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Abstract: A non-contact, non-invasive monitoring system to measure and estimate the heart and
breathing rate of humans using a frequency-modulated continuous wave (FMCW) mm-wave radar
at 77 GHz is presented. A novel diagnostic system is proposed which extracts heartbeat phase signals
from the FMCW radar (reconstructed using Fourier series analysis) to test a three-layer artificial neural
network model to predict the presence of arrhythmia in individuals. The effect of person orientation,
distance of measurement and movement was analyzed with respect to a reference device based on
statistical measures that include number of outliers, mean, mean squared error (MSE), mean absolute
error (MAE), median absolute error (medAE), skewness, standard deviation (SD) and R-squared
values. The individual oriented in front of the radar outperformed almost all other orientations for
most distances with an expected d = 90 cm and d = 120 cm. Furthermore, it was found that the heart
rate that was measured while walking and the breathing rate which was measured for a motionless
individual generated results with the lowest SD and MSE. An artificial neural network (ANN) was
trained using the MIT-BIH database with a training accuracy of 93.9 % and an R2 value = 0.876. The
diagnostic tool was tested on 15 subjects and achieved a mean test accuracy of 75%.

Keywords: mm-wave radar; artificial neural network; vital signs; machine learning

1. Introduction

Developing continuous vital sign monitoring systems has been identified by healthcare
institutes as necessary to safeguard the health of seriously ill patients or infants in hospitals
or at home [1–4]. Current systems of monitoring heart rate variability (HRV) involve the
usage of electrocardiography (ECG) electrodes, pulse oximeter, photoplethysmography
(PPG) and wearable devices such as the OMRONTM 10 series. Breathing rate is measured
manually using a timer or using oronasal sensors, which measure fluctuations in air
pressure due to respiration [5]. These traditional methods can be inaccurate due to random
body movements (RBM) and can cause discomfort for users, especially when used for
ambulatory monitoring. Recently, radar-based solutions have been proposed for non-
contact measurement of heart rate and respiration rate. The most popularly used radars
include continuous-wave (CW) Doppler radars [6–11], impulse radio ultra-wideband
(IR UWB) radars [12,13] and frequency-modulated continuous wave (FMCW) Doppler
radars [14–17]. Lazaro et al. [18] presented a feasibility study on an IR-IWB radar-based
vital sign monitoring system. However, the weak heart signal was difficult to isolate from
external noise, respiratory harmonics and third-order intermodulation products, which can
lead to inaccurate heart rate readings. In [19], a novel radar hardware system is proposed
that utilizes a sweeping correlation method, which applies a small-frequency difference
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to the received impulse train, thereby increasing repetition frequency and measurement
accuracy. However, the proposed method has only been used to detect respiratory waves.
Additionally, IR UWB radars have long been used in several wireless sensing use cases,
such as people counting and detection [20], human detection through walls [21], home
monitoring and remote care systems [22] and classification of humans and animals based
on vital signs [23]. Since the power transmitted by the pulse (the IR-UWB radars transmit
multiple short Gaussian pulses without a carrier frequency) increases the signal-to-noise
ratio, it also necessitates a high-frequency analogue-to-digital converter (ADC), which
increases the cost, power consumption and complexity of design [24]. CW radars are
only capable of detecting relative displacements using phase differences; hence, they are
incapable of localizing objects when multiple moving objects are around. However, FMCW
radars are capable of localizing objects based on changes in frequency and phases between
transmitted and received chirps [25,26].

FCMW radars overcome the shortcomings of CW radars, as extremely high frequency
(EHF) radar systems operating in the 110–300 GHz frequency band can detect displacements
in the order of cm-mm and become absorbed on the skin of an individual without causing
any harmful biological effects [27,28]. Moreover, the MIMO antenna framework allows
us to localize multiple targets; hence, we are able to monitor multiple moving targets
simultaneously using beamforming techniques [17]. In [29], a TI-AWR1443 FMCW radar
operating in the 77 GHz band is utilized to detect vital signs for a person lying on a bed
using the phase-unwrapping algorithm proposed in [30]. It was found that the regression
coefficient values of BR and HR values were 0.883 and 0.64 when compared to the reference
hexoskin contact sensor [31].

