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Abstract: Wearable technology has advanced significantly and is now used in various entertainment
and business contexts. Authentication methods could be trustworthy, transparent, and non-intrusive
to guarantee that users can engage in online communications without consequences. An authenti-
cation system on a security framework starts with a process for identifying the user to ensure that
the user is permitted. Establishing and verifying an individual’s appearance usually requires a lot of
effort. Recent years have seen an increase in the usage of activity-based user identification systems to
identify individuals. Despite this, there has not been much research into how complex hand move-
ments can be used to determine the identity of an individual. This research used a one-dimensional
residual network with squeeze-and-excitation (SE) configurations called the 1D-ResNet-SE model to
investigate hand movements and user identification. According to the findings, the SE modules have
enhanced the one-dimensional residual network’s identification ability. As a deep learning model, the
proposed methodology is capable of effectively identifying features from the input smartwatch sensor
and could be utilized as an end-to-end model to clarify the modeling process. The 1D-ResNet-SE
identification model is superior to the other models. Hand movement assessment based on deep
learning is an effective technique to identify smartwatch users.

Keywords: user identification; deep learning; smartwatch sensor; residual network; squeeze-and-
excitation block

1. Introduction

Annually, the quantities of information produced by wearable devices linked to the
Internet increase [1]. Smartphones play a significant part among these gadgets because of
their increasing functionality and consumer acceptability. As a result, the safety and security
of this equipment are the top priority throughout the design phase. Biometrics can be
employed in several of the newest strategies for controlling illegal access to mobile devices.
An individual’s observable characteristics and behaviors are examined and measured to
recognize or identify that person.

User authentication is an excellent way to protect personal information. The design of
the authentication mechanism must take into account the fact that the aim of authenticating
is to validate the user’s information [2]. In preventing identity theft, many new solutions
have been introduced in recent years. Identifying the user and providing a pleasant user
experience are the primary goals of these detection techniques, but there are still several
obstacles to overcome. Digital identity is increasingly built on usernames and passwords [3],
making it vulnerable to theft, hacking, and fraud. Cryptographic algorithm-based digital
signatures are another common choice [4]. A highly capable computer system is needed
to produce digital signatures; therefore, devices with fewer resources have difficulties
establishing this identification. Hardware-based PUF (Physical Unclonable Function) has
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recently emerged to identify individuals, and several authentication methods have been
constructed on this basis [5]. There are certain drawbacks to PUF, however, including the
need for additional equipment. A hardware-based identification solution is implemented
via tokens and access cards [6].

A biometrics-based identification approach is the next advance in identifying and
verifying individuals [7]. Due to obvious reasons, individuals are regarded more efficiently
than the previously listed digital IDs. Because they are a part of ourselves, biometrics are
easy to utilize. Compared to more conventional verification and identification methods,
including credentials, PINs, and tokens, biometrics are almost impossible to lose or steal [8].
Secondly, since each person’s biometrics are distinctive, they are complicated to reproduce.
It is also easy to verify the properties of biometric IDs [9]. Modern computer systems
have several physiological biometrically based identifiers. Several products employ face
detection to verify that the individual is who they indicate they are. When it comes to
biometrics, the fingerprint is the most often utilized [10]. There are a number of com-
mon biometric signatures, including ECG/EEG characteristics [11], iris recognition [12],
and palm vein variations [13]. All of these options need specialized technology to collect
biometric data. This could be prohibitively costly, time consuming, and intrusive to the
participant. A further drawback of these physiologically based approaches is that they are
vulnerable to emulation. Fraudulent activity includes voice impersonation, iris-copying
lenses, and concealment, and these are but a few examples.

Many emerging biometric identification alternatives are low cost, better suited than
classic biometrics, or could be used in conjunction with more classical biometrics like multi-
factor authentication to enhance security and usability. On the other hand, some biometric
authentication methods demand human engagement, which might be difficult for the
end-user. A few alternatives include entering the password, unlocking the smartphone via
face recognition, or tapping the fingerprint reader. In continuous authentication, the user
is required to authenticate many times [14]. This is more challenging for the user. Since
biometric characteristics are collected indirectly when the user interacts with the device,
movement sensor-based identification approaches such as wearable sensor-based gait
recognition [15], contact gesture-based recognition, keystroke-based recognition, etc., could
tackle this issue. Compared to standard vision-based movement identification, these
methods are more private [16] and use less energy.

