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Abstract: Total laryngectomy, i.e., the surgical removal of the larynx, has a profound influence on a
patient’s quality of life. The procedure results in a loss of natural voice, which in effect constitutes a
significant socio-psychological problem for the patient. The main aim of the study was to develop a
statistical parametric speech synthesis system for a patient with laryngeal cancer, on the basis of the
patient’s speech samples recorded shortly before the surgery and to check if it was possible to generate
speech quality close to that of the original recordings. The recording made use of a representative
corpus of the Polish language, consisting of 2150 sentences. The recorded voice proved to indicate
dysphonia, which was confirmed by the auditory-perceptual RBH scale (roughness, breathiness,
hoarseness) and by acoustical analysis using AVQI (The Acoustic Voice Quality Index). The speech
synthesis model was trained using the Merlin repository. Twenty-five experts participated in the
MUSHRA listening tests, rating the synthetic voice at 69.4 in terms of the professional voice-over
talent recording, on a 0–100 scale, which is a very good result. The authors compared the quality of
the synthetic voice to another model of synthetic speech trained with the same corpus, but where a
voice-over talent provided the recorded speech samples. The same experts rated the voice at 63.63,
which means the patient’s synthetic voice with laryngeal cancer obtained a higher score than that of
the talent-voice recordings. As such, the method enabled for the creation of a statistical parametric
speech synthesizer for patients awaiting total laryngectomy. As a result, the solution would improve
the quality of life as well as better mental wellbeing of the patient.

Keywords: speech synthesis; parametrical synthesis; deep neural networks; laryngeal cancer

1. Introduction

The larynx is the most common localization of malignant head and neck cancers.
In Poland, laryngeal cancer accounts for 2.3% of all cancers in men and 0.5% cancers
in women [1–4]. Symptoms of laryngeal cancer include persistent hoarseness, globus
sensation, a sore throat, an earache, a cough or weight loss. The risk factors include alcohol
consumption, smoking, HPV-16 infection, reflux and exposure to toxic fumes of nickel
compounds, sulfuric acid, asbestos or heavy metals [5–7]. HPV-16 (human papilloma
virus) infection can lead to uncontrolled cell divisions of the cervical epithelium, which
can end in cervical cancer [8,9]. In its initial stage, laryngeal cancer may not display clear
symptoms, which can lead to a late diagnosis and, consequently, to a more aggressive
treatment: surgery and/or chemotherapy and/or radiotherapy [1,6,9].

While early, locally advanced cancer can be treated effectively, for instance by means of
microsurgery, but more advanced laryngeal cancer may require a complete removal of the
larynx (total laryngectomy) [9]. This will always have a profound impact on the patient’s
quality of life, as the loss of natural voice constitutes a significant socio-psychological
problem for patients. Regrettably, in many cases, this often leads to a patient’s social
isolation and depression [9–12].
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There are three methods of voice restoration following laryngectomy [13]. The first
involves the implantation of an artificial larynx. Thanks to the implant, the air can be
directed from the lungs to the esophagus in order to create the primary laryngeal tone [14].
In order to be able to speak, the patient has to close off the trach tube opening, which
is a major inconvenience. However, patients recover their voice fairly quickly, usually
within several days. This kind of speech is known as tracheoesophageal speech (TE) [15,16].
Another method of voice recovery involves the learning of esophageal speech (ES) [17]. It
requires the patient to learn to burp out the air returning from the stomach or esophagus.
This is far more difficult to learn, while patients often feel uneasy about burping, as it is
thought to be rude. Statistically, 40% of all patients manage to master this method, but
merely 15% of them actually make use of it [11,18]. The third method involves the use of
an electrolarynx [19], a device that generates the fundamental frequency when held against
the neck. The generated voice sounds artificial and flat, similar in quality to that of formant
synthesis (defined below).

Clearly then, there is a need to create augmentative and alternative communication
methods, allowing those who cannot produce speech, or have a limited ability to produce
speech, to communicate. These include sign language as well as voice output communi-
cation aids (VOCAs) [20]. There are several types of speech synthesis used in the VOCA
systems, such as formant synthesis, concatenation synthesis, unit selection speech synthesis,
and statistical parametric speech synthesis based on the hidden Markov model [21].

The concept of a digital formant speech synthesizer was introduced by Dennis Klatt
in 1979 [22]. This kind of synthesis involves using cascade and/or parallel digital filters
to model the vocal tract transfer function in the frequency domain. The sound generated
in this way has a characteristic tone quality, reproducing the typical formants of speech
sounds. Generating intelligible speech requires the reproduction of three formants. Five
formants make it possible to generate speech of sufficiently high quality. Each of the
formants is modelled with a formant frequency and a resonance band [23].

Models for concatenative speech synthesis, developed since the 1970s, have gained
considerable popularity due to their ability to generate high-quality natural-sounding
speech. In concatenative synthesis, speech is generated by concatenating acoustic segments,
such as phones, diphones, triphones and syllables [24]. Thanks to its sound-to-sound
transition characteristic, the diphone is the most common unit which ensures high-quality
natural speech. The small size of its database is an advantage of this type of synthesis.
The smaller the database, the better, as speech will be generated more quickly, and the
hardware requirements will be less demanding [25].