In most studies, radars are solely used for monitoring heart rate and breathing rate.
In this work, we used a three-layered artificial neural network to predict the onset of
arrhythmia based on statistical features extracted from the phase signals of a localized
range bin using an FMCW radar. Additionally, a signal reconstruction module is proposed
that helps generate phase signals with higher signal-to-noise ratio (SNR) values. The
radar was also tested in comparison to a reference device, i.e., OMRON, to analyse and
compare the effect on vital signs’ detection due to varying person orientation, distance of
measurement and random body movements.

This paper is organized as follows. In Section 2, the mathematical background, al-
gorithmic workflow of the system and the proposed prediction flow for arrhythmia are
described. The results of the experiments are discussed in detail in Section 3. Finally, the
advantages and potential future work is outlined in Section 4.

2. Materials and Methods

The system setup consisted of Texas Instrument (TI) IWR1443BOOST FMCW radar-
based evaluation module, Omron device connected to a personal computer (PC) as shown
in Figure 1. TI IWR IWR1443BOOST operates in the 76–81 GHz band with 3 transmitting
antennas and 4 receiving antennas.
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Figure 1. Schematic of the proposed mm-wave radar system: an mm-wave radar is fixed at front of
the subject while an Omron sphygmomanometer is attached, which simultaneously extracts pulse
readings for verification. The radar data are recorded on a PC through a USB connection.

2.1. FMCW Radars

Frequency-modulated signals are robust against additive noise such as thermal noise
unlike amplitude-modulated waves. In [17], FMCW transmitted and received chirps were
modelled as increasing ramp functions as shown in Figure 2. The transmitted signal is
given by:

xT(t) = AT cos
(

2π fct + π
B

TC
t2 + θ(t)

)
(1)

where AT , fc, B, TC are the amplitude of the transmitted signal, chirp start frequency and
bandwidth of chirp and chirp duration, respectively.
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Since we are measuring vital signs of a single target within the field of view, we assume
a single reflection model where the received chirp given by Equation (2) is scaled by factor
β and time shifted by τ.

xR(t) = βAT cos
(

2π fc(t − τ) + π
B

TC
(t − τ)2 + θ(t − τ)

)
(2)

Here, τ = 2R(t)/c is the time delay from the subject. R(t) is the time-dependent
radar range.

The intermediate frequency signal after I/Q mixing is approximated as

y(t) = PRej(2π[ B
TC

τ]t+2π fcτ+π B
TC

τ2+∆θ(t)

≈ PRej(2π fbt+2π fcτ)
(3)

where beat frequency fb = B
TC

τ, ∆θ(t) is residual phase noise, which can be neglected
for our short range (<1.5m) detection experiments due to the range correlation effect [32].
Additionally, the additional term π B

TC
τ2 is negligible, so it can be neglected. Hence, the IF

signal for the kth ADC sample and lth chirp is given by:

y(k, l) = PRej(2π fbkTf +
4π
λ R(kTf +lTs)) (4)

where PR, fb, Tf , Ts are the received signal power, beat frequency, sampling time of fast-time
axis and sampling time of slow-time axis, respectively. To improve the angular resolution, a
time division multiplex multiple-input multiple-output (TDM-MIMO) radar system is used
that consists of 2 transmitting and 4 receiving antennas. Since dm � R(t) and assuming
a planar wavefront, the received wave must travel an additional distance of dm sin Θ as
shown in Figure 3.
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Thus, an additional phase shift between the receivers and the beat signal is given by:

y(k, l) = PRej(2π fbkTf +
4π
λ R(kTf +lTs)+

2πdm sin Θ
λ ) (5)

where the receiving antennas are dm distance apart. Hence, the phase shift at mth receiver
is given by:

Φm =
4πR

(
k Tf + lTs

)
λ

+
2πdm sin Θ

λ
(6)
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As we measure displacements of < 5 mm, frequency < 2 Hz and a single target in the
same range bin, there would be no change in phase across the fast-time axis, i.e., phase
change will be constant. Therefore, R

(
k Tf + lTs

)
≈ R

(
k Tf

)
+ R(lTs) gives us:

Φm =
4πR

(
k Tf

)
λ

+
4πR(lTs)

λ
+

2πdm sin Θ
λ

(7)

Φm = ΦTf +
4πR(lTs)

λ
+

2πdm sin Θ
λ

(8)

where ΦTf is constant. We are mainly concerned with phase changes along the slow-time
axis. However, changes in ΦTf can adversely affect our results so all our experiments
(except Section 3.3) were carried out for stationary subjects only.