The advancement of science and technology has influenced the techniques of biometric
identification. Fingerprinting, facial detection, retinal scanning, palm geometry, and voice
recognition are some of the most well known techniques, but there are many more. Mean-
while, less invasive biometric variations are making their way into widespread utilization.
Identifying persons based on the features of their activity is an example of this. There
are both pros and cons to this approach, which indicate how individuals perform their
daily routines. Since the person needs to carry the equipment (which will generally be a
smartphone) or be captured to perform recognition by computer vision, its key benefits are
that it enables automated, regular, and non-intrusive recognition. Biometric techniques that
are less accurate than fingerprints might be seen as a drawback. Continuous and periodic
identification could help with this. For gait-based person recognition systems, performance
can be improved if the data samples are created by a broad range of user actions, ensuring
that a valid classification is achieved in the least amount of time feasible.

In many homes and workplaces, smartphones have become an integral part of our
daily lives and are routinely used to access cloud-based security apparatuses. Smartwatches
offer an interesting environment for authentic identity verification through cloud-based
solutions like Internet banking if a smartphone is easily stolen or cobbled. When using
cloud-based or other data sources to connect mission-critical Internet services, it is vital
to identify the genuine user who is doing so reliably. Automated and non-bypassable
identification is required.

In the recent decade, learning techniques, including machine learning (ML), have been
employed to achieve good outcomes with biometric-based user identification. Within con-
trolled circumstances, machine learning techniques such as K-nearest neighbors, Support
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Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF), among others, have
been established to deliver satisfactory results [17–19]. The accuracy of these standard
machine learning models is highly dependent on the strategy of human-manually extracted
and selected features.

Nowadays, deep learning (DL) algorithms have succeeded in user identification stud-
ies. One of the most significant components of deep learning is its ability to automatically
identify and classify features with increased accuracy, influencing user identification stud-
ies [20–22]. Deep neural networks can learn discriminative characteristics from raw data
automatically, and they have revealed tremendous promise for evaluating diverse data and
have a high capacity for generalization. Numerous primary and sophisticated deep learning
models have been proposed to capitalize on deep learning approaches by compensating for
the drawbacks of traditional machine learning while leveraging the multiple levels of char-
acteristics available in various hierarchies. A hierarchy of layers is used in machine learning
techniques to handle low- and high-level features, along with linear and nonlinear feature
conversions at different levels, contributing to learning and optimizing features. To this
end, deep learning models such as Recurrent Neural Networks (RNN), Convolutional
Neural Networks (CNN), and Long Short-Term Memory (LSTM) are utilized to overcome
the limitations of conventional machine learning algorithms that relied on manual feature
selection, where an error in feature selection could have negative consequences for the
applications at hand. As a result, deep learning networks have found practical applications
in identification tasks and are often employed in activity recognition studies for feature
extraction. One disadvantage of the deep learning approach, mainly when complex DL
architectures are used, is the higher expense of processing the massive number of accessible
datasets. Nevertheless, the cost is justified since an identification approach relies on the
accuracy of the classification consequences of the deep learning model.

While enhancing the level of a CNN could extract more abstract features and improve
effectiveness, it may also result in degraded performance [23]. To address this issue,
He et al. [24] suggested a residual network (ResNet) for image identification, which has
been integrated into the investigation of human behavior. For instance, Li et al. [25] used the
1D-ResNet model to extract spatial features from multidimensional inertial sensor inputs
and bidirectional LSTM. This approach can achieve improved performance with fewer
parameters. Moreover, Ronald et al. [26] established a link between wearable sensor vectors
and individual motions using an improved deep learning model based on ResNet and
Inception modules. The improved model suggested here shows exceptional arrangement
in human activity recognition (HAR) implementations.