Rather than having a database containing a single occurrence of a given sound unit,
unit selection (corpus-based) speech synthesis relies on a special corpus that comprises a
number of its occurrences in different contexts, making use of units of varying duration.
Owing to this, it is often possible to avoid artificial concatenation points, allowing for more
natural-sounding speech [26]. The most important element responsible for the acoustic
segment selection is the cost function. It consists of target cost and a concatenation cost
(joint cost). The concatenation cost is used to assess the degree to which two units match if
they are not in adjacent positions in the acoustic database. The unit selection cost searches
out units that will most closely match the linguistic features of the target sentence [27,28].

The HMM-based speech synthesis system (HSS) utilizes the hidden Markov models
(HMMs) [28]. In a way, it is similar to concatenation. However, in this case, instead of
using segments of natural speech, the synthesis process relies on context-dependent HMMs.
These models are concatenated according to the text to be synthesized, and the resultant
feature vectors (observations) serve as a basis for the speech synthesis implemented by a
particular filter. It should be noted that parameters related to the spectrum (or cepstrum)
and the laryngeal tone parameters (f 0, voicedness) are modeled separately. What is interest-
ing in the HSS synthesis is that the models are trained on a large acoustic database before
being adapted for a particular speaker. Such an approach makes it much easier to create a
new synthesizer [29].



Sensors 2022, 22, 3188 3 of 18

In 2016, Deep Mind Technologies published the findings of its study into the WaveNet
system [30]. This type of speech synthesis is called parametrical synthesis. According to
the authors, the system narrows the gap between the best available speech synthesis and
natural speech by over 50%. Like the HSS synthesis, this method is also based on acoustic
modeling. What makes it different is the elimination of the Vocoder (Voice Encoder), a
coder used for analyzing and synthesizing the human speech. The audio signal is modeled
directly by the same model. Because of its high computational complexity at the time of
the publication, WaveNet was unable to generate a real-time speech signal, which is why
this kind of synthesis is not included in this study. Later, Deep Mind went on to develop an
improved model which served to create a TTS system, accessible in a virtual cloud [31].

VOCA devices make use of professional commercial voices, but their high quality
is not the most important aspect for patients, who would rather hear their own voice.
Unfortunately, the technology currently used in these systems does not allow for the
provision of personalized voices [20]. Perhaps the most famous user of such a device
was the British astrophysicist Stephen Hawking, who suffered from amyotrophic lateral
sclerosis. Hawking used software made by the Speech Plus company. In the initial stages
of the disease, he controlled the speech synthesizer with a joystick. Having lost use of his
hands, he operated the device with his cheek.

Currently, there are several companies that produce custom-made synthetic voices [32].
ModelTalker for example, a US-based company, offers to build personalized synthetic voices
for the English language. The prospective user has to record between 400 and 1800 speech
samples. The systems that are offered include concatenative, corpus-based and parametrical
syntheses. Parametrical synthesis makes use of Deep Neural Networks (DNN). The Polish
language is currently unavailable.

OKI Electric Industry Co., Ltd. in Japan employs a hybrid speech synthesizer Pol-
luxstar to build a personalized voice that is a combination of statistical and corpus-based
speech. It makes use of both acoustic units and Markov models [33].

The Google Cloud Text-to-Speech also offers a Custom Voice feature. Custom Voice
allows training of a custom voice model using own studio-quality audio recordings to
create a unique voice. In addition, it is possible to synthesize audio using the Cloud Text-
to-Speech API. Currently, only American English (en-US), Australian English (en-AU), and
American Spanish (es-US) are supported [34].

Amazon Web Services implemented a feature in Amazon Polly called Brand Voice.
Amazon Polly is a service that turns text into lifelike speech, allowing one to create appli-
cations that talk and build new categories of speech-enabled products. With the Brand
Voice feature, it is possible to make Neural Text-to-Speech (NTTS) voice representing your
Brand’s persona. Brand Voice allows differentiating your Brand by incorporating a unique
vocal identity into your products and services. There is no Polish language neural voice
present [35].

Edinburgh-based CereProc is another company that offers to build synthetic voices for
individual customers [36]. The technology makes use of corpus-based synthesis, and the
voice building involves the adaptation of an acoustic model based on approximately four
hours of recorded speech. A female voice (Pola) is available for the Polish language, but it
is not possible to adjust the synthesizer to simulate one’s own voice. Acapela is another
company producing custom-made synthetic voices. Again, 19 languages are available for
voice banking, but Polish still is not offered. Voice Keeper is another company that supports
voice banking, but it is available only for English and Hebrew. Similarly, VocalID company
also supports voice banking, but only for English [37].

Microsoft Azure offers Custom Neural Voice, a set of online tools for creating voice for
brands [38]. In Custom Neural Voice Pro version, 300–2000 utterances are required. Here,
the Polish language is available.