2.2. Process Flow for the Detection of Vital Signs

The process flow for the detection of the vital signs is shown in Figure 4. As described
in [17], each chirp signal sampled at the beat frequency fb is converted to a complex range
profile by applying the range fast Fourier transform (FFT). Range profiles of multiple chirp
signals are stacked on top of each other and converted into a matrix with i number of rows
(fast time samples) and j columns (slow-time samples). As summarized in Table 1, the
slow-time axis rate is 20 chirps/sec where the duration of the chirp is 50 µs. Since vital
signs are detected for a stationary person, the phase change across the slow-time axis is
extracted from a single range bin. The phase-unwrapping algorithm is then implemented
to unwrap the phase beyond (−π, π).
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Table 1. Vital signs measurement parameters.

Parameters Value

Starting frequency 77 GHz
Slow axis sampling 20 Hz (chirps/s)

Chirp duration 50 µs
ADC sampling rate 2 Msps

Range resolution 4.3 cm
Transmitted power 10 dBm

Next, the phase values are filtered using a serially cascaded Bi-Quad Infinite impulse
response (IIR) filter into the cardiac frequency spectrum of (0.8–2) Hz and the breathing
frequency spectrum of (0.1–0.5) Hz. The motion denoising module computes the energy of
the waveform for a window size of 1 sec and discards the windowed waveform if it exceeds
a threshold of Eth = 0.04. The maximum and minimum peak-to-peak distance threshold is
automatically computed based on the mean of all distances. A peak is rejected if it is out of
1 standard deviation from the mean. Finally, the breathing rate and heart rate are computed
based on the frequency of filtered peaks within their respective frequency spectrums as
mentioned earlier. Additionally, for our experiment, we propose a QRS complex generation
module, which extracts the signal peaks and base period of the heartbeat phase signal to
mimic QRS-based radar heartbeat signals using Fourier series representation of triangular
waveforms, thus eliminating signal overshoots, aperiodicity and improving the SNR value
of the extracted signal as described in the next section. The QRS complex refers to a
combination of Q, R and S waves, which represent the ventricular depolarization of the
heart. The QRS complex is the most vital part of an ECG signal because it contracts the
ventricles as the oxygenated blood from the left ventricle is pumped out from the heart to
other parts of the body, which corresponds to maximum electrical activity (highest voltage
amplitude). Our proposed system detects R peaks that have the largest amplitude within a
QRS complex to extract statistical features based on the peak-to-peak interval (RR interval)
of the ECG signal sequence.

2.3. Heartbeat Signal Generation

An ECG signal is a periodic wave signal that satisfies the Dirichlet conditions. It can
be modelled as a combination of scaled amplitude and multiples of fundamental frequency
of sinusoidal and cosine functions using Fourier series expansion. The QRS components
can be modelled by a symmetric triangular wave function as shown in Figure 5. Consider
the even symmetric triangular wave function given by (9):

f (t) =

{
− BAt

T + A, 0 < t < T
B

BAt
T + A,− T

B < t < 0
(9)

where T is the time period, A is the amplitude, and B is the factor which determines the
QRS interval.
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Since f (t) is an even function, bn = 0. Fourier series coefficients are formulated as:

ao =
1
T

∫ T

−T
f (t)dt =

2
T
B

∫ T
B

0
−BAt

T
+ A dt =

A
B
(2 − B) (10)

an =
2B
T

∫ T
B

0
f (t) cos(nwt)dt =

2B
T

∫ T
B

0
−BAt

T
+ A· cos(nwt)dt =

2BA
n2π2 ·

(
1 − cos

(nπ

B

))
(11)

Hence, Fourier series coefficients can be substituted in (12).

f (x) =
a0

2
+

∞

∑
n=1

an cos
(nπx

T

)
(12)

where n = 1, 2, 3, . . . which is the multiple of fundamental frequency.

