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Abstract: The irregular pressure exerted by a prosthetic socket over the residual limb is one of the
major factors that cause the discomfort of amputees using artificial limbs. By deploying the wearable
sensors inside the socket, the interfacial pressure distribution can be studied to find the active regions
and rectify the socket design. In this case study, a clustering-based analysis method is presented
to evaluate the density and layout of these sensors, which aims to reduce the local redundancy of
the sensor deployment. In particular, a Self-Organizing Map (SOM) and K-means algorithm are
employed to find the clustering results of the sensor data, taking the pressure measurement of a
predefined sensor placement as the input. Then, one suitable clustering result is selected to detect the
layout redundancy from the input area. After that, the Pearson correlation coefficient (PCC) is used
as a similarity metric to guide the removal of redundant sensors and generate a new sparser layout.
The Jenson–Shannon Divergence (JSD) and the mean pressure are applied as posterior validation
metrics that compare the pressure features before and after sensor removal. A case study of a clinical
trial with two sensor strips is used to prove the utility of the clustering-based analysis method. The
sensors on the posterior and medial regions are suggested to be reduced, and the main pressure
features are kept. The proposed method can help sensor designers optimize sensor configurations for
intra-socket measurements and thus assist the prosthetists in improving the socket fitting.

Keywords: pressure sensor system; prosthetic socket; redundancy detection; redundancy reduction;
selforganizing map; Pearson correlation coefficient

1. Introduction

As the interface between the amputation stump and prosthesis, the prosthetic socket is
the key factor that affects the comfort level of patients. However, as the cause of amputation
and residual limb characteristics vary from patient to patient, the design and adjustment
of the socket shape remain a hard problem. Normally, the rectification of socket shape
has to consider physical conditions such as the pressure, shear stress and residual limb
volume fluctuations [1,2] during activities of daily living. The measurement and analysis
of these interface pressure loading conditions then become a key component in optimizing
the socket shape and improving the comfort level of patients.

Uneven and high interfacial pressure distribution of the prosthetic socket can lead
to many discomforts in amputees’ daily lives [3], while the development of the sensing
technology [4] helps identify such stresses. Figure 1 shows an amputee patient who
wears a prosthetic socket with the sensor measurement system in a clinical test. Such
sensor systems usually have high density [5–8] to ensure the coverage of the whole stump.
The high-density coverage may, however, introduce redundancy, which increases cost and
unnecessary complexity. Therefore, detecting and removing the dispensable sensors while
keeping the effectiveness of the pressure measurement becomes crucial in pressure studies
of prosthetic sockets.
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Figure 1. Amputee patient wears a prosthetic socket.

This research intends to reduce the local redundancy in the sensor deployment by
proposing a clustering-based analysis method that can locate the unnecessary sensors by
evaluating the data from a predefined sensor layout and then provide suggestions to lower
the current sensor density. The clustering method, such as a Self-Organizing Map (SOM) [9],
is employed to find the clustering results of the sensor data. The most common one is
selected as the redundancy detection model for the sensory system. Then, the similarity
metrics, such as the Pearson correlation coefficient (PCC) [10], are applied to indicate the
unessential sensors in the relevant regions and evaluate the efficacy of the modification on
the sensor layout. Jenson–Shannon Divergence (JSD) [11] is applied as a validation metric
from the pressure distribution perspective to check if the new sensor layout is credible.
Overall, the presented method aims to improve the sensor deployment no matter what
kind of pressure sensor or which individual amputee is being treated.

Our redundancy reduction method can select the most effective positions in which
pressure sensors are integrated. This has the potential to be employed in smart socket
design, for example, in a closed control loop of an actuation system for efficient data
acquisition with reduced weight and complexity of the final system.

The rest of the paper is organized as follows. In Section 2, the related works on sensory
systems for the prosthetic socket are introduced. Section 3 defines the sensor deployment
problem in the interfacial pressure study. In Section 4, the clustering-based analysis method
and the related algorithms are explained. In Section 5, the experimental results of the study
case and discussion are presented. In Section 6, we draw the conclusion and discuss the
future works.