In their study, Ahmad Khan et al. developed a speech synthesizer based on a patient’s
voice recorded just before laryngectomy. The system of statistical speech synthesis was
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trained on many speakers and adapted to a 6–7min sample of the patient’s speech. Despite
its low sound quality, the output resembled natural speech [20].

It is then possible to employ the existing technologies to generate high-quality speech,
but it still begs the question of what quality can be obtained for a dysphonic voice.

The following study aimed to prepare speech synthesis voice for a patient with changes
in the larynx, causing hoarseness, affecting perceptual judgment and the acoustic signal
parameters. In addition, we checked if it is possible to generate speech quality close to
the original recordings using the MUSHRA listening test. Finally, the obtained synthetic
voice was compared to the voice of a professional speaker, and after comparison, the result
received a higher quality relative score to the synthetic professional voice.

2. Materials and Methods

Back in 2014, the authors were approached by a person seeking help for someone
close who had cancer. It turned out that in a few days the sick person was to undergo total
laryngectomy, which would result in a loss of natural voice. At the time, it was impossible
to predict the course of disease following the surgery. However, the authors were promptly
engaged in a project aimed at the design of a speech synthesizer using prosody, close
to natural speech. In practical terms, a task like this involves designing a corpus-based
synthesizer using unit-selection speech synthesis, or one based on a statistical parametric
speech synthesis system. The solution described in this paper guaranteed repeatability as
well as versatility, allowing for the implementation of such projects on a larger scale.

In both types of synthesis, it was very important to build a sufficiently extensive
acoustic data repository to serve as the heart of the system. An acoustic database should
include a variety of acoustic units (phones, diphones, syllables) in a number of different
contexts and occurrences, and of varying durations. The first stage of building an acoustic
database involved creating a balanced text corpus. This required extracting from a large
text database a certain number of sentences that would best meet the input criteria, for
example, the minimum and maximum number of acoustic units in a sentence.

The larger the database, the more likely it was that the selected sentences will meet
the set criteria. It was then important to find a balance that would ensure an optimal
database size while maintaining the right proportion of acoustic units characteristic of
a particular language. The speech corpus was built in a semi-automatic way and then
corrected manually. Sentences selected with this method had to be manually verified in
order to eliminate any markers, abbreviations and acronyms which were not expanded
in the initial preprocessing. The sentences were selected by the greedy algorithm. The
operation of this algorithm consists of iterative extraction of a number of sentences from
a very large text set. All the sentences were also manually checked to ensure that they
did not contain material that would be too hard to pronounce or contains obscene or
otherwise loaded material which would introduce an emotional bias to the recordings.
More information about balancing corpus is included in these articles [39,40].

The recordings were made in a recording studio during a number of several hours’
long sessions. Each consecutive session was preceded by a hearing of the previously
recorded material in order to establish a consistent volume, timbre, manner of speaking,
etc. [27,39].

The final stage in the construction of an acoustic database, following the recordings,
was the appropriate labeling and segmentation. The segmentation of the database was
carried out automatically, using statistical models, or heuristic methods, such as neural
networks. Such a database should then be verified for the accuracy of the alignment of the
defined boundaries of acoustic units.

2.1. Constructing the Corpus

The corpus built for the recordings contained a selection of parliamentary speeches.
Initially, it was a 300 MB text file containing 5,778,460 sentences. All the metadata was
removed, and all the abbreviations, acronyms and numbers were replaced by full words.
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Then, the SAMPA phonetic alphabet was used to generate a phonetic transcription. The
SAMPA phonetic is a computer-readable phonetic alphabet. A SAMPA transcription is
designed to be uniquely parsable. As with the ordinary IPA, a string of SAMPA symbols
does not require spaces between successive symbols.

Two algorithms of the phonetic transcription were compared: the rule-based system
developed for the Festival system, and the automatic method based on decision trees.
The use of decision trees proved to be far more effective, ensuring higher accuracy in the
phonetic transcription [39]. The balancing of the corpus was implemented by means of a
greedy algorithm. This solution best fulfilled the given input criteria such as the number of
phonemes, diphones, triphones making up the length of the sentence, or the number of
segments in the final corpus. For the purpose of balancing the CorpusCrt program was
used, which was written by Alberto Sesma Bailador 1998 at the Polytechnic University of
Catalonia and was distributed as freeware [40].