2.4. Arrhythmia Detection Using Neural Networks

This work proposes a cardiac disorder diagnostic scheme using a 3-layer neural net-
work model. The model is trained using ECG signals which lie in the frequency range
0.05~100 Hz, and its maximum amplitude is 5 mV. ECG signals are extracted using elec-
trodes mounted on the body. Hence, some artifacts are filtered out before statistical features
can be extracted from the ECG signal database. Artifacts include but are not limited to
muscle tremor, electromagnetic interference (EMI) and base-line wander. Muscle tremor
artifacts caused due to shivering or sudden body movements (usually in the elderly) are
high-frequency signals at 30~300 Hz that are removed by Butterworth low-pass filters. The
50 Hz electromagnetic interference is suppressed by a Butterworth band-stop filter. Lastly,
baseline wander is an ultra-low frequency signal that ranges between 0 and 0.8 Hz that can
be eliminated using a high-pass filter.

As outlined in Figure 6, after filtering out low- and high-frequency noise, R peaks
are detected as shown in Figure 7. The non-rhythmic ECG can be detected by extracting
RR-interval-based features that include:

Average RR interval µRR =
∑n

i=1 RRi

n
(13)

Normalized maximum difference =
max(RR)− min(RR)

µRR
(14)

Root mean square of successive difference RMSSD =

√
∑n

i−2 (RRi − RRi−1)
2

n − 2
(15)

Coefficient of variation =
σRR
µRR

(16)

Normalized absolute deviation =
∑n

i=1
RRi−µRR

µRR

n
(17)

In addition to the above features, age and gender are included as training features. The
dataset is then trained using a 3-layer neural network as described in Table 2, which consists
of 8 and 16 neurons in the input and hidden layer, respectively. Weights are randomly
initialized from the normal distribution function, and sigmoidal activation function is used.
The mean square error is the loss function employed, which is backpropagated using the
Levenberg–Marquardt algorithm to train the weights.
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mounted on the body. Hence, some artifacts are filtered out before statistical features can be ex-
tracted from the ECG signal database. Artifacts include muscle tremor, electromagnetic interference
(EMI) and base-line wander. Muscle tremor artifacts caused due to sudden body movements are
high-frequency signals (30~300 Hz) that are removed by Butterworth low-pass filters. The 50 Hz
electromagnetic interference is suppressed by a Butterworth band-stop filter. Baseline wander is an
ultra-low frequency signal that ranges between 0 and 0.8 Hz that can be eliminated using a high-pass
filter. Finally, the resultant R peaks of a QRS complex are detected, and only RR interval-based
features are extracted since the radar-generated heartbeat phase signals are QRS equivalent signals.
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Table 2. Model architecture where Kfold = 5, random seed = 42, loss function = MSE,
optimizer = Levenberg–Marquardt algorithm, momentum = enabled, early stopping = 10 rounds,
autotuning objective function = MSE, autotuning algorithm: grid search, BatchNorm = disabled.

Autotuned Parameters Value

Input dense layer 8 nodes
Hidden dense layer 16 nodes
Output dense layer 1 node

Learning rate 0.01
L1 Regularization 0
L2 Regularization 0

Epochs 10

After peak detection of heartbeat phase signals obtained from the radar, training
features given by (13)–(17) are extracted to test the trained model. Since we do not have a
readily available radar-based signal database, it is important to note that we have restricted
the application of our experiments solely to healthy individuals. However, to test the model
for positive cases of arrhythmia, unseen signals from the MIT-BIH Arrhythmia dataset
were used.

3. Results and Discussion

Our experiments were carried out using TI’s IWR1443BOOST FMCW radar-based
evaluation module (EVM), which operates in the 76–81 GHz band with a total bandwidth of
4 GHz. The range profile, chest displacement, heartbeat and respiratory phase differences
in addition to the heart rate (HR) and breathing rate (BR) values were displayed on a
graphical user interface (GUI) designed using MATLAB R2020a. The radar was placed
some distance apart in front of an individual, directly pointed towards their chest. Each
observation lasting 25.6 s consisted of 128 data samples. Before we tested the radar for
arrhythmia detection, the effect of orientation, distance from radar and movements were
analysed and reported.

3.1. Measured Data Validation

Firstly, the heart rate values of the radar were validated based on their deviation from
the HR values from our reference cuff-based OMRON device. The radar was placed 50 cm
away from the individual and 20 observations were registered, i.e., for every 128 data
samples generated by the radar, a corresponding OMRON HR value was registered. After
every observation, 1 min of resting time was allotted before another observation was taken.
The validation was evaluated based on the metrics described in Table 3. It was observed
that the mean HR values were almost same for both the devices. The variance and standard
deviation values of HR obtained by the OMRON device were lower than those of the radar.
However, it is worth noting that the mean absolute error was only 3.85, i.e., HR values
estimated by the radar only deviated by nearly ±4.