2. Related Works

The measurement of the interfacial pressure is critical to understanding the comfort
level of patients in the prosthetic socket design. Several researchers have performed
physical testing on the socket in the prosthetic study. Commuri et al. [12] have assessed
the pressure distribution during walking inside the transfemoral socket with triaxial force
sensors mounted on the socket wall. Tran et al. [13] analyzed the pressure and the shear
stresses of an amputee with the sensors embedded in the socket and visualized the pressure
map according to the sensor readings.

The clinical trial from Ali et al. investigated the interfacial pressure during walking
with hundreds of resistive transducers placed on the residual limbs [6], and they also
studied the pressure during the stair ascent and descent activities using the same sensory
system [7]. Although these researchers used a large number of sensors during the test, their
analysis normally focused on the mean peak pressure, the standard deviation and other
statistical features of the pressure in four major areas, such as anterior, medial, posterior
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and lateral. The results in the sub-regions under these major areas are quite similar, which
indicates the redundancy in the sensor layout. This implies that some of the sensors can
be removed inside these regions, and the important features of pressure distribution are
not lost. When reducing the sensor density, the time and cost of the measurement can also
be decreased.

There have been attempts to reduce the sensor density when the researchers are
building their own sensing system. Jasni et al. [8] developed the in-socket sensory system
based on the analysis of Tekscan F-Socket sensors. Their method was to locate the sensors
in the most active muscle areas determined by a muscle assessment of a particular amputee.
However, they did not investigate the redundancy that existed in sensor placement inside
the socket as their research was not focused on solving the sensor redundancy problem.

The fuzzy clustering method has been used for the redundancy detection in the
environment monitoring aspect, where the air pollution data were collected monthly from
all over the world [14]. Their analysis method is not suitable for intra-socket measurements
since the sensors inside the socket have much higher density and frequency. The premise
of clustering, however, can reveal the similarity in the sensor readings and thus detect the
redundancy in sensor layout. In our case, the Self-Organizing Map (SOM) is a good choice
as it can preserve the topology information on the 2D grid [9]. Compared with the K-means
algorithm [15] and fuzzy c-means clustering algorithm [16], SOM allows empty clusters
in the output and one sensor can only be placed in one cluster. To select the essential
sensors inside the socket according to the clusters, the SOM algorithm provides more stable
clustering results for redundancy detection.

Our approach can be potentially applied in smart socket design to achieve efficiency
and reduce complexity. In the field of smart socket design, Paternò et al. [2] quantified the
residual limb volume fluctuations in transfemoral amputees using a 3D optical scanner.
An app-controlled motor-driven adjustable socket [17] and a layer jamming actuator-driven
shape-changing socket [18] were developed to improve the management of the changes in
patients’ limb volume. Weathersby et al. [19] implemented a motor-actuated, cable-panel
socket that automatically maintains a socket fit based on distance information collected by
an inductive sensor embedded in the socket wall.

Our work proposes an effective method to reduce sensor layout density for interfacial
pressure measurement in the prosthetic socket. Specifically, we use a clustering method
to detect redundancy, a similarity-based method to guide the removal of non-essential
sensors, and use a distribution similarity metric to validate that the redundancy removal
results in acceptable information loss.

3. The Wearable Sensor Deployment Problem in Prosthetic Sockets

The wearable sensors for interfacial pressure measurement are made flexible and
rather thin so they can be easily mounted in prosthetic sockets. Figure 2 gives an example
of the wearable sensor system placed in a transfemoral socket, where the sensors are fixed
by adhesive tapes. Usually, the researchers use hundreds of sensors to reach high coverage
on the surface of the whole stump. However, handling those sensors in the clinical test for
one subject can take a few hours with many types of measurement equipment attached to
provide enough channels for sensor reading. These tests may continue with the fitting of
the socket shape for several iterations, which is a time-consuming activity [20].

Hence, the sensor deployment appears to be a challenging problem as a trade-off
between the measuring coverage and the efficiency. The efficiency is improved by using
a smaller number of sensors and less time in clinical trials with an acceptable loss in
interfacial pressure measurement.

