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Abstract: This paper proposes an effective strongest angles of arrival (AoAs) estimation algorithm
for a hybrid millimeter wave (mmWave) communication system with 1-bit analog-to-digital/digital-
to-analog converters (A/Ds) equipped at transceivers. The proposed algorithm aims to reduce the
required number of estimation overheads, while maintaining the root mean square error (RMSE)
of strongest AoA estimates at the base station. We obtain the quantization thresholds of A/Ds
for different signal-to-noise ratios (SNRs) and numbers of antennas via numerical simulations,
based on which, the strongest AoAs can be estimated with a small amount of overheads. The
proposed algorithm is compared with conventional schemes including 1-bit FFT and 1-bit exhaustive
search, as well as 1-bit Cramér-Rao lower bound. Simulation results verify the effectiveness of
our proposed algorithm in terms of reducing estimation overheads while maintaining reasonable
estimation performance in low SNRs.

Keywords: hybrid; millimeter wave; 1-bit A/Ds

1. Introduction

Millimeter wave (mmWave) communication can offer high data rates and low latency
for outdoor and indoor cellular systems and hence is an important candidate in the fifth
generation (5G) mobile communications [1–3]. In mmWave communications, a large
number of antennas with beamforming are required to overcome the high propagation path
loss [4]. However, the hardware complexity, energy consumption, and channel estimation
overhead generally increase with the number of antennas, which impose constraints on the
application of mmWave communication [5,6].

To reduce the power consumption and hardware complexity, multiple solutions have
been proposed. One promising technique is the hybrid architecture of multiple-input
multiple-output (MIMO), which uses a reduced number of radio frequency (RF) chains at
transceivers compared to the fully digital one that has the same number of RF chains to
that of the antennas [7,8]. The analog-digital hybrid architecture can achieve a considerable
array gain in the analog domain via analog beamforming and meanwhile manage multi-
stream interference via baseband digital precoding. As have been investigated in the
literature, effective analog beamforming and digital precoding algorithms can achieve a
considerable rate performance and a higher energy efficiency compared to fully-digital
architecture [8–11].

Another potential technique to reduce the power consumption and hardware com-
plexity is utilizing low-resolution analog-to-digital/digital-to-analog converters (A/Ds)
at transceivers. Since the power consumption of A/Ds increases exponentially with the
number of quantization bits, utilizing low-resolution A/Ds can significantly reduce the
power consumption [12–14]. In the literature, researches on massive MIMO systems with
low-resolution A/Ds have focused on various aspects including nonlinear quantization
errors [15], channel estimation errors [16–18], precoding error propagation [19,20], etc.
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To further reduce the power consumption and hardware complexity of mmWave
communication systems, one natural solution is to combine the hybrid architecture with
low-resolution A/Ds [12,21]. For the hybrid architecture with low-resolution A/Ds, one of
the most critical problems is to identify the dominant multipath components of the channel,
i.e., estimating the strongest angles of arrival (AoAs) [22], where conventional mmWave
channel estimation algorithms are not applicable.

In the literature, one popular approach to estimate the strongest AoAs of mmWave
channels is to use spatial-scanning based beam search [23–25]. To reduce the overhead
of beam search and ensure high AoA estimation accuracy, various algorithms have been
proposed [26–28]. However, compared to scenarios that utilizing low-resolution A/Ds,
these algorithms, e.g., [26–28], assuming high-resolution A/Ds at transceivers will lead to
a significant higher energy consumption.

For mmWave channel estimation with low-resolution A/Ds, the related works are
relatively limited [29,30] due to its challenging nature. The existing solutions in [29,30]
mainly work in moderate to signal-to-noise ratio (SNR) scenarios, while low SNR scenarios
are common especially in outdoor mmWave communications, due to the high propagation
loss of mmWave signals.