Using a squeeze-and-excitation (SE) module [27] is a technique for channel attention
that could be contained in current CNNs to increase classification interpretation. The SE
block operates as an embedding unit, improving the effectiveness of deep neural networks.
The SE block is one of the popular improvements of the many CNN architectures because
it is simply added without changing the shape of the existing model. For example, [28–30]
concatenated the SE block into CNNs with varying convolutional layer levels. The findings
indicate that CNNs with the SE block outperform simple CNNs with accuracy rates.
Additionally, the efficiency of the SE block has been shown in the assessment of pork
freshness using NIRS [31] and ECG-signal classification [32].

Inspired by the works mentioned earlier, this research combines the SE block with a
1D-ResNet to evaluate the SE block’s potential for user identification using sensor data from
a smartwatch. The main difference between the proposed network and our previous works
in [28–30] is that the proposed network uses a one-dimensional deep residual network
with shortcut connections instead of a one-dimensional convolutional neural network. This
work aims to investigate user identification using a smartwatch on the basis of complex
hand movements. We use a residual network to extract more abstract spatial characteristics
from CNN. Squeeze-and-excitation modules were also incorporated in the one-dimensional
ResNet to improve recognition interpretation.

The following is an overview of the study’s most significant contributions:
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• This article aims to investigate the possibility of the 1D-ResNet-SE for sensor-based
user identification by analyzing complex hand movement signals captured by smart-
watch sensors. We compared standard CNN-based deep learning models to RNN-
based LSTM networks for sensor-based user identification using smartwatch sensor
data to examine the algorithm’s effectiveness.

• We conducted comprehensive experiments using many smartwatch-based HAR
datasets encompassing simple and complex hand movements to increase ecological va-
lidity. We observed the connection between hand motion patterns and the recognition
of smartwatch owners using the 1D-ResNet-SE model. The SE blocks are combined
with the residual network to increase the sensitivity to relevant features. Compared to
CNN- and LSTM-based deep learning models, the model demonstrated here shower
superior performance in user identification in complex hand movement situations.

The rest of this article is organized as follows: In the second section, we examine the
latest research on sensor-based deep learning algorithms for user identification. Proposals
for new techniques are introduced in Section 3. Experiments are described, and findings are
shown in Section 4. Deep-learning algorithms used in the research to achieve effectiveness
in identification are discussed in detail in Section 5. The last section, Section 6, focuses on
the study’s limitations and suggests new opportunities for future research.

2. Related Works

Identifying users based on their activities has proved to be a challenging problem to
solve. We have compiled a collection of resources connected to our study in this area.

2.1. Sensor-Based User Identification

Wearable sensors have been considered in recent years as part of sensor-based identifi-
cation systems. For example, [33,34] proposed a mechanism for explicitly and continuously
identifying the individual. However, there is no compelling evidence that the individual’s
behavior has changed enough to warrant an apparent classification in most circumstances.
Luca et al. [35] present a technique for explicitly determining the distance between pattern
traces using the dynamic time warping mechanism. Most of the 22 unusual touch patterns
shown by Sae-Bae et al. [36] include using all five fingers concurrently. They used k-nearest
neighbors and support vector machines to categorize the 22 analytical characteristics from
touch traces analyzed in the study [37].

As a result, each action is correlated with two essential characteristics: Time and space,
according to the behavior-based model’s principle. For example, if you are looking to
identify a user, you could look to activities such as those described by [38]. Multi-model
continuous user identification was suggested by the works of [39]. Another distinctive
architecture for ongoing user identification was proposed in [40] by leveraging historical
smartphone records and positions.

To a certain degree, all the tasks mentioned above need additional details and a source
of user identification. Casale et al. [41] provided a gait-based user identification over
an inconspicuous biometric pattern to address these concerns. A four-layered structure
made use of the geometric principle of a convex hull. For example, it only functions in
specific locations which is a severe disadvantage. Wearable devices based on gait signals
recorded using a three-dimensional accelerometer were employed in the studies of [8,42],
where the accelerometer was simply attached to the individual’s waist at the rear. A three-
fold technique for user identification based on data distribution statistics, correlation,
and time-frequency characteristics was developed by [43]. At the same time, the people
were deliberately requested to stroll at different velocities, such as slow, regular, or quick.
The fundamental disadvantage of Mantyjarvi’s work is that only one person can walk at a
time, and with relatively restricted variants.