Since large redundancy exists in the pressure data analysis process, the pressure
distribution is quite uniform in some of the areas with less muscle contraction [8]. This
also implies redundancy in the data acquisition process. How to detect and remove the
redundancy of the sensor placement during the data collection then becomes a key point to
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this problem. A redundancy reduction method is required to deal with it and to reduce the
sensor density by removing the unessential sensors.

Figure 2. Prosthetic check socket with sensors attached.

After the removal of the sensors inside the socket, it is necessary to validate that similar
pressure features such as the distribution and mean pressure can still be obtained with the
optimized sensor deployment.

In this paper, we present a case study with a focus on reducing sensor redundancy to
optimize the sensor deployment for interfacial pressure measurement for prosthetic sockets.
The details of our method are described in Section 4.

4. Sensor Redundancy Reduction Method
4.1. Overview

To optimize the sensor deployment for the socket interfacial pressure measurement,
a key factor is to reduce the redundancy in the sensor layout. Since there has been extraor-
dinary variability in the amputee situation and prosthetic socket configuration, there are
no common sensor deploying rules. We proposed a clustering-based method to detect and
remove the sensor redundancy for interfacial pressure measurement for amputees, and it
could be general guidance for socket sensor deployment.

Based on the practical experience of prosthetists, a preliminary sensor layout is estab-
lished for the general cases. Then, an intra-socket measurement with this layout on a real
patient is required to obtain the initial pressure readings. According to the pressure data,
we aim to find the similarity between them since the redundant sensors would generate
correlated pressure curves when they are adjacent to each other. Intuitively the unsuper-
vised clustering methods can be employed for this task, which separates the sensors into
groups according to their similarities and indicate the existence of unnecessary sensors in
the local region.

Figure 3 shows the overall process of the clustering-based analysis method for reduc-
ing redundant sensors, which consists of four functional steps to generate a new sensor
deployment scheme.
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Figure 3. The clustering-based analysis method process.

1. Data input: The sensor data may have various formats depending on the sensory sys-
tem, and they need to be converted to the actual pressure in the same unit. After that,
the pressure data are cleaned and sliced into frames, which contain several gait cycles,
to maintain enough information during the dynamic tests. These frames constitute
the initial dataset for the analysis method.

2. Redundancy detection: By adjusting the parameters of the SOM and feeding with
different data frames from the initial dataset, multiple clustering results are learned.
Among them, one common clustering result (which appears the most for all the data
frames and model configurations) is picked up as the target model to detect the sensor
redundancy for the input case.

3. Sensor density reduction: According to the redundancy detection model, the local
redundancy in current placement is recognized. Considering the actual requirements
and the capability of the sensory system, the unnecessary sensors can be removed
from the corresponding clusters. The similarity metrics such as PCC can be used to
guide the selection.

4. Result validation: The sensor removal results need to be evaluated based on the
choice from step 3. The pressure distribution over the whole test from the initial sensor
layout will be compared with readings from the reserved sensors, using entropy-based
metrics such as the Jenson–Shannon Divergence (JSD). After the posterior evaluation,
we can determine how dependable our sensor selection is.

The last step of the proposed method would provide a new sensor layout for the input
case with a pruned layout. If the number of sensors to be maintained changes because of
the test conditions and the patient situation known from the prosthetist, we return to step 3
and go through step 4 again to obtain another sensor removal suggestion.

Figure 4 provides an example of the redundancy removal process of a dedicated sensor
deployment with our method. The original layout is a long strip with ten sensors on it,
which are labeled with numbers 1 to 10. By applying the clustering method, we can separate
them into two clusters, sensors 1 to 4 are grouped in the blue cluster, and sensors 5 to 10
are grouped in the orange one. Suppose the prosthetist would like to keep two sensors for
the blue cluster and four for the orange cluster based on the redundancy detection model,
then the similarity metric is checked within the two clusters. Finally, sensors 2, 3 from the
blue cluster and sensors 6, 7, 9, 10 from the orange cluster are reserved to form the new
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layout. Finally, validation metrics such as JSD and mean pressure are used to compare the
information loss between the cluster and the selected sensors. The new sensor placement
can be applied for future tests.

