerdem selected five
channels: P3, FC2, AF3, O1, and Fp1, which mostly coincide with the selected channels
in our study. By utilizing the MultiLayer Perceptron Neural Network (MLPNN), they
obtained a score of 77.14% for positive and negative emotions and showed that this method
was more successful than SVM, which gave them an accuracy of 72.92%. With one channel
more than in the previously mentioned method (T7, T8, CP5, CP6, P7, and P8), the authors
in [28] reported 79.99% for valence and 79.95% for arousal, which is fairly effective for
emotion recognition.

DREAMER and AMIGOS datasets were published not so long ago, so there are only a
few comparative papers in addition to the basic ones. As in the DEAP data set experiment,
Msonda [26] used a Linear Support Vector Classifier and achieved a score of 80.00%, which
is significantly more than Katsigiannis showed. The authors of the DREAMER dataset [55]
have shown classification accuracy in all three dimensions, but both our R-HOLO-FM and
N-HOLO-FM methods outperform them with scores of 90.76%, 92.92%, and 92.97% for
valence, arousal, and dominance, respectively. In addition, the proposed methods show
that the model of [60] is further optimized by a few percentage points. Using spectral power
features, authors of the AMIGOS dataset [56] have reached the emotion prediction of 57.60%
for valence and 59.20% for arousal. It can be seen that they underperform the accuracy of
results for both affective states in comparison with all the other studies presented in Table 6.

Using two datasets as a basis for model verification, the authors in [27] fused pre-
processed EEG, GSR, and ECG signals, previously mapped into hyperdimensional space.
The brain-inspired hyperdimensional computing paradigm yielded results on the DEAP
dataset of 76.70% and 74.20% in the valence and arousal dimensions, respectively. The
obtained accuracy rate still underperforms both of our methods. From the AMIGOS point
of view, the valence of 87.10% is approximately the same as in [60] and slightly worse than
the R-HOLO-FM and N-HOLO-FM methods. However, the arousal value is about ten
percentage points higher in both previously mentioned methods.

On the SEED set that originally contained signals from 62 EEG channels, the authors
mostly used a reduced set of 10 to 15 channels. The SEED dataset authors [33] achieved
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86.08% for emotion recognition with all channels, but in the same paper, they conducted
research for four, six, nine, and twelve channels and obtained an accuracy rate for the
valence of 82.88%, 85.03%, 84.02%, 86.65%, respectively. By reducing 50 EEG channels, the
authors showed its superior performance with an accuracy of 86.65% over the original full
pool of electrodes. R-HOLO-FM and N-HOLO-FM methods outperformed their approach,
as well as the method proposed in [36], with a classification accuracy of 88.19% and 88.31%,
respectively. It is worth noting that the Group Sparse Canonical Correlation Analysis
method for simultaneous EEG channel selection, proposed by Zheng, obtained a result of
83.72% for the 12 most optimal channels. The same number of the most important channels
from the frontal, parietal and central lobes were used by Gupta [28], who, in addition to
the DEAP dataset, conducted the emotion recognition survey on the SEED dataset and
achieved a very good result of 90.48% with the Random Forest classifier.

The highest classification accuracy achieved in [34] is 99.85%. Authors, such as
Zheng [33], tested several scenarios on their model with a different number of channels:
three, four, seven, but with 15 channels, they achieved the mentioned result. Finally, the
approach of [35] proposed a method that utilizes the outermost-10 channels with which
they obtained the best mean accuracy of 91.67%. In their interesting study, they obtained
83.83% with modified very-deep convolutional neural networks using the outer-10 channels,
70.60% with inner-10, and 54.75% with innermost-10 channels.

This study based on holographic feature maps, which selected the most optimal
channels, has demonstrated that R-HOLO-FM and N-HOLO-FM are effective methods
for emotion recognition with a reduced set of channels that perform better than most
comparable approaches previously published. In the DEAP, DREAMER, and AMIGOS
datasets, valence, arousal, and dominance emotion states are divided into low and high
class. In the SEED dataset, the emotional states are divided into positive and negative
values, corresponding to valence. By analyzing the available literature, we were unable
to find models that use a reduced set of channels to classify emotions into 3D emotional
space, except for DREAMER data set authors who use all measuring device channels. As
determining dominance is also very important in recognizing emotions, more research is
needed in this direction.