To address the channel estimation problem at low SNRs with 1-bit A/Ds, we first
propose a channel estimation algorithm for hybrid architecture with 1-bit A/Ds equipped at
transceivers. The proposed algorithm exploits Wald-type confidence interval and detection
probability to design a new reward function to reduce the estimation overheads while
maintaining the root mean square error (RMSE) performance of the estimation of strongest
AoA components. In addition, we obtain the semi-analytical relationship between the
receive SNR, the designed practical quantization thresholds, and the average estimation
overheads. Also, we compare our proposed algorithm with conventional benchmarks,
e.g., the 1-bit FFT algorithm and the approximated Cramér-Rao lower bound (CRLB) for
hybrid architecture equipped with 1-bit A/Ds. Numerical results show that the proposed
algorithm can obtain a reasonable AoA estimation performance and reduce the estimation
overhead at the same time, especially in low SNR regimes.

Notation: Eh(·) denotes statistical expectation operation with respect to random vari-
able h, CM×N denotes the space of all M× N matrices with complex entries; (·)−1 denotes
inverse operation; (·)H denotes Hermitian transpose; (·)∗ denotes complex conjugate; (·)T

denotes transpose; | · | denotes the absolute value of a complex scalar; The distribution of a
circularly symmetric complex Gaussian (CSCG) random vector with a mean vector x and
a covariance matrix σ2I is denoted by CN (x, σ2I), and ∼means “distributed as”. IP is an
P× P identity matrix.

2. System Model

In this work, we consider a hybrid mmWave system in which an M-antenna NRF-
RF-chain base station (BS) wishes to communicate with N single-RF-chain single-antenna
users, e.g., M > NRF > N > 1. We assume that the MU mmWave system is operating in a
time division duplex (TDD) mode. In addition, the BS and users are fully synchronized [31].
The BS is equipped with a fully connected hybrid architecture and a uniform linear array
(ULA), where each RF chain is connected to the M antennas. We also consider that 1-bit
A/Ds are equipped at both transceivers, as illustrated in Figure 1.

We consider a narrowband block fading mmWave channel with one dominate path
and Ncl scattering components [32–36]. With this model, the uplink channel hk can be
represented as

hk =

√
ςk

ςk+1
hk,LOS︸ ︷︷ ︸

Strongest component

+

√
1

ςk + 1

√
1

Ncl

Ncl

∑
l=1

α̂k,lhk,l︸ ︷︷ ︸
Scattering components

, (1)

where α̂k,l , l ∈ {1, · · · , Ncl}, represents the complex small-scale fading for the l-th scattering
component [37], which we assume to follow a complex Gaussian distribution with zero
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mean and unit variance (Note that, the power ratio of the strongest path power over the
sum of other scattered paths’ power, ςk = 1/

[
∑Ncl

i=1|α̃k,i|2
]
, is usually larger than 1 [37]. In

an outdoor scenario, the power ratio for line-of-sight (LOS) can be 10 dB and the power
ratio for none-line-of-sight (NLOS) can be 6 dB [37]). In addition, hk,l ∈ CM×1 are the array
response vectors of user k at the BS associated to the l-th propagation path, which can be
expressed as

hk,l =
[
1, e−j2π d

λ cos(θk,l), . . . , e−j2π(M−1) d
λ cos(θk,l)

]T
, (2)

where d is the antenna spacing at the BS and λ is the carrier wavelength. Variable θk,l is
the AoA of the l-th path at the antenna array of the BS from user k, which is assumed to be
uniformly distributed between [0, π].

Figure 1. The considered hybrid mmWave system with 1-bit A/D equipped at transceivers for
strongest AoA components estimation.

To estimate the AoAs at the BS, each user transmits pilots respectively according
to a fixed “0–1” codebook while the BS performs periodic beam scan to measure pilot
signals [27]. The goal of this process is to find the AoAs of the dominant paths such
that beams can be steered to these directions to achieve the best effective SNR. Denoting
F = { fRF,k,1, . . . , fRF,k,F} as the BS codebook [28], the best beamforming vector for the
strongest AoA estimation can be expressed as

f H
RF,k = arg max

fRF,k,i∈F

∣∣∣ f H
RF,k,ihk

∣∣∣, (3)

where f H
RF,k is the best beam of the BS, and fRF,k,i is the beam vector for spatial scanning of