An example input sentence in our initial corpus is in its orthographic and phonetic
form represented by (a) orthography, (b) phonemes, (c) diphones, and (d) triphones.

a. z jakim niezrównanym poczuciem humoru opisuje pan swoją marszczącą się wątrobę
b. # z j a k i m n’ e z r u v n a n I m p o tS u ts’ e m x u m o r u o p i s u j e p a n s f o j o~

m a r S tS tS o n ts o~ s’ e~ v o n t r o b e~ #
c. #z zj ja ak ki im mn’ n’e ez zr ru uv vn na an nI Im mp po otS tSu uts’ ts’e em mx xu

um mo or ru uo op pi is su uj je ep pa an ns sf fo oj jo~ o~m ma ar rS StS tStS tSo on
nts tso~ o~s’ s’e~ e~v vo on nt tr ro ob be~ e~#

d. #zj zja jak aki kim imn’ mn’e n’ez ezr zru ruv uvn vna nan anI nIm Imp mpo potS
otSu tSuts’ uts’e ts’em emx mxu xum umo mor oru ruo uop opi pis isu suj uje jep epa
pan ans nsf sfo foj ojo~ jo~m o~ma mar arS rStS StStS tStSo tSon onts ntso~ tso~s’
o~s’e~ s’e~v e~vo von ont ntr tro rob obe~ be~#

The parliamentary speech corpus was divided into 12 sub-corpora, 20 MB each [20].
The division was made on the grounds of the maximum corpus size that can be accepted
by the Corpus CRT program.

The following criteria were applied for the selection of the most representative and
balanced sentences:

• Each sentence should contain a minimum of 30 phonemes;
• Each sentence should contain a maximum of 80 phonemes;
• The output corpus should contain 2,500 sentences;
• Each phoneme should occur at least 40 times in the corpus;
• Each diphone should occur at least 4 times in the corpus;
• Each triphone should occur at least 3 times in the corpus (this particular criterion can

only be met for the most frequently used triphones).

These assumptions were made on the basis of [41–43].
After the first balancing process, 12 different sub-corpora, each containing 2500 sen-

tences, were created. Each sub-corpus contained approximately 189,000 phonemes. The
frequencies of phonemes proved to be very similar in all of the sub-corpora. Figure 1
illustrates the percentage value of frequency distribution in two randomly selected parlia-
mentary sub-corpora.

After the second balancing process, the total number of diphones had increased (from
148,479 to 150,814), the number of diphones occurring less than four times had decreased
(from 175 to 68), and the number of different diphones had increased (from 1096 to 1196).
The total number of triphones had increased (from 145,979 to 148,314), and so had the
number of different triphones (from 11,524 to 13,882).

The ultimate corpus contains interrogative and imperative sentences and was also
supplemented with words of less frequent occurrence. The frequency distribution of
particular phonemes is shown in Figure 2. The 15 most common diphones are shown in
Figure 3, and the 15 most common triphones are shown in Figure 4.
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The final stage of the corpus construction involved manual correction, which allowed
for the elimination of sentences that were meaningless or difficult to utter. Ultimately, the
corpus is made up of 2150 sentences.

In its final form, the corpus was used in a doctoral dissertation concerned with the
optimization of cost function in corpus-based synthesis for the Polish language [39].
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2.2. Recordings

Due to the patient’s condition and the time limitations resulting from the planned
surgery, the recordings could not be held in a recording studio. Instead, they were made in
the patient’s home. To ensure a better quality, an acoustic booth was used. The recordings
were carried out with the help of EDIROL R-09HR, which was placed 60 cm from the mouth.
EDIROL R-09HR is a professional, high-resolution recorder with built-in stereo condenser
microphone. During the recording, a written text was displayed for the speaker and the
person in charge of the recording. The acoustic database was recorded with a 48 kHz
sampling frequency and a 16-bit resolution in the WAV format. Each consecutive session
was preceded by an examination of the previously recorded material in order to establish
a consistent intonation and manner of speaking. The first session had to be repeated as
the sentences had been read too quickly. At the second attempt, the recording process
was improved as the patient tried to articulate the sentences in a louder voice, and the
microphone was placed closer to the speaker, i.e., 50 cm.

The entire recording was completed in two 2 h sessions, finishing, a few hours before
the patient was transferred to the hospital. The whole of the corpus, consisting of 2150 sen-
tences, was recorded. The synthetic voice was trained on 2000 sentences. 100 sentences
were selected as a validation set and were used to determine the best model during after
the training was completed. Finally, out of 100 sentences a set of 50 sentences was used to
carry out the listening tests (MUSHRA).

The corpus containing 2000 sentences has been used in the very first unit selection
speech synthesis system programmed by the authors of this paper for non-commercial use.
All of the audio files used in this system have been accepted as the acoustic database of the
ELRA project (http://catalog.elra.info/product_info.php?cPath=37_39&products_id=11
64; http://syntezamowy.pjwstk.edu.pl/korpus.html accessed on 5 April 2022). ELRA is
involved in a number of projects at the European and international levels. These projects
address various issues related to Language Resources, including production, validation,
and standardisation.