Figure 4. An example of a redundancy removal procedure on a sensor strip consisting of 10 sensors.

4.2. Redundancy Detection and Clustering Algorithms

The second step in our method uses the clustering algorithm to build the sensor
redundancy detection model. Here, we will introduce the Self-Organizing Maps (SOM) [9]
as the main method for generating the clustering results.

SOM is a two-layer neural network model that contains the input layer and competitive
layer. The number of neurons in the competitive layer represents the number of clusters
for output. Suppose we have an input set of time series xi, with the length of n, and the
weights connect the two layers between the ith input neuron and the jth output neuron
wij, i = 1, · · · , n, j = 1, · · · , k. k is the number of expected clusters. τ is the total iteration
number. Then, the learning process can be described as follows:

1. Initialization: The weights of the SOM are first initialized, e.g., with some small
random numbers.

2. Competition: Each input will find its best matching unit using some judgement
methods in a time series, i.e., the distance metric. The winning unit is called the best
matching unit (BMU).

3. Cooperation: The BMU decides the range of its neighbors to update weights. Suppose
we use the Gaussian distribution, σ(t) = σ0 exp(− t

τ ) is the parameter decay as
iteration grows, with the initial standard deviation σ0 and current iteration number t.
Then, the update distribution T of node j is given by Tj,BMU(t) = exp(− D2

2σ(t)2 ), and
D is the geometry distance between node j and BMU. The closer neighbor will obtain
a larger update.

4. Adaptation: The weights of the neurons are updated by ∆wij = η(t)× Tj,BMU(t)×
(xi − wij). In the equation, the learning rate is defined as η(t) = η0 exp(− t

τ ).
5. Iteration: Go back to the above steps from the competition until τ iterations are

complete. The final winning neurons of the input time series are their clusters.

The SOM uses a kind of global decision-making strategy, which could avoid falling
into the local minimum. It can still be stable and accurate when the noise data exists. On the
other hand, it relies on the learning parameters and can generate different clustering results
on the same dataset. Hence, we have to train the SOM on multiple data frames sliced from
the original dataset and treat the most common clustering result as the final redundancy
detection model on all frames.

In addition, we can use other clustering methods such as the classic K-means al-
gorithm to perform the cross-validation. The K-means algorithm aims to minimize the
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distance between all input vectors to the corresponding centroids based on the least-squares
method [15]. It will be used on the same data frames to see if there is a common one among
all the frames. We compare it with the SOM result to evaluate the reliability of the redun-
dancy detection model.

4.3. Metrics for Guiding Sensor Removal

The Pearson correlation coefficient (PCC) is one of the most popular similarity metrics
used by experimental researchers [21]. The equation of PCC [22] between two series is
calculated as (1). The Xi and Yi are the ith data points on time series X and Y. X̄ and Ȳ are
the average values of X and Y.

PCC(X, Y) = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)2

√
∑n

i=1(Yi − Ȳ)2
(1)

PCC is a measure of linear correlation between X and Y and it ranges from −1 to 1. A high
PCC close to 1 shows a linear relationship between X and Y with a positive slope, which
implies a similar trend of X and Y.

Based on PCC, we can suggest the removal of unessential sensors. Suppose we have
a sensor dataset and the related redundancy detection model. Figure 5 shows the sensor
removal procedure. For a cluster containing m sensors, the mean values of all sensor data
in that cluster are calculated as centroid_all_sensors. If we select k sensors to be kept, there
are Ck

m combinations. k should be a value between 1 and m, and it is flexibly set based on
the knowledge of prosthetists. The mean value of the ith combination of sensors to be kept
in that cluster is computed as centroid_ith_selection. We then calculate the PCC for each
pair of centroid_all_sensors and centroid_ith_selection. The selection with higher PCC is
better. Assuming the jth combination has the highest PCC, we use it as the final choice.

Figure 5. PCC-based sensor removal procedure.
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For one specific number k, our proposed method selects k sensors to be kept and
remove other sensors. Our proposed approach provides flexibility for prosthetists to select
the number of sensors to be kept, as the method possesses the scalability to find the k
sensors to be kept without a limitation on the value of k.