Men and women have different perceptions of emotional stimuli, as evidenced by
numerous studies investigating gender differences. Therefore, we also expanded our
research and conducted experiments on how gender affects the recognition of emotions
using different datasets. Since we have achieved better results on all bases in previous
research using the R-HOLO-FM method, we used it to recognize the emotions of women
and men. Given that slightly less than 70% of studies use an unbalanced set in the sense that
men predominate, and as it is known that men and women react differently to emotional
stimuli, the results of these studies would certainly be different if approximately the same
number of men and women participated. DREAMER consists of fourteen males and nine
females, and AMIGOS of 17 males and 12 females, making them unbalanced datasets,
and the other two datasets, i.e., DEAP and SEED, have a ratio of 17 males and 15 females,
respectively, seven men and eight women. For this reason, we wanted to investigate what
results we will find when using the model proposed in this paper on men and then on
women. The test results are available in Tables 8 and 9.

Table 8. Accuracy for male subjects with the channels selected with the ReliefF.

Dataset Valence Arousal Dominance

DEAP 82.55 82.27 88.81
DREAMER 90.26 91.87 93.24
AMIGOS 83.63 87.84 90.40
SEED 82.07 N/A N/A
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Table 9. Accuracy for female subjects with the channels selected with the ReliefF.

Dataset Valence Arousal Dominance

DEAP 87.82 89.26 82.12
DREAMER 89.58 93.27 89.42
AMIGOS 88.92 92.08 85.44
SEED 87.70 N/A N/A

There is an obvious gender difference for all emotional dimensions and in all datasets.
Thus, the most pronounced difference in valence, which ranges from sad to joyful, on the
DEAP, AMIGOS, and SEED datasets is approximately five percentage points in favor of
men, while for DREAMER, the value of valence is almost the same. From the results, it can
be seen that the same is true for arousal (ranging from calm to excited), where the largest
difference between the genders in DEAP is approximately seven percentage points, and the
smallest in AMIGOS, which is two percentage points. From the above, we can conclude that
men are more likely to recognize emotions in valence and arousal affective states. Finally,
the dominance level in all three datasets is higher for women than for men by an average of
five percentage points, and recall that low dominance means submissive/without control,
and high dominance means dominance/empowered.

In summary, we can conclude that, although there is a relatively small number of
subjects in each dataset, it still includes a total of 99 respondents, of which 55 are men,
and 44 are women. Although there are numerous studies on recognizing gender from
physiological signals, very few deal with recognizing emotions depending on gender. Here,
we presented our interesting findings, and as this is not a large set of participants, it is
necessary to continue to conduct research on the matter.

6. Conclusions

The use of an EEG headset with a large number of channels increases the complexity
of hardware and computing and, consequently, the process of recognizing the emotional
state of people because part of the channel is not relevant for recognizing emotions and
generates unnecessary noise. This research proposes a reduced set of channels, which
improves the aforementioned challenges that scientists face today, and also raises the
level of classification accuracy using the ReliefF and Neighborhood Component Analysis
methods. Computer-generated holography was used to construct R-HOLO-FM and N-
HOLO-FM feature maps with a reduced set of EEG channels from the characteristics of the
signals displayed in three-dimensional space. The results obtained using deep learning
neural networks and the classification of machine learning methods effectively improve the
rate of emotional recognition. Furthermore, the R-HOLO-FM method was applied for both
men and women, and the results show that gender differences are visible. The suggested
approach was verified on four different datasets, i.e., DEAP, DREAMER, AMIGOS, and
SEED, where EEG signals were recorded with a different number of channels. The results
of this study are presented in the valence, arousal, and dominance space of emotions to
assess the effectiveness of the model. Based on the results, the authors of this paper are of
the opinion that the use of the proposed method can play a significant role in the process of
recognizing emotions.

There is still a need for further research in this field, so in our future work, we will
investigate the effectiveness of our model for cross-dataset, i.e., we will use different
datasets for training and others for testing the model. Further, special efforts will be made
in the research with the aim of reducing the set of signal characteristics and channels in
order to improve the speed of calculations which should enable the usage of the model
in real-time. Moreover, we will continue to work on recognizing emotions depending on
gender because a very interesting area of research is opening up in this direction.
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