2.3. Acoustic and Auditory-Perceptual Assessment of Voice Quality

Due to dysphonia in the patient’s voice, the RBH auditory-perceptual scale was used
to assess its quality [44]. The RBH auditory-perceptual scale is used in German clinics
and is recommended by the Committee on Phoniatrics of the European Laryngological
Society [45]. The RBH acronym is used to denote the following features:

• R—Rauigkeit (roughness) – the degree of voice roughness deviation caused by irregu-
lar vocal fold vibrations;

• B—Behauchtheit (breathiness) – the degree of breathiness deviation caused by glottic
insufficiency;

• H—Heiserkeit (hoarseness) – the degree of hoarseness deviation.

http://catalog.elra.info/product_info.php?cPath=37_39&products_id=1164
http://catalog.elra.info/product_info.php?cPath=37_39&products_id=1164
http://syntezamowy.pjwstk.edu.pl/korpus.html
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Ratings of 0, 1, 2, and 3 are used for all parameters on the RBH scale, with reference
to the different degrees of vocal disorder: ‘0’ = normal voice, ‘1’ = a slight degree, ‘2’ = a
medium degree, and ‘3’ = a high degree.

The perceptual voice assessment was performed by two independent specialists who
had completed an RBH training program and had extensive experience in voice signal
evaluation. The experts were trained at a university. The training process was divided
into three stages; each stage lasted 28 h. After each step, an exam checked the quality
of annotation. Upon successfully finishing the training, another learning process was
introduced with RBH Learning and Practice mobile application. The experts had been
working for three years with an annotation of the speech signal.

The assessment showed dynamic voice changes throughout the recordings, with R = 0,
B = 1, H = 0 at the beginning of the recordings, and R = 1, B = 1, H = 1 at the end. These
ratings indicated dysphonic changes in voice quality, pointing to dynamic changes taking
place during the recordings.

To better illustrate the changes, an acoustical analysis using AVQI (v. 02.03) was
carried out (The Acoustic Voice Quality Index) [45,46]. The Acoustic Voice Quality Index
is a relatively new clinical method used to quantify dysphonia severity. The method
is calculated on the basis of a signal from a sustained vowel and samples of speech.
To determine its value, a weighted combination of 6 parameters is taken into account:
shimmer local, shimmer local dB, harmonics-to-noise ratio (HNR), general slope of the
spectrum and tilt of the regression line through the spectrum and smoothed cepstral peak
prominences (CPPs).

The AVQI score obtained for the patient with laryngeal cancer was 5.62, which indi-
cates largely altered voice quality. AVQI values range from 0 to 10.

It was assumed that scores ≤ 3 indicate a normal, unchanged voice [45]. The patient’s
voice was compared with that of a professional speaker recorded for the corpus-based
speech synthesis, both using the same sentences. In order to select the professional speaker,
voice samples from 30 voice talents were collected and then assessed by 8 voice analysis
experts. Ultimately, the experts chose a female voice. The recordings, which were conducted
in the recording studio of the Polish-Japanese Academy of Information Technology, were
performed with an Audio-Technica AT2020 microphone with a pop filter, 30 cm from the
microphone. The signal was recorded in the AIFF format with a 48 kHz sampling frequency
and a 24-bit resolution, using the audio Focusrite Scarlett 2i4 interface. The corpus was
recorded during 15 two-hour sessions, with each prompt being recorded as a separate file.
After each session, the files were exported in the WAV format with file names corresponding
to the prompt numbers in the corpus. The recordings were then checked for distortions and
external noises, as well as for mistakes made by the speaker. A total of 480 prompts were
re-recorded [27]. The values obtained for the voice were: AVQI = 1.61, and R = 0, B = 0,
H = 0 on the perceptual scale. Figure 5 shows a graph with the acoustical analysis using
AVQI calculated for the patient.

2.4. Segmentation of Audio File

The next step, after recordings, was an automatic segmentation of the corpus. This
was carried out by means of a program based on the Kaldi project [47]. Kaldi is an open-
source speech recognition toolkit, written in C++. The segmentation was performed using
a technique called ‘forced alignment’, which involves matching phone boundaries on
the basis of a file containing phonetic transcription. First, the program created an FST
graph whose states correspond to the consecutive segmental phonemes of the analyzed
phrase. The phonetic transcription for the segmentation was prepared on the basis of an
orthographic transcription using a Polish language dictionary with SAMPA transcriptions.
Foreign words and proper nouns were transcribed manually.
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2.5. Creating Synthetic Voice

The authors set out to create a new voice using the Merlin library [48], a toolkit for
building statistical parametric speech synthesis by means of Deep Neural Network. This
approach must be used in combination with metasystem Festival, responsible for imple-
menting phonetic transcription, linguistic features and the World library as a vocoder [49].
The World library also provides tools for analysis, processing and recording. In Festival,
the following features were calculated:

• Context dependent phones (previous phoneme, next phoneme);
• Syllable structure (current, previous and next syllable);
• For each of syllable (stress accent and length of syllable);
• Position phoneme in syllable;
• Position phoneme in phrase;
• Position of stressed syllable in phrase.

The first step was to define acoustic parameters based on the recordings. This involved
calculating the values of fundamental frequency (f 0), voicing levels, mel-generalized cep-
stral coefficients (MGCC) [28], and band aperiodicity, which expresses the value of the
aperiodic energy signal. Each of the parameters were normalized to the mean value of 0,
and their variance value equaled 1. All the parameter values for a given frame constitute its
vector of acoustic properties. For f 0 only values corresponding to the voiced signal frame
was used, for non-voiced frames value 0 was used.