4.4. Validation after Sensor Removal

To validate whether the pressure readings after the removal of redundant sensors
can still represent those from the initial sensor layout, we need to perform a posterior
check based on the selected sensors. As the pressure distribution among gait cycles is an
important factor for socket fitting [4], it can be used as a reference for validation. For each
cluster we obtain from the redundancy detection model, a pressure distribution P can be
obtained on the whole input dataset from all sensors in this cluster. On the other hand,
for the selected sensors in that cluster, they will constitute another pressure distribution Q
over the same walking phase. Then, the difference between these two distributions can be
found by the statistical divergence.

In our case, since the P contains the information of Q and they are in the same cluster,
they should have enough overlapping, then the Jenson–Shannon Divergence (JSD) [11] can
be a suitable similarity metric between P and Q. JSD is a bounded symmetry metric based
on the Kullback–Leibler Divergence (KL) [23], which means JSD(P||Q) = JSD(Q||P) with
a value between 0 and 1. When JSD(P||Q) close to 0, P is similar to Q. The calculation of
JSD is given in (2), in which p(x) and q(x) are probabilities from distribution P and Q.

KL(P||Q) = ∑ p(x) log
p(x)
q(x)

,

M =
1
2
(P + Q),

JSD(P||Q) =
1
2

KL(P||M) +
1
2

KL(Q||M).

(2)

By examining the possible combinations of the selected sensors, we can have multiple
pressure distribution Qs. Then, we calculate the corresponding JSDs and evaluate if
the selection has good coverage of the pressure distribution compared with the original
sensor layout. The selections with lower JSD can present the information from all the
sensors better, and we use this metric as a validation of our approach. In addition to the
pressure distribution, the mean pressure during walking is also an important feature for
the prosthetist to investigate [7]. It is also included as a validation metric.

5. Experiments and Results
5.1. Sensor Data Acquisition

To show the efficacy of the presented analysis method, we conducted a case study.
A set of pressure data is acquired from a clinical trial on a transfemoral amputation patient.
The clinical investigation was conducted in compliance with related regulations and guide-
lines and in accordance with the ethical principles that have their origin in the Declaration
of Helsinki.

The socket used in the experiment is manufactured for the user according to a scanned
positive mold of the subject’s residual limb. The main material of the socket is transparent
Polyethylene Terephthalate Glycol (PETG plastic). It is a replica of the patient’s own
direct socket [24] manufactured by Össur with a soft silicone brim. Figure 6 draws the
2D coordinate map of the socket according to the shape of the socket. The research from
Neumann et al. [25] obtained a dynamic socket pressure mapping in a suitable socket,
which indicates the windows for pressure-sensitive areas. The regions divided by different
colors in Figure 6 refer to their hypotheses, where red indicates high pressure and green
indicates low pressure on average. The blue strip indicates the sensor position along the
posterior edge (strip L) and the medial edge (strip R). The measurement device to read
pressure data from sensors is Pliance [26] from Novel Electronics Inc., and two sensor strips
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used in the test are Novel S2006 [27], with 10 capacitive pressure sensors on each strip
(Single sensor area: 10× 10 mm2, Sensor pressure range: 2–200 KPa, Thickness < 1.2 mm,
Pliance reading range setting: 0–64 KPa, Pliance reading frequency setting: 100 Hz).

Figure 6. A 2D representation of a prosthetic socket with Novel [27] sensor placement (2 strips with
10 sensors on each strip) inside the socket.

The conducted test is indoors at the ground level walking at the patient’s self-selected
speed. The first 100 steps are for the sensor calibration and are excluded from the test
results. Then the pressure is recorded at a rate of 100 Hz during the rest of the test.

To build the dataset, we take 30 s off the pressure readings from both of the positions,
namely dataset L for the posterior region and R for the medial region. Each of the datasets
contains ten sensors and with a length of 3000 points.