There are many existing approaches that used gait-based systems which are summa-
rized above and in Table 1. There is still scope for further improvement based on physical
adjustments, carrying objects, orientation, placement, movement surface, psychosocial
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factors of a participant, stimulants, and other considerations. These limitations significantly
hamper the gait-based system’s performance in real-world situations.

Table 1. A summary of existing literature on user identification based on the sensor data.

Work (Year) Classifier Sensors Device Performance (%
Accuracy) Contribution No. of Users

Parziale et al.
(2021) [44] Random Forest 1 Acc. Smartwatch 89.77

User identification
based on writing

activity performed
in air

98

Mekruksavanich et al.
(2021) [20] CNN-LSTM 2 Acc. 1 Gyro. Smartphone 94.57

User identification
based on

smartphone sensor
from dynamic

activities (walking,
walking upstairs,

and walking
downstairs)

30

Benegui et al.
(2020) [21] CNN 1 Acc. 1 Gyro. Smartphone 90.75

User identification
based on motion

sensor data of
tapping on screen

motion from
smartphone

50

Angrisano et al.
(2020) [19] Random Forest 1 Acc. 1 Gyro. Smartphone 93.8

User identification
based on walking

activities using
ensemble machine

learning

32

Weiss et al. (2019) [17] Random Forest

1 Acc. 1 Gyro. Smartphone 92.7
User identification

based on simple
activities and

51

1 Acc. 1 Gyro. Smartwatch 71.7
complex activities

using machine
learning approaches

Musale et al.
(2019) [45] Random Forest 1 Acc. 1 Gyro. Smartwatch 91.8

User identification
based on statistical

features and
human-action-
related features

from sensor data

51

Ahmad et al.
(2018) [18] Decision Tree 1 Acc. 1 Gyro. 1

Mag. Smartwatch 98.68

User identification
based on

ambulatory
activities using

machine learning

6

Nevero et al.
(2016) [22] CNN 1 Acc. 1 Gyro. 1

Mag. Smartphone 69.41

User identification
based on walking

activities using
dense convolutional

clockwork RNNs

587

2.2. Deep Learning Approaches for User Identification
2.2.1. Convolutional Neural Network

Several research studies on time series classification (TSC) have focused on deep
learning and obtained notable results in recent years. CNN has been a prominent deep
learning technique in TSC because of its capability to extract the connection between local
organizations in the form of array information. Yang et al. [46] reveal one of the first
applications of CNN in TSC. According to the researchers, a higher-level description of raw
sensor data can be derived using CNN’s deep architecture. Additionally, combining feature
learning and classification in a single model makes the learned features more discrimi-
native. According to Ronao and Cho [47], a deep CNN with 1D convolutional processes
outperforms conventional pattern recognition algorithms for movement categorization
employing smartphone sensors. Jiang and colleagues [48] sent the sensor data into a two-
dimensional neural network instead of utilizing a one-dimensional convolution to capture
both temporal and spatial characteristics from the action patterns for the classification test.
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The two-stage CNN model [49] increases the classification performance of actions with
complicated structures and limited training data.

TSC has subsequently benefited from the use of numerous cutting-edge CNN archi-
tectures that have been introduced in the machine vision area. A TSC model based on
U-Net [50] was presented in [51] to conduct sampling point-level forecasting, thereby over-
coming the multi-class issue. Mahmud et al. [52] use a residual block-based CNN to extract
features and categorize behaviors from 1D time-series sensor data. TSC’s compact deep
convolutional neural network is constructed by Tang et al. [53] using the Lego filter [54].

2.2.2. Recurrent Neural Networks

Time series sensor data are commonly processed using recurrent neural networks
(RNNs) because they store insights into the history of previous items in a sequence.
Zeng et al. [55] presented a long short-term memory (LSTM) model based on continu-
ous attention that emphasizes relevant sensor modalities and significant sections of the
sensor data during TSC analysis. Barut et al. [56] constructed a multitask framework em-
ploying layered LSTM layers to classify and estimate activity intensity from raw sensor data.
Rather than utilizing raw data, the bidirectional LSTM recurrent neural network in [57] is
employed to feature data generated from principal component analysis (PCA) and discrete
wavelet transform (DWT). Where there is a lack of label data, [58] recommends extracting
features using spectrograms. Then the identification is carried out using an extended sup-
port vector machine (SVM). Fusing LSTM-RNN with handcrafted elements could improve
the performance of a system, according to [59], where it was shown. Local feature-based
LSTM networks suggested by Chen et al. [60] can encode temporal dependence and learn
features from a high sampling rate of acceleration data.