Table 3. Evaluation metrics to compare cuff-based and radar-based HR monitoring.

Metric OMRON Radar

Avg HR 74 74
Variance 13.95 8.5
STD 3.83 2.99
R2 0.164
Root mean square error (RMSE) 2.81
Mean absolute error (MAE) 1.9
Median absolute error (MedAE) 2
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3.2. Effect of Orientation and Distance on Measurement

The radar was tested for different orientations, namely, front, back, right and left. For
each orientation, the individual was seated in a stationary position at different distances
away from the radar at 30, 60, 90, 120 and 150 cm. The 10 observations for HR and BR
values were recorded for each orientation at varying distances. The number of outliers,
mean, MSE, MAE, medAE, skewness and standard deviation were estimated to analyse the
effect of orientation and distance. As shown in Table 4, boxes highlighted in orange and
green are the best values obtained for HR and BR, respectively. The following observations
were made:

• Range = 30 cm: As highlighted in green, the number of outliers for front and back were
nil, while for right and left orientations the outliers had the greatest values. HR values
(highlighted in yellow) when estimated in the front faired the best while analysis
shows that BR was least skewed when obtained on the right side with minimized MSE
and SD.

• Range = 60 cm: Again, the number of outliers for the front and back were nil while
both the right and left suffered maximum skewness. The MSE and SD values of HR
and BR were the least for the front, which performed the best.

• Range = 90 cm: Front and back orientations produced better results in terms of
minimum outliers and lower SD values with an exception for the left position, which
minimized skewness better.

• Range = 120 cm: Following the previous trend, right and left orientations produced
poor results with the maximum number of outliers and highly skewed data. Again,
individuals oriented in front of the radar outperformed other orientations.

• Range = 150 cm: We observed that some of the HR and BR values were estimated to
be 0 as the radar was unable to pick up any chest displacements when the person was
seated to the left or right. This is reflected in the analysis, which shows the presence of
outliers and maximum skewness and SD.

Table 4. Statistical evaluation of effect of orientation and distance on measurement.

Distance
(cm) Orientation Vital

Sign
Upper
Bound

Lower
Bound Outliers Mean MSE MAE medAE SD

30

front
HR 85.375 78.375 0 81.8 0.296 2.1 2 1.8
BR 13.25 7.25 0 10.6 0.124 0.96 0.9 1.2

right HR 87.375 58.375 0 72.3 3.741 4.9 4 6.4
BR 8 8 3 8.1 0.029 0.36 0.1 0.6

left
HR 86.625 57.625 0 72.4 2.904 4.6 4 5.7
BR 10.5 6.5 2 9.7 1.061 2.12 1.5 3.4

back
HR 90.75 58.75 0 75.6 2.704 4.24 5 5.5
BR 32.75 0.75 0 17.6 3.424 4.76 3.9 6.2

60

front
HR 92.125 67.125 0 80.1 3.129 4.46 4 5.9
BR 14 6 0 10.4 0.144 1.12 1.4 1.3

right HR 103.25 39.25 0 72 9.6 8.8 8.5 10
BR 15.875 4.875 1 10.7 0.701 2.24 1.7 2.8

left
HR 91 63 1 76 4.42 5.2 4 7
BR 19.625 2.625 1 11.9 2.009 3.66 2.9 4.7

back
HR 81.75 67.75 3 74.1 4.269 4.7 2 6.9
BR 29.5 3.5 0 16.5 1.905 3.9 3.5 4.6

90

front
HR 89.5 63.5 0 75.5 3.285 4.6 4 6
BR 10.5 6.5 1 8.8 0.076 0.64 0.5 0.9

right HR 91.375 54.375 1 72.2 6.956 6.6 4.7 8.8
BR 16.5 4.5 2 12.9 4.649 5.24 3.9 7.2

left
HR 94.375 63.375 0 78.6 3.004 4.92 3.6 5.8
BR 24.75 −3.25 1 12.1 7.029 6.54 4.6 8.8

back
HR 86.125 61.125 0 73.7 1.721 3.5 3.3 4.4
BR 30.375 −4.625 0 13.2 1.996 3.76 4.8 4.7
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Table 4. Cont.