the i-th direction. With ULA, the beamformer, fRF,k,i, k ∈ {1, . . . , N}, can be represented as

fRF,k,i =
1
M

[
1, e−j2π d

λ µ, . . . , e−j2π(M−1) d
λ µ
]T

, (4)

where µ = cos
(
θi
)
= −1 + 2i−1

M ∈ (−1, 1), i ∈ {1, . . . , M}.
Denote further hk,i = f H

RF,k,ihk as the effective channel after receiving beamforming
f H
RF,k,i. Then the signal before quantization received at i-th RF chain of the BS from user k

can be expressed as
yk,i = hk,isk + f H

RF,k,iz, (5)

where sk is the finite-alphabet signal with covariance E
[
sksH

k
]
= Es = 1, k ∈ {1, . . . , N},

Es is the average symbol energy transmitted from user k, hk ∈ CM×1, k ∈ {1, . . . , N}, is
the channel vector between the BS and user k, and z ∈ CM×1 ∼ CN (0, σ2I) is the additive
noise assuming to be complex white Gaussian with zero-mean variance σ2.
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The received signal after 1-bit quantization can be represented as:

|ŷk,i| = QBS[|yk,i|] = QBS

[
|hk,iQusers(sk) + f H

RF,k,iz|
]

= sign[|yk,i| − τ] =

{
1 (|yk,i| − τ) > 0,
0 (|yk,i| − τ) < 0,

(6)

where QBS(·) and Qusers(·) are 1-bit quantization operations at the BS and users, respec-
tively. Parameter τ is the quantization threshold. Conditioned on any underlying beam-
forming fRF,k,i and the quantization threshold, ŷk,i follows a Bernoulli distribution, for
which the probability mass function (PMF) over possible outcomes r can be expressed as

fpmf(i, r, p) =

{
pi r = 1,
qi = 1− pi r = 0,

(7)

where pi ∈ [0, 1] denotes the yield value that need to be estimated.

3. Proposed Strongest AoA Components Estimation Algorithm
3.1. Problem Formulation

According to (6), pi = Pr{|yk,i| > τ}. Clearly, the stronger the effective channel after
beamforming, i.e., |hk,i|, the higher value is pi. Hence, the best beam identification problem
in (3) becomes to identify the beam with the highest value of pi.

Suppose L observations have been made by the BS at each RF chain: {ŷk,i}L
n=1. De-

note I+ = {K|(ŷk,i)j = 1, j = 1, . . . , K} and I− = {L− K|(ŷk,i)t = 0, t = 1, . . . , L− K},
respectively, then p̂i can be estimated as

p̂i =
K
L

, (8)

where p̂i can be obtained as close as pi provided that the number of observations L is
sufficiently large. Therefore, in principle, the best beam can be identified by choosing the
beam that has the largest p̂i, i ∈ {1, . . . , M}, regardless of the quantization threshold τ.
However, the value of τ will affects the discrimination between the best beam and others,
i.e., affecting the differences of pi, thus will have a significant impact on the number of
observations needed to identify the best beam.

Unfortunately, it is difficult to directly obtain the optimal threshold τopt as well as
the minimum estimation overhead without the precise knowledge of the noise variance,
which is known to be hard to obtain with 1-bit A/Ds [38]. As an alternative way, one can
determine the threshold τ by counting the minimum number of pilots L under different
values of τ.

Therefore, in the remaining parts of this section, we focus on the problem of min-
imizing the overall AoA estimation overhead while maintaining reasonable estimation
accuracy. We begin by considering how to design proper quantization thresholds to reduce
the overhead in low SNR scenarios.

3.2. The Design of Quantization Thresholds

In this subsection, we detail the algorithm proposed for the strongest AoAs estimation
with 1-bit A/Ds equipped at both transceivers. We also use the Monte Carlo simulations
to statistically find appropriate quantization thresholds for different SNRs to reduce the
estimation overhead. Then, the channel can be estimated with a relatively smaller number
of beam searching repetitions for the case of limited hardware in the hybrid architecture
with 1-bit A/Ds.