2.2.3. Hybrid Neural Networks

In recent years, considerable research has demonstrated that substantial TSC effec-
tiveness could well be achieved by combining hybrid models derived from several kinds
of deep learning approaches. GRUs (gated recurrent units) have been introduced in [61]
to uncover sequential temporal relationships in complex activity recognition by using an
inception module-based CNN [62]. In a sleep-wake detection system, Chen et al. [63] em-
ployed a 1D- CNN-LSTM model to capture feature information from lengthy acceleration
sequences, then combined an attention mechanism with the handcrafted characteristics of
heart rate variability data. In [64], a recurrent convolutional attention model was presented
to cope with the imbalance of the labeled data in a semi-supervised manner. Small segments
of window data are supplied into an LSTM layer for motion identification after a CNN is
applied to the data. For the first time, an LSTM-CNN model was suggested by Xia et al. [65]
in which a two-layer LSTM is applied topically to the raw sensor data before actually
employing 2D convolutional layers. Deep learning and traditional pattern recognition ap-
proaches are successful in the research; however, further examination exposes several gaps
and flaws. Rather than evaluating the connection between neighboring windows, most
research has solely looked at the data from specific windows to make predictions about
behavioral aspects. In multi-class classification applications, including face recognition,
this technique could deliver great accuracy, but it can lack the characteristic of long-term re-
liance on sensor data. A method named MFAP, developed by Chen et al. [59], addresses this
weakness by considering both the past and present a priori data. To maintain the assump-
tion of independence between the observed values and the preceding ones, we consider
the activity sequence a first-order Markov chain. This strategy, unfortunately, necessitates
an additional manual job on the result of the deep neural network’s Softmax layer.

There has also been some research involved to apply and evaluate the principles
under real-life scenarios; however, most past research employs clean datasets. The data
of each action are gathered, interpreted, and preserved independently without taking
transitions between movements into consideration. In reality, activities must be performed
sequentially, and some, such as lying down and jogging, cannot be performed side by side
without a transition. A hierarchical hybrid approach, known as HiHAR, has been proposed
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to overcome these issues. The process can determine local and global temporal dependence
in window sequences using the hierarchical design.

2.3. Simple and Complex Human Activities

Human activities could well be classified into two categories according to [66–69]:
Simple human activities (SHA) and complex human activities (CHA). As Shoaib et al. [70]
observed, simple human activities are repeated, common movements that could be primar-
ily determined using an accelerometer, such as strolling, running, sitting, and standing.
Another issue is that behaviors that are not repeatable, such as smoking, eating, delivering
a speech, or sipping coffee, cannot be clearly detected at smaller segmentation windows,
in contrast to repetitive activities such as walking, running, or cycling. Human behaviors
that are complex are less repetitive than those that are simple. Complex activities often
need the use of the hands, such as smoking, eating, and drinking. Additional sensors, like
a gyroscope, could be utilized to determine if CHA is present. Due to the difficulty of char-
acterizing such actions with a single accelerometer, this research categorized stair-related
movements as CHA.

Alo et al. [66] distinguished two types of human activities: Simple and complex.
Walking, running, sitting, standing, and jogging are simple human activities that are quick
human behaviors. On the other hand, complex human activities, such as smoking, eat-
ing, taking medicine, cooking, and writing, are composed of longer-duration operations.
Peng et al. [67] divided human activities into simple ones (e.g., walking, jogging, or sitting)
based on repetitive movements or a single body position, which does not genuinely describe
everyday activities. On the other hand, complex activities are more challenging and are
composed of many straightforward operations. Complex actions, such as eating breakfast,
office working, or shopping usually require an extended period of time and have broad
meanings. These are more accurate components of people’s everyday lives. According to
Liu et al. [