Additionally, the delta and delta–delta were calculated for the F0 and MGCC pa-
rameters. Thus, the F0 for every signal frame is represented by three values. Each of the
MGCC parameters is defined by 60 parameters representing the amount of energy for
each sub-band. Ultimately, together with the delta and delta–delta, each signal frame is
represented by 180 values.

Once the sentence to be synthesized has been entered, the acoustic model predicts
the acoustic parameter values using the obtained linguistic parameters. The latter were
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extracted at the phoneme level, while the acoustic parameters were extracted at the frame
level. Their numbers differ, which makes model training difficult. In order to resolve the
problem, information about the boundaries of phoneme states obtained in the segmentation
process was used. Each state was matched with corresponding frames. The vector repre-
senting linguistic properties of a given state was copied a required number of times, and
an index was added to it. Data prepared in this way contained for each frame its vector of
linguistic properties and the corresponding vector of acoustic parameters. This represents,
respectively, the input and the desired output required to train an acoustic model.

However, the information about the states is not available during the synthesis process.
For this reason, a model that will predict their duration on the basis of their linguistic
parameters needs to be developed. The acoustic models and phoneme duration models
were trained using Python Theano library [50]. The Theano library is integrated with
Merlin and contains implemented statistical models based on deep neural networks. In
addition, this allows for a very fast computation of mathematical expressions by using
specialized GPUs.

3. Results
3.1. Experiments

A number of experiments were carried out where voices were built with varying
amounts of training data and different acoustic model architectures. In order to compare
the models, values of the error function calculated for the verification data were used. The
verification data constituted 10% of the training set. The mean squared error was used in the
process. The values shown in Figures 6–9 are the MSE sum for 180 mel-generalized cepstral
coefficients, 3 parameters describing the fundamental frequency (f 0) and 3 parameters
describing the aperiodic band. The parameters were normalized to the mean value of 0 and
the variance of 1. In all experiments, the models were trained for 25 epochs and a model
from the best performing epoch was used.

3.1.1. Experiment 1: Building a Voice with 100 Sentences

The first model was used to verify the system, so it was trained on a small number of
sentences. 100 sentences were randomly selected from the corpus, of which 90 were used
to train the models (training data). The remaining 10 sentences were used for verification
purposes (verification data). A multilayer perceptron was used for the acoustic modelling.
It consisted of an input layer (1), hidden layers (2) and an output layer (3). There were
6 hidden layers, each consisting of 1024 neurons. The hyperbolic tangent was chosen to act
as the activation function. An identical neural network was employed for the modelling of
phoneme state durations.

In both cases, computations were performed without a GPU. They were made on a
computer with an 8-core processor Intel Core i7-4790 3.60 GHz, 16 GB RAM. As Theano
performs automatic data-parallel computations, all of the processor cores were utilized.
The speech generated by the resultant models was comprehensible, though not very natural
sounding. However, the experiment helped verify the correct functioning of the system.

3.1.2. Experiment 2: Building a Voice with 2000 Sentences

The training data set and the verification set consisted of 2000 and 100 sentences,
respectively. Both models were trained with the same neural network architecture as in
the first experiment. In both cases, computations were performed with a CPU only. The
resultant models made it possible to generate speech that sounded noticeably more natural
than the speech generated in experiment 1. Figures 6 and 7 show a graph of the error
function during the voice training stage. The problem of overfitting was significantly
reduced compared to the model trained with 100 sentences.
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3.1.3. Experiment 3: Building a Voice with an Acoustic Model Based on a
Recurrent Network

This experiment was carried out with the same data set as in experiment 2. What
made it different was an altered architecture of the acoustic model neural network (the
model of the phoneme state durations remained unchanged). The last two layers of the
perceptron were replaced with two LSTM layers [51,52]. The LSTM layer was recurrent,
which means that the value predicted for the prior sample was at once the input value for
the current sample. Thanks to this property, neural networks containing LSTM layers were
used for sequence modelling.
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Apart from a perceptron with a hyperbolic tangent, a single LSTM block contained
three perceptrons with a sigmoid activation function. The first of these was a forget gate,
designed to discard any unimportant information from prior elements of the sequence.
Next was the input gate, which filtered information in the current element. The third gate
was the output gate, which decided which information should be passed to the subsequent
elements of the sequence. Each of the LSTM layers consisted of 384 blocks. Computations
performed in a single LSTM block were more complex than those in the perceptron. The
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time needed to train the model with a processor was estimated at 500 h. Therefore, it was
decided that a GPU would be used. The GPU processor (Nvidia GTX 760) made it possible
to train the model in 31 h and 27 min.

Figure 8 shows a graph of the error function values during the model training. The
application of LSTM layers practically eliminated the problem of overfitting.