After that, we slice the dataset into multiple frames of shorter length. The frame
length has an influence on redundancy detection as it contains a different number of gaits.
In Figure 7, the trough to trough is equivalent to one full gait cycle. For example, 250 data
points comprise two gait cycles and 500 data points contain around four gait cycles, which
are framed by the red and grey rectangle, respectively. Other researchers like Jasni et al. [8]
have used a frame size of five seconds for in-socket pressure tests on transfemoral amputees.
In our experiment, we also choose 500 data points (5 s) as the frame length as it includes four
to five gait cycles depending on the patient’s speed, which can provide enough information
on the pressure changes during walking. We will also test the frame length of 250 points
and compare it with the redundancy detection result of 500 points.

Figure 7. A sensor data frame in lengths of 250 and 500 points. (L1 is the first sensor in dataset L,
and R1 is the first sensor in dataset R).
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5.2. Redundancy Detection

The clustering methods are applied to the six frames, each with a length of 500 points,
from the dataset L and R, respectively, to build the redundancy detection models. For the
SOM, we set the output layer as a 3× 3 rectangular grid, as the number of input entries is
ten. The learning rate is set to 0.2, and the SOM runs for 10 iterations. Then, six clustering
results would be generated for each of the datasets, and the most common one will be
selected as the final clustering result.

Figure 8 plots the clustering result for the first frame on dataset L, which has two non-
empty clusters. Sensor numbers 1, 2, and 6 are in the same cluster, while the other seven
sensors are in the second cluster. Actually, for six frames of L, we only obtain one different
clustering result on the fifth frame, which is {1, 2, 3, 6} and {4, 5, 7, 8, 9, 10}. The other five
frames are clustered by Cla :{1, 2, 6} and Clb :{3, 4, 5, 7, 8, 9, 10}. Therefore, we consider this
two-cluster result as the redundancy detection model ML(Cla , Clb) for L.

Figure 8. Cluster1 and Cluster2 of the first data frame from dataset L in the posterior region.

Similarly, the SOM algorithm gives the clustering results Cra :{1, 2, 4, 5, 6} and
Crb :{3, 7, 8, 9, 10} for all six data frames in the medial region dataset R. The consistency of
the clustering result proves that the way to divide sensors in such groups is reasonable.
Then, we can determine the redundancy detection model MR(Cra , Crb). Finally, we have
ML and MR for the sensor removal steps on datasets L and R, respectively.

Considering the same dataset with 12 frames, each with length of 250 points. With the
same parameters for the SOM, the most common clustering result of L is Cla :{1, 2, 6},
Clb :{3, 4, 5} and Clc :{7, 8, 9, 10}, in which 7 out of 12 frames are the same. The most common
clustering result of R is Cra :{1, 2, 4, 5, 6} and Crb :{3, 7, 8, 9, 10}, in which 4 out of 12 frames
are the same, while some of the frames even have four non-empty clusters after clustering.
Although the final clustering results of this test are quite close to the ML and MR we
obtained from the 500-point frame experiment, we can see that the clustering results are
quite unstable among different frames from the same strip. Therefore, the smaller frame
size can lead to unstable clustering results, and 500 points per frame is a good choice to
obtain a relatively consistent result over the whole dataset.
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In addition, we use the K-means on all six frames in lengths of 500 points on the same
dataset for L and R. Since we have the two-cluster model from SOM, here we set K to 2 and
run the algorithm for 10 iterations as well. The SOM model on dataset L, ML : Cla :{1, 2, 6}
and Clb :{3, 4, 5, 7, 8, 9, 10}, appears three times out of the six frames in K-means clustering.
The SOM model on dataset R, MR : Cra :{1, 2, 4, 5, 6} and Crb :{3, 7, 8, 9, 10}, also appears
three times out of six in K-means clustering. Though the K-means model only has half the
number of frames in both datasets with the common clustering results, they contain the
same clusters as the SOM results. Therefore, the redundancy detection model on these two
datasets can be determined as ML and MR, respectively.

5.3. Sensor Removal Result

In this section, we present the results of choosing one sensor or two sensors, while
the approach we proposed has the flexibility on the number of sensors to be kept. It is not
limited to one or two. Our method aims to provide suggestions for redundancy removal
with k sensors left, in which prosthetists can define k by themselves.