For our proposed AoAs estimation algorithm, we firstly obtain the ordered detection
probability output vector through periodic beam scanning at the BS after sorting in de-
scending order as

[
p̂(1),n, · · · , p̂(M+1),n

]
, where p̂(i),n > p̂(i+1),n, ∀i. Then we calculate the



Sensors 2022, 22, 3140 5 of 16

Wald-type confidence interval which will be used to determine when the beam scanning
stops. The confidence interval can be represented as p̂(i),n − ζ(i),n 6 p̂(i),n 6 p̂(i),n + ζ(i),n, ∀i,

ζ(i),n = α

√
p̂(i),n(1− p̂(i),n)

L ,
(9)

where α > 0 is from the standard normal distribution table. In the iterative search process,
a reward function λ is introduced in low SNRs to decide when to stop searching, which
can be expressed as {

p̂(i),n > p̂(i+1),n, λ = λ + 1,
p̂(i),n − ζ(i),n > p̂(i+1),n + ζ(i+1),n, λ = λ + 1.

(10)

After the two aforementioned conditional judgments, the number of detection repe-
titions increases, L = L + 1. Then, the proposed algorithm recalculate the corresponding
ζ(i),n and update the parameter λ. The beam search can be stopped when λ reaches to a
pre-determined reward function threshold T (T > 0). The beam with the largest p̂(i),n upon
termination will be selected as the best beam.

This proposed algorithm is summarized in Algorithm 1. From Algorithm 1, we
calculate the number of detection repetitions required for the estimation of strongest AoA
components with a given quantization threshold τ and SNR. In general, it is possible to
obtain SNR via different methods [26].

From Equation (6), the quantization threshold, τ, is the only parameter during the
1-bit quantization. Though a higher quantization threshold may reduce the impact of
environmental noise in low SNR regimes, it may lead to loss of useful-information since
larger fractions of the received signals are quantized to 0. On the contrary, a lower quanti-
zation threshold may lead to an increase of false alarm probability (FAP) and a decrease in
estimation accuracy.

In order to obtain appropriate quantization thresholds to minimize the number of
detection repetitions, Li, for different SNRs, we further introduce the SNR as a parameter
in simulation to characterize the connection between τ and Li. Our main idea is to perform
statistical experiments through Monte Carlo simulation. The process for selecting specific
quantization thresholds based on Monte Carlo simulation is demonstrated in Algorithm 2.
With Algorithms 1 and 2, we can exhaustively search for an appropriate quantization
threshold, τ, to minimize the required detection repetitions, Lmin, for a certain SNR via a
large mount of digital simulations, which satisfies

Lmin 6 [L1, · · · , Li, · · · , LN ], (11)

where Li is the number of detection repetitions when the quantization threshold is set as τi,
i ∈ {1, . . . , N}.

To the end, with aforementioned parameters and the minimum number of detection
repetitions, we can obtain the strongest AoA estimation results, θ̂k,l .
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Algorithm 1 Beam Searching for Strongest AoA Components Estimation

Require: Pre-designed analog beamforming vectors for the BS, fRF,k, k ∈ {1, . . . , N}
1: Initialize n = 1, ki,n = 0, the number of detection repetition L = 1, and trigger condition

v = 1
2: while v == 1 do
3: Search for M + 1 beam space
4: for i = 1 : M + 1
5: Receiving signal with fRF,i, for the i-th direction:
6: yk,i = f H

RF,k,ihkQusers(sk) + f H
RF,k,iz

7: Received signal after 1-bit quantization:
8: |ŷk,i| = sign[|yk,i| − τ]
9: if |yk,i| − τ > 0

10: ki,n = ki,n + 1
11: end
12: Calculation detection probability:
13: p̂i,n = ki,n/L
14: end
15: Sort the detection probability outputs [ p̂1,n, · · · , p̂M+1,n] in descending order and obtain

the ordered detection probability output vector as
[

p̂(1),n, · · · , p̂(M+1),n

]
, where p̂(i),n >

p̂(i+1),n, ∀i
16: Calculate the Wald-type confidence interval by Equation (9)
17: Reward function:
18: Case1: Low SNR regimes
19: if p̂(i),n > p̂(i+1),n
20: λ = λ + 1
21: if p̂(i),n − ζ(i),n > p̂(i+1),n + ζ(i+1),n
22: λ = λ + 1
23: end
24: end
25: Case2: Medium-to-high SNR regimes
26: if p̂(i),n > p̂(i+1),n
27: λ = λ + 1
28: end
29: Stop condition:
30: if λ > T
31: v = 0
32: end
33: Repetition calculation:
34: L = L + 1
35: end while