Distance
(cm) Orientation Vital

Sign
Upper
Bound

Lower
Bound Outliers Mean MSE MAE medAE SD

120

front
HR 104.25 56.25 0 78.6 8.624 7.72 5.1 9.8
BR 14 6 0 9.9 0.129 1.1 1.1 1.2

right HR 86.375 55.375 0 71.5 2.705 4.4 3.5 5.5
BR 19.5 1.5 0 11 1.5 3.4 3 4.1

left
HR 93.5 57.5 1 73.7 9.841 7.42 5.5 10
BR 23.25 −0.75 2 12.9 5.169 5.86 4.4 7.6

back
HR 87.875 52.875 0 69 4.56 5.4 5.5 7.1
BR 36.25 −5.75 0 15.2 2.636 4.6 5.8 5.4

150

front
HR 88.875 63.875 0 75.9 1.949 3.88 3.5 4.7
BR 12.75 6.75 0 9.6 0.144 1.04 0.6 1.3

right HR 87.125 54.125 1 70.8 8.296 7.4 4.5 9.6
BR 19.875 −9.125 0 7.3 3.041 4.44 4.5 5.8

left
HR 92.375 61.375 1 74.8 6.056 5.96 5 8.2
BR 31.25 −18.75 0 7.9 6.509 6.5 7 8.5

back
HR 91.25 57.25 0 73.7 2.721 4.7 4.5 5.5
BR 34.625 −2.375 0 16.8 5.156 6.16 5 7.6

To summarize, the results statistically prove that the left and right orientations are
unsuitable for monitoring HR and BR. The radar performed well for the front and back ori-
entation. However, the maximum range for monitoring an individual should be restricted
to 120 cm as the problem of missing data arises beyond this range.

3.3. Effect of Movements on Measurement

The radar was placed at multiple distances from the individual, who was made to walk
on a treadmill at 4.8 kmph (lowest speed). After one observation, a 1 min resting period
was taken, after which the radar recorded the HR and BR values for the same individual
while standing. The process was continued for nine more observations. As shown in
Table 5, boxes highlighted in orange and green are the best values obtained for HR and BR,
respectively. Based on the statistical analysis, the following observations were made:

• Range = 20 cm: The HR values while walking produced better results than standing
as it generated no outliers and lesser standard deviation. While standing, the number
of outliers, SD and MSE was lesser than that of values obtained when walking.

• Range = 40 cm: In this case, for both BR and HR, it is quite clear that best results were
obtained when the person was standing.

• Range = 60 cm: Surprisingly, this range was observed to be the optimal distance for
monitoring a moving person. The number of outliers was 0, and values were less
skewed. Though BR values while walking had a higher deviation, it is important to
note that the skewness value was almost negligible.

To summarize, we observed that the sensor could perform efficiently in generating
low-skewed HR and BR values at a range of 60 cm when the person was moving. At
range = 20 cm, results were inconclusive as one of the vital signs performed poorly for
each activity. However, when patients moved to an optimum measuring distance of 40 cm,
it became clear that individuals achieved better test results while standing without any
movements as their MSE, MedAE, SD and skewness were lower.
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Table 5. Statistical evaluation of effect of movement.

Distance
(cm) Activity Vital

Sign
Upper
Bound

Lower
Bound Outliers Mean MSE MAE MedAE SD

20
standing HR 74.88 71.88 4 72 62.8 5.4 1.5 8.35

BR 10.5 6.5 1 9 1.04 0.8 0.6 1.07

walking HR 85.5 59.5 0 73 14.6 3.48 3.5 4.03
BR 28.88 3.875 2 18 52.3 5.68 4.4 7.62

40
standing HR 77.5 65.5 0 72 6.56 2.2 1.8 2.7

BR 16.13 3.125 1 11 18.6 3.32 2.8 4.54

walking HR 74.5 62.5 2 70 23.7 3.36 2.1 5.13
BR 34.5 −3.5 0 17 49.6 5.4 4.5 7.42

60
standing HR 88 64 2 74 38.4 4.84 4.2 6.53

BR 16.5 4.5 1 11 13.8 2.56 2 3.92

walking HR 81.88 68.88 0 75 10.5 2.66 1.9 3.41
BR 29.63 0.625 0 14 23 3.88 4.5 5.06

3.3.1. Validating Heart Rate Values during Movement

To make the performance analysis clearer, the HR values measured while standing and
walking were compared to our reference OMRON device as described in Table 6. Where,
the orange background indicates best HR values. After taking HR values for both scenarios,
1 min of resting time was given followed by measurement using OMRON. Hence, all
measurements were taken with equal amounts of resting time.