(1) Keep only one sensor in a cluster: To find the best single sensor of each cluster,
we calculated PCC when comparing with the curve from selected sensors and the average
curve from all sensors in one cluster.

For dataset L, there are three sensor selections in Cla and seven sensor choices in Clb .
We compute ten PCCs for each selection and repeat the calculation six times for six data
frames. Table 1 gives the average PCC for all six data frames, in which a0 to a2 are from
Cla , and b0 to b6 are from Clb . The red value means the best score of the metric among
all choices.

The PCCs in cluster Cla are all higher than 0.99, which shows the similarity to the
centroid of this cluster. We choose sensor a1 with highest PCC, which is 0.9997, to be the
sensor that is kept. For cluster Clb , sensor b3 with PCC of 0.9979 is the winner in PCC scores,
so we choose b3 to be kept.

The same result evaluation process is performed on the sensor strip R. For five sensors
in Cra and the other five sensors in Crb , a2 and b2 are selected after evaluating the PCC.

Table 1. Results for selecting one sensor in dataset L. The red PCC scores indicate the winners of
each cluster.

Sensor Cluster PCC

a0 Cla 0.9986

a1 Cla 0.9997

a2 Cla 0.9919

b0 Clb
0.9925

b1 Clb
0.9950

b2 Clb
0.9977

b3 Clb
0.9979

b4 Clb
0.9936

b5 Clb
0.9922

b6 Clb
0.9597

(2) Keep two sensors in a cluster: If the sensor designer chooses to leave two sensors
for each cluster, we apply the same strategies to find the best two sensors. For Cla , there are
three sensor selections and Cla contains 21 sensor pairs.

Figure 9 shows the average results on six frames for all these 24 possible pairs. The best
results for each cluster are marked. For Cla we choose the combination of a0 + a2, and for
Clb the pair of b0 + b4 is kept at last. Similarly, we can choose a0 + a3 for Cra and b1 + b3 for
Crb on the sensor strip R.
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The high PCC provides evidence that the sensors’ data has high similarity. That
means the pressure curves generated by selected sensors have high potential to replace the
original layout of the sensors. The result of keeping one or two sensors are given as an
example, while this approach could also suggest combinations with more sensors based on
the opinion of the prosthetists.

Figure 9. Results for selecting two sensors in dataset L. Orange circles indicate the best choices for
each cluster.

5.4. Validation

To validate the redundancy removal result, we concatenate the data frames back into
the whole dataset with 3000 points. Then, the pressure distribution of the whole test can
be presented by the histogram of the probability density. Since the sensors have a reading
range from 0 to 64 KPa, we set the number of bins to 64, and then calculate the JSD(P||Q).
P is the pressure distribution of the corresponding cluster, which represents the initial
sensor layout. Q is the pressure distribution of the selected sensors from the redundancy
removal step.

Figure 10 plots the pressure distribution from the one-sensor selection of the cluster
Crb on strip R, which is Rb2. Figure 11 plots the pressure distribution of all sensors in
cluster Crb . We can see they both have a high distribution on the saturation pressure of the
sensor, which is 64 kPa.

Figure 10. Pressure distribution from one-sensor Rb2 in Crb .
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Figure 11. Pressure distribution from all sensors in Crb .

Similarly, Figure 12 plots the pressure distribution from the two-sensor selection of
the cluster Cla on strip L, which contains La0 and La2. It has a very similar distribution
shape with the pressure distribution plot of all sensors in Cla during our test, as shown in
Figure 13.

Figure 12. Pressure distribution from two-sensor La0, La2 in Cla .

Table 2 shows the JSD validation results of the selected sensor combinations after the
redundancy removal procedure. Table 3 shows the validation results of the sensor selections
with the minimum JSD values among all possible choices inside the corresponding clusters.
The differences between these two tables are labeled in red. For the one-sensor selection,
we can see that two of them are different from the suggested choice from the redundancy
removal section, which are in Clb and Cra . For the two-sensor selection, we find one different
selection in Cra . The two differences that occur in cluster Cra have an insignificant gap
in JSD (<0.06), and the validation results are also relatively low (<0.1). That means the
suggested sensor selections from the redundancy removal procedure are still credible in
these two cases.
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Figure 13. Pressure distribution from all sensors in Cla .