3.3. RMSE Performance Metric

To verify the estimation accuracy of our proposed algorithm, we use the RMSE of the
strongest AoA estimate as a performance metric. Meanwhile, the best achievable RMSE
estimation performance benchmark with fRF,k, k ∈ {1, . . . , N}, can be characterized by
deriving the approximated 1-bit CRLB with additive quantization noise model (AQNM) of
the antenna array [39].

The RMSE expression the AoA estimates can be represented as

RMSE =

√
1
n

n

∑
i=1

(θ̂k,i − θk)2, (12)

where θk represents the desired incidence strongest AoA component for the k-th user at
the BS, and θ̂k,i denotes the estimated result. The RMSE of the strongest AoA component
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estimation proposed in our algorithm is compared to that of conventional schemes in the
following simulation section.

Algorithm 2 Monte Carlo Simulation for Lmin

Require: Quantization threshold τ corresponding to Lmin for different SNRs
1: Initialize τ = 1, τm = 0.5, Lmin = 300, the number of Monte Carlo simulations

N = 50,000
2: low SNR regimes
3: A reasonable range for the quantization threshold
4: for τn = 0.3 : 0.01 : 1
5: Experiment with different noise distributions
6: for i = 1 : N
7: Run Algorithm 1 to obtain Li required for strongest AoA estimation for a certain τi in

case 1
8: end
9: Calculate the mean of Li with different noise distributions

10: Lave = 1
N

N
∑

i=1
Li

11: if Lave 6 Lmin
12: τ = τn
13: Lmin = Lave
14: end
15: end
16: end
17: Medium-to-high SNR regimes
18: for i = 1 : N
19: Run Algorithm 1 directly to obtain Li required for strongest AoA estimation for τm in

case 2
20: end

21: Lmin = Lave = 1
N

N
∑

i=1
Li

22: end

3.4. Approximated 1-Bit CRLB with AQNM

In this subsection, we detail the corresponding approximated CRLB of hybrid archi-
tecture with 1-bit A/Ds, which can be used as a reference benchmark [30,40,41].

For hybrid mmWave communication system equipped with ideal A/Ds, the received
signal follows a circularly complex Gaussian distribution, i.e., ŷi ∼ CN (a(θ)sk, σ2I). In
addition, we can obtain the array response for the m-th element of the ULA as follows

ȧm(θ) = ej2π d
λ m cos(θ)i2π

d
λ

m sin(θ), (13)

and

||ȧ(θ)||2 =
M−1

∑
m=0
|ȧm(θ)|2 =

(
2π

d
λ

sin(θ)
)2 M−1

∑
m=1

m2

=

(
2π

d
λ

sin(θ)
)2 M(M− 1)(2M− 1)

6
. (14)
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Hence, we can further calculate the Fisher Information Matrix (FIM) as

FIM =
2
σ2<

{
∂a(θ)sk

∂θ

(
∂a(θ)sk

∂θ

)H
}

= 2
P
σ2 ||ȧ(θ)||

2

= 2SNR
(

2π
d
λ

sin(θ)
)2 M(M−1)(2M− 1)

6
, (15)

where SNR = P
σ2 , and P = 1.