Table 6. Performance analysis of heart rate with respect to Omron device.

Distance Activity Vital Sign Mean MSE MAE medAE SD R Square

20
standing HR 72 97.61 7.72 4.9 8.353 0.285137
walking HR 73 42.73 5.3 3.9 4.033 0.6193151

40
standing HR 72 43.77 6.1 5.9 2.7 0.833473
walking HR 70 84.53 8.22 7.9 5.131 0.688605

60
standing HR 74 55.17 5.36 2.5 6.529 0.2274384
walking HR 75 18.33 3.22 1.9 3.414 0.3641268

As discussed before, HR values for the 40 cm range performed as expected, and MSE,
MAE, medAE and SD values were lower and hence better than OMRON. It is now clearly
observed that walking produced better results for the 20 cm and 60 cm range, which was
previously inconclusive. Furthermore, a higher coefficient of determination (R-squared)
proves that the radar can detect HR values which better fit the regression line. Here, R-
squared value refers to the percentage of variation in the OMRON device’s HR readings
that the radar can collectively explain as defined in (18)

R2 = 1 −
SSreg

SStot
= 1 − ∑i(yi − ŷ)2

∑i(yi − y)2 (18)

where SSreg is the residual sum of squared errors, SStot is the total sum of squared errors,
yi is a radar HR observation, ŷ is the corresponding OMRON reading, and y is the mean of
all radar observations.

3.3.2. Validating Breathing Rate Values

Table 7 clearly concludes that BR values were best when a person was standing without
making any movements for all distances measured in our experiment.
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Table 7. Performance analysis of breathing rate (with and without moving).

Distance Activity Vital Sign Mean MSE MAE medAE SD

20
standing BR 9 1.04 0.8 0.6 1.07497
walking BR 18 52.29 5.68 4.4 7.62234

40
standing BR 11 18.56 3.32 2.8 4.54117
walking BR 17 49.6 5.4 4.5 7.42369

60
standing BR 11 13.81 2.56 2 3.9172
walking BR 14 23.04 3.88 4.5 5.05964

Hence, Tables 6 and 7 show that HR values recorded during movements had better
correlation with the reference device while BR values had large deviations from the mean.
Since our radar measurement system only measures phase change within the same range
bin, it is possible that bodily movements induced a change in the phase along the fast-time
axis. Hence, phase changes due to breathing chest displacements (0.1–0.6 Hz) was easily
discarded as noise.

3.4. Signal Processing and Arrhythmia Detection
3.4.1. ECG Signal Processing

The MIT-BIH normal sinus dataset [33] consists of 18 single-lead ECG recordings,
which includes five men between the age of 26 and 45 and women between 20 and 50.
The MIT-BIH arrhythmia dataset [34] consists of two-lead ECG recordings of 47 subjects.
Of the 47 readings, 15 readings were selected for training the ANN model. Both sets of
signals were 10 s long, and each sample was subtracted by the baseline, whose result was
divided by the gain. The signal specifications of the generated dataset are outlined in
Table 8. Outputs of the signal processing steps as described in the previous section are
plotted in Figure 6.

Table 8. ECG signal specifications of the training dataset.

Specifications Normal Sinus Dataset Arrhythmia Dataset

Sampling frequency (Hz) 128 360
Number of samples 1280 3600

Gain (adu/mV) 200 200
Baseline 0 1024

The peak-to-peak interval-based features were estimated using (13)–(17) to create the
training set, which consists of 33 training examples. The data are split 70–30, i.e., 70%
training, 15% validation and 15% test data for 10 epochs. The confusion plot in Figure 8
reveals that out of the 33 training examples, 18 were true negatives (TN), 2 false positives
(FP), 13 true positives (TP) and 0 false negatives (FN).