3.1.4. Experiment 3: Building a Voice for 100, 200, 400, 650, 1000 and 1500 Sentences

In order to investigate the effect of data volume on voice quality, additional acoustic
models were built for 200, 400, 650, 1000 and 1500 sentences, respectively [39]. Figure 9
shows a graph of the error function values for a varying number of sentences. There was
a striking difference between 100 and 200 sentences. There was also a noticeable leap
between 200 and 400 sentences. A further increase in the number of sentences used did not
affect the rate at which the error function values fell.

The experiments discussed above led to the construction of 3 synthetic voices: two
for 100 and 2000 sentences using an MLP network, and a third voice built on the basis of
2000 recordings using a recurrent network with LSTM layers. The voices built in experiment
4 were designed to examine the impact of different amounts of data on the quality of the
models and were excluded from further evaluation.

3.2. MUSHRA

The listening tests were conducted using the MUSHRA methodology. In a MUSHRA
test, the listener is presented with a professional voice-over talent recording as the reference,
(so called proper reference) and samples of generated speech to be evaluated. These
generated systems include a so-called anchor. In addition, one of the systems served as a
hidden reference. The hidden reference used in our tests is the same a voice-over talent
recording as it was used as the proper reference. Such an approach made it possible to
verify that the listeners assessed the systems against the reference. An anchor was required
to be perceived as inferior in quality to the hidden reference.

The tests were carried out by means of webMUSHRA. A total of 25 expert listeners
participated in the tests, each of whom assessed 10 sentences in one test. The listeners
were instructed to first listen to the reference recording and then assess each system on
a 0–100 numerical scale. The results are shown in Table 1. The sentences used in the test
came from a specially designed test corpus also named validation corpus and were not
used for training or verification purposes. The purpose of creating the corpus was to
obtain a set of sentences that would meet specific requirements different from those used
to develop the main corpus [53]. It was decided to get a small corpus and, at the same time,
the biggest possible coverage of different acoustic units, different from the ones included
in the acoustic database. The variety of corpora was supposed to ensure the naturalness
and comprehensibility of generated phrases occasionally occurring in the main corpus.
The test corpus was prepared in the CorpusCrt application [40]. Sentences were compiled
from three different linguistic bases, containing texts from newspapers on various subjects.
Before the test corpus was created, it was required to generate the phonetic transcription
for phonemes diphones and triphones for the whole database. It was decided to limit
the size of the test corpus to 100 short statements (max. 60 phonemes in each sentence).
The criteria of the sentence selection referred to their maximum length, the number of
occurrences of various acoustic units, and different phoneme configurations. During corpus
balancing, it was decided that each phoneme should occur at least 25 times, each diphone
and triphone should occur at least once. Because of the small size of the corpus, obtaining
all the diphones and triphones was impossible; however, the necessary condition ensured a
variety of occurrences of mentioned acoustical units.

The results obtained in the tests indicated a very high quality of the synthetic voice
of the patient (Table 1). A difference of 0.05 in relative score in favor of the best patient’s
synthetic voice 3 LSTM compared to the best professional synthetic voice accounted for by
a better adjustment of the acoustic parameters (Table 1). The obtained results indicated that
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the best synthetic patient voice is more matched to the original patient recordings than the
professional synthetic voice concerning the professional recordings.

Table 1. MUSHRA test results.

Patient’s
Voice

Patient’s
Synthetic

Voice 1
MLP

Patient’s
Synthetic

Voice 2
MLP

Patient’s
Synthetic

Voice 3
LSTM

Professional
Voice

Professional
Synthetic

Voice MLP

Relative score * - 0.36 0.71 0.71 - 0.66
Mean value 97.62 35.48 69.40 69.74 96.21 63.63

Median 100 34 71 72 100 66
STD 5.54 21.52 19.42 18.35 8.01 19.41

* Relative score = recording’s mean value/synthetic voice mean value.

As voice 3 required the use of GPU, systems 2 and 3 were compared to see if their
ratings were different. The ratings of both systems had an equal modal distribution and
equal variances. P value = 0.651 and t = 0.452 indicated that the ratings of the two systems
are not statistically different. This ultimately led to a decision to transfer the system to
a virtual speech synthesizer, which would benefit the patient. Due to the computational
complexity of the LSTM layer, the model trained with LSTM was too slow to be used on a
computer without a GPU. For this reason, it was not placed on the virtual machine that
was presented to the non-professional voice.

The Analysis of Acoustic Parameters Errors

Table 2 shows the values of acoustic parameters errors calculated on the basis of test
sentences generated by means of 3 trained systems. The following acoustic parameters
were applied:

• MCD—Mel-Cepstral Distortion;
• BAPD—band aperiodicity distortion;
• F0-RMS represents the root mean square of deviations in fundamental frequency

values;
• F0-correlation, the value of Pearson’s correlation coefficient for the fundamental fre-

quency;
• VUV (voiced-unvoiced error rate) indicates the percentage of incorrect predictions of

voicedness [48].

Table 2. Values of acoustic parameter errors calculated for verification data.