Based on the obtained FIM, the corresponding CRLB = 1
L·FIM expression for ideal

quantization can be expressed as

CRLB =
3λ2

4π2d2L sin2(θ)M(M−1)(2M−1)SNR
. (16)

Utilizing AQNM, we can further derive the approximation of CRLB for hybrid architecture
equipped with 1-bit A/Ds at transceivers [41], which is given by

CRLB1b =
1 + (1− η)SNR

η
CRLB

=
3λ2 + 1.0902λ2SNR

2.5464π2d2L sin2(θ)M(M− 1)(2M− 1)SNR
, (17)

where 1− η is the inverse of signal-to-quantization-noise ratio (SQNR) (approximately
η = 0.6366 for 1-bit quantization [42]). Hence, the obtained approximated 1-bit CRLB of
hybrid architecture can be used as a RMSE performance benchmark in simulations.

4. Simulation Results and Discussions

In this section, we verify the effectiveness of our proposed algorithms via simula-
tion results.

First, we demonstrate the relationship between the quantization threshold, τ, and the
minimum required number of detection repetitions, Lmin, for different SNRs. In addition,
we also illustrate the RMSE performance versus SNR with different detection repetitions
for different scenarios. Without further clarification, the detailed parameters in simulations
are set as follows: K-factor = 10, the number of RF-chains equipped at the BS is NRF = N,
the number of users, N = 5, the number of ULA antennas, M = 64, the reward function
threshold, T = 3, and the receive SNR before beamforming ranges from −25 dB to −5 dB.

Figure 2 illustrates the number of detection repetitions Lmin required for our proposed
beamforming direction search algorithm versus different quantization thresholds τ for
M = 64 in low SNR regimes. We also set α = 1.96 in Equation (9) to calculate the 95%
confidence intervals as a trade-off between estimation accuracy and overhead. According
to characteristics of mmWave communication systems, we choose SNR = −15 dB as the
conversion point, i.e., SNR 6 −15 dB will be considered as low SNR regimes.

In Figure 2, it can be seen that the the required Li changes with different τi for the
strongest AoA components estimation. Thus, it is interesting to choose a proper τ to
minimize the number of required detection repetitions Lmin via comprehensive Monte
Carlo simulations, which are illustrated in Table 1 for different SNRs with M = 64 antennas.
Meanwhile, according to the results presented in Table 1, we can note that both τ and Lmin
decrease with an increasing SNR.

Figure 3 illustrates the variation of τ versus SNR for different numbers of antennas,
e.g., M ∈ {16, 32, 48, 64}. We can observe that, τ decreases from 0.98 to 0.50 in low SNR
regimes. However, it stabilizes around 0.50 for medium-to-high SNR regimes, e.g., τ ≈ 0.50.
Furthermore, for a given receive SNR, the quantization threshold, τ, decreases with an
increasing number of antennas M as extra beamforming gain can be provided.
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Figure 2. A demonstration for quantization threshold, τ, and detection repetitions, L, versus SNR
[dB] with M = 64.

Table 1. The results of the Monte Carlo simulation for different SNRs.

Case 1: Low SNR Regimes

SNR [dB] −25 −24 −23 −22 −21 −20 −19 −18 −17 −16 −15
τ 0.98 0.89 0.80 0.89 0.78 0.72 0.64 0.61 0.57 0.55 0.54
Lmin 10.40 10.36 10.34 9.97 9.78 9.49 9.05 8.52 7.89 7.21 6.51

Case 2: Medium-to-High SNR Regimes

SNR [dB] −14 −13 −12 −11 −10 −9 −8 −7 −6 −5
τ 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Lmin 4.55 3.82 3.20 2.73 2.41 2.13 1.83 1.63 1.55 1.55

Figure 3. Quantization threshold, τ, versus SNR [dB] for different number of antennas.
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Based on simulation results given in Figure 3, we can further approximate the rela-
tionship between τ, SNR, and M as follows:

τ ≈


0.98, SNR < −19− M

8 ,
(−0.033− 24

125M ) · SNR + 48
25M , − 19− M

8 6 SNR 6 −7− M
8 ,

0.50, SNR > −7− M
8 .

(18)

We note here, results given in Equation (18) will be exploited in the following simulations.
Figure 4 compares the minimum number of detection repetitions, Lmin, obtained by

utilizing the proposed algorithm with that of the conventional exhaustive search algorithm
for M = 64. It is clear that our proposed algorithm can significantly reduce the required
number of detection repetitions in the low SNR regime, which verifies the effectiveness of
our proposed algorithm.