Figure 9 depicts the gradual minimization of mean square error (MSE) during training.
It was found that at the third epoch, MSE was minimized to 0.025 during validation.
Figure 10 shows that the gradient value gradually decreased to nearly 0 at epoch nine,
which signifies that the weights cannot be trained further.

The µ value (momentum) was reduced gradually to adaptively decrease the value of
the gradient. To prevent the model from gradient overshooting, the momentum should
reduce the rate at which the gradient value decreases when the MSE is approaching
local minima.
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3.4.2. Radar Heartbeat Signal Processing

The periodogram in Figure 11 signifies that the signal consisted of components in the
frequency range 0.6–2 Hz.
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However, the exact frequency at which the maximum power was estimated was
unclear. Since our training dataset was formed based on-RR interval-based features only
and the R peak amplitudes, while modelling our radar signal (as described in Section 2),
we can simply set each phase value equal to its mean. Hence, only the time duration of
each peak phase value was extracted.
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A total of 100,000 data samples were utilized to model each triangular wave com-
ponent. For the input radar signal as shown in Figure 12, n peaks were detected; hence,
there were 100,000 × n data samples. Therefore, the sampling frequency was set as
Fs = 100,000×n

25.6 s Hz. The signal was then down sampled to the desired sampling frequency,
Fs = 5 Hz. The periodogram of the modelled signal as shown in Figure 13 clearly shows that
the power spectral density (PSD) lay at frequency = 1.133 Hz, which lies within the expected
frequency range of a heartbeat phase signal, i.e., 0.8–2 Hz. Hence, a well-constructed signal
was generated whose peak values can be easily detected for testing the trained arrhythmia
detection model.
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3.4.3. Arrhythmia Detection Test

The trained neural network model was tested on unseen data generated by eight
individuals. For every subject, 10 sets of observations were taken from the radar, and
further peak-interval-based statistical features were extracted. The results are summarized
in Table 9. However, it is important to note that our experiments were limited to testing
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only healthy individuals. The remaining seven subjects were tested on unseen ECG data
from the MIT-BIH Arrhythmia Database.

Table 9. Testing accuracies of 15 subjects: the average test accuracy was estimated to be 75% for
15 subjects. The coefficient of determination of 0.876 for the trained dataset is justified.

Subject ID Age Gender Testing
Accuracy Predicted Actual False

Positives

1 22 male 60% Normal Normal 4
2 24 male 90% Normal Normal 1
3 23 male 60% Normal Normal 4
4 30 female 80% Normal Normal 2
5 20 male 100% Normal Normal 0
6 25 male 60% Normal Normal 4
7 50 female 90% Normal Normal 1
8 45 female 100% Normal Normal 0
9 68 male 60% Arrhythmia Arrhythmia 4
10 69 male 80% Arrhythmia Arrhythmia 2
11 69 male 70% Arrhythmia Arrhythmia 3
12 51 female 20% Arrhythmia Arrhythmia 8
13 83 female 80% Arrhythmia Arrhythmia 2
14 51 male 80% Arrhythmia Arrhythmia 2
15 63 female 90% Arrhythmia Arrhythmia 1

4. Conclusions

An mm-wave FMCW radar-based non-contact vital signs monitoring system was
implemented that continuously monitors the heart and respiratory rate. Based on the
experiments carried out using the system, it was found that HR values estimated by
the radar only deviated from our reference device by ±4. The effect of orientation and
distance was statistically analysed (using number of outliers, SD, MSE and skewness) based
on HR and BR values, and conclusive results show that right and left orientations were
unsuitable for monitoring and the distance of measurement should be restricted to 120 cm.
Furthermore, experiments on the effect of movement interestingly revealed that the HR
recorded while walking had a better overall performance (in terms of MSE, SD, R-squared)
than those recorded while the individual was stationary with respect to the reference device.
However, standing in a stationary position is more favourable while recording breathing
rates. To improve the overall reliability of arrhythmia detection, the heartbeat signal was
rectified by representing them as triangular wave functions using Fourier series expansions.
The resulting signals of the improved SNR value was then utilized to test an ECG-trained
neural network model whose training features are statistical metrics based on RR-interval
values. A 75% mean test accuracy was obtained for 15 observations that classify whether
the heartbeat signals from a test subject were positively or negatively cardiac arrhythmic.
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