Voice ID MCD (dB) BAPD (dB) F0-RMS (Hz) F0-Correlation VUV %

Voice 1 5.489 0.142 29.787 0.489 11.792
Voice 2 4.779 * 0.133 26.096* 0.635 * 9.059*

Voice 3 LSTM 4.731 0.134 25.438 0.629 8.308
Professional voice 4.186 0.133 31.116 0.558 5.689

* Statistically significant in comparison to professional voice, p-value <0.05. All differences between acoustic
parameters except the BAPD (dB) parameter for voice 2 and professional voice are statistically significant. Between
voice 2 and voice 3, only the VUV % parameter is statistically significant (p-value <0.05). The bold font is used to
indicate the best acoustic parameter among all synthetic voices.

The analysis of the data shown in Table 2 indicated that voice 2, i.e., a voice for the
cancer patient, had the best BAPD value as well as having the highest correlation between
F0 and the recording. On the other hand, the best values of MCD, F0-RMS and VUV were
obtained for the LSTM-trained voice. The professional voice had better MCD and VUV%
values while its BAPD value was equal to that of the cancer patient. The parameter values
of the fundamental tone deviation (F0-RMS) and the fundamental frequency F0-correlation
proved to be worse in the professional voice.

In order to enable researchers to repeat or modify the conducted experiments, a
GIT repository was created. The repository contains the Merlin Repository with all the
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modifications and scripts. The Supplementary Materials contain recordings of voice talent,
patient voice, and synthetic voice of voice talent and patient.

The synthetic voice was made available to the patient in the form of a virtual machine
in the VirtualBox13 environment. The text is synthesized with a single command at the
terminal level. The synthesizer works fast in Linux. However, transferring it to a virtual
machine affects its operating speed.

4. Discussion and Conclusions

The study aimed to prepare speech synthesis voice with changes in the larynx, causing
hoarseness and affecting perceptual and acoustic signal parameters. The quality for the
person with voice changes obtained a relative score of 0.71 for MLP and LSTM, where
the relative score is defined as a recording’s mean value divided by synthetic voice mean.
Interestingly, a higher voice quality than professional voice was achieved, where the relative
score equals 0.66. MUSHRA results of patient MLP voice trained on 2000 sentences obtained
69.40 compared to 63.63 for professional voice. Creating such a voice was possible, but
perceptual differences indicated that the patient voice sounded better than the professional
voice.

According to their study, Repova et al. [21], 61 patients were scheduled for total
laryngectomy for T3-T4a laryngeal or hypopharyngeal cancer with uni- or bilateral neck
dissection the regional lymph node involvement. A total of 31 patients were assessed as
unsuitable for voice recordings due to low voice quality before surgery or unsatisfactory
cooperation and compliance. Of the remaining 30 patients, 18 were willing and able to
complete voice recordings. Of the 18 patients, 11 patients had a voice prosthesis implanted.
Each patient recorded between 210 and 1400 sentences. For most, unit selection (US) or
hidden Markov model (HMM) systems were used to perform personalized speech synthesis.
However, the quality of speech synthesis was not evaluated. Overall, only 7 patients
eventually began using TTS technology in the early postoperative period. However, the
frequency and total time of use were significantly better in the first postoperative week than
later in the hospital stay, when the device’s effort gradually decreased. Finally, 6 patients
are actively using the software. One of these patients was a lecturer. The frequency and
total device use time were significantly better in the first postoperative week than later in
the hospital stay, when the effort to use the device gradually decreased. The gold standard
for voice rehabilitation after total laryngectomy is tracheoesophageal speech with the
voice prosthesis placement. The disadvantage of this approach is the necessity of regular
replacement of the voice prosthesis due to the device’s lifetime. In their study, Repova
et al. [21] obtained results that indicate that voice banking and speech synthesis can be an
opportunity to increase the quality of life.

Statistical speech synthesis created by recording complete corpus allows the generation
of more natural-sounding speech than that obtained by adapting acoustic models to a
particular patient, as reported in Ahmad Khan et al. [20]. The authors used the system of
statistical speech synthesis was that trained on many speakers and adapted on a 6–7-min’
sample of the patient’s speech. Despite its low sound quality, the output resembled natural
speech.

The created corpus in this study is representative of the Polish language. It enables
high-quality, corpus-based and HSS speech synthesis. The signal segmentation methods
developed in the study ensure a high degree of accuracy, as confirmed by the author’s
previous studies [27,39,41,54]. This work is innovative for the Polish language.

The method developed in the course of the study makes it possible to create a new
synthetic voice for the Polish language by means of a statistical parametric speech synthesis
system. Despite significant changes in the patient’s voice, reflected in the RBH scale
features and the AVQI parameters, the results obtained in the study were very promising,
as confirmed by the MUSHRA test. As a result, this method can be employed to develop a
synthetic voice for a person awaiting total laryngectomy, allowing them to speak with their
own voice, which ensures the patient’s better mental wellbeing.
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Having been presented with the speech synthesizer, the total laryngectomy patient
was clearly moved being able to hear his own voice and expressed full approval of the
quality of the synthesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22093188/s1. The materials contain recordings of voice talent,
patient voice, and synthetic voice of voice talent and patient.
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