Figure 4. Comparison of the minimum number of detection repetitions between our proposed
method and the exhaustive search algorithm, M = 64.

In Figure 5, the strongest AoA estimation performance of our proposed algorithm is
compared with that of the exhaustive search algorithm using RMSE as the performance
metric for different scenarios in the scattering environment, e.g., θ1 = π

3 and θ2 = 103π
180 . It

is interesting to see that our proposed algorithm works well for multi-path scenarios. The
numbers of detection repetitions required for these two algorithms are presented in Figure 4.
It can be observed that our proposed algorithm can have a slightly higher performance in
terms of strongest AoA estimation while consuming a much smaller number of detection
repetitions in low SNR regimes. In addition, the strongest AoA estimation performance
of these two algorithms converge in medium-to-high SNR regimes. As expected, the
performance of these two different algorithms approach to 1-bit CRLB with an increasing
SNR, which is appropriated by using AQNM.

Meanwhile, in Figures 6 and 7, we calculate the performance of strongest AoA estima-
tion with different conventional schemes for the single-path scenario for different numbers
of antennas M, e.g., 1-bit CRLB appropriated by using AQNM and 1-bit FFT.
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(a) RMSE vs SNR, M = 64, θk = π
3 .

(b) RMSE vs SNR, M = 64, θk = 103π
180 .

Figure 5. RMSE [rad] performance versus different SNRs [dB] for different scenarios.
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(a) L vs SNR, K-factor = 10000, M = 10.

(b) RMSE vs SNR, K-factor = 10000, M = 10, θk = π
3 .

Figure 6. (a) The number of detection repetitions required for different algorithms versus different
SNR for M = 10; (b) RMSE [rad] versus different SNRs for M = 10 with our proposed beamforming
direction search algorithm, the exhaustive search algorithm and 1-bit FFT.
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(a) L vs SNR, K-factor = 10000, M = 30.

(b) RMSE vs SNR, K-factor = 10000, M = 30, θk = π
3 .

Figure 7. (a) The number of direction repetitions required for different algorithms versus different
SNRs for M = 30; (b) RMSE [rad] versus different SNRs for M = 30 with our proposed beamforming
direction search algorithm, the exhaustive search algorithm and 1-bit FFT.

Figures 6b and 7b compare the strongest AoA estimation performance of our proposed
algorithm with that of the exhaustive search algorithm and research results from work [30]
(Yoffe I et al.). The numbers of detection repetitions, Lmin, required for the strongest AoA



Sensors 2022, 22, 3140 14 of 16

estimation of these three algorithms are presented in Figures 6b and 7a (In work [30], L̃min
required by utilizing 1-bit FFT is fixed to 10.). It can be observed in Figures 6b and 7b that
our proposed algorithm can effectively reduce the estimation overhead while maintaining
a reasonable estimation performance when the number of antennas is small. It can also be
observed that our proposed algorithm can have a slightly higher performance in terms of
strongest AoA estimation compared to 1-bit FFT algorithm in low SNRs. In the medium-
to-high SNR regime, although our proposed algorithm is inferior with the 1-bit FFT in
terms of RMSE performance, the detection repetitions required of our proposed algorithm
is significantly smaller.

5. Conclusions

In this paper, we proposed a novel strongest AoA estimation algorithm for hybrid
mmWave communication equipped with 1-bit A/Ds at transceivers. The proposed al-
gorithm aims to estimate the strongest AoA components while reducing the number of
detection repetitions as much as possible. We conducted Monte Carlo simulation exper-
iments to obtain appropriate quantization thresholds for different SNRs and different
number of antennas M. With appropriately designed quantization thresholds, we further
investigated the RMSE performance of the strongest AoA estimation of our proposed
algorithm and compared to different schemes via simulations, e.g., 1-bit FFT, 1-bit CRLB,
and the exhaustive search algorithm. Comprehensive simulation results verified that our
proposed algorithm can significantly reduce the estimation overheads while maintaining
the estimation performance of strongest AoA components in low SNR regimes.
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