However, we observe a larger difference in the one-sensor selection in Clb , which
indicates only selecting one sensor from the cluster Clb is not an optimized solution. Since
the two-sensor result is consistent in this cluster, it is better to keep two sensors rather than
only selecting one.

Table 2. JSD from the sensor removal results. The different choices between Tables 2 and 3 are
marked in red.

Cla Clb Cra Crb

1-sensor
selection La1 Lb3 Ra2 Rb2

JSD 0.084 0.224 0.092 0.045

2-sensor
selection La0, La2 Lb0, Lb4 Ra0, Ra3 Rb1, Rb4

JSD 0.018 0.036 0.017 0.010

Table 3. The sensor selection with the smallest JSD among all choices. The different choices between
Tables 2 and 3 are marked in red.

Cla Clb Cra Crb

1-sensor
selection La1 Lb4 Ra3 Rb2

JSD 0.084 0.134 0.039 0.045

2-sensor
selection La0, La2 Lb0, Lb4 Ra1, Ra2 Rb1, Rb4

JSD 0.018 0.036 0.009 0.010

The mean pressure during walking is also useful for prosthetists [25] when analyzing
the sensor data. Here, we will compare the average pressure of the four clusters from the
redundancy detection model and the sensors after removal on the whole walking dataset.
Figure 14 plots the mean pressure of the initial sensor deployment in each of the redundancy
detection clusters and the selected sensor combinations from the sensor removal section.
From this figure, we can see that the mean pressure of the two-sensor selection is very
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close to the original readings, with an average variation of 5% in all four clusters. Clb has
the highest variation of about 18.9%. For the one-sensor selection, the average variation is
around 10%, and Clb still has the highest difference of 16.7%. That means the prosthetist
may require more sensors in area Clb to obtain a more accurate mean pressure reading.
In general, the two-sensor selection is better than the one-sensor selection for mean pressure
measurement, which also meets our expectations.

Figure 14. Validation of the mean pressure.

Overall, our clustering-based analysis method can guide the removal of unessential
sensors in the sensory system with high-density elements. With high PCC, the information
on trends is proved to be kept. The JSD shows the high similarity of pressure distribu-
tion between the sensors to be kept, and the mean pressure validation shows satisfying
results after sensor removal. These indicate that our clustering-based method to remove
redundancy is effective.

6. Conclusions

We present a case study that aims to improve the sensor deployment for interfacial
pressure measurement in the prosthetic socket by reducing the redundancy in local areas.
In the paper, a clustering-based analysis method is proposed to evaluate the sensor density
and give references to the removal of sensors. The SOM clustering algorithm is employed
to build the redundancy detection models, and the K-means algorithm is used for cross-
validation. Then, similarity metrics are used to guide the removal of unessential sensors
with respect to the clustering result and help the sensor designers optimize the sensor
configurations accordingly. A case study based on a clinical trial of an amputee during
walking shows the effectiveness of our method. With ten sensors mounted on the posterior
region, as well as the medial region inside the socket, their redundancy is detected by
dividing the sensors into two clusters. Then, we remove the dispensable sensors evaluated
by the PCC metric while keeping the main pressure features. The JSD evaluation result
and the mean pressure comparison show the acceptable loss in the pressure features after
redundancy removal, which validates the efficacy of our method. The proposed method can
be useful in socket rectification and smart prosthetic socket design. It assists researchers in
selecting efficient pressure sensor positions inside sockets. The reduced sensor deployment
can still allow effective data acquisition in adjustable sockets, thus reducing the weight and
complexity of the device.

Through the case study, we have detailed a method to reduce redundancy in a sensor
layout scheme. To investigate further, this method can be applied to various patients and
multiple sensor deployments. Currently, this is limited by our experimental conditions. We
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are also aware of the possible need to increase sensor density for higher coverage in some
critical regions, which still need to be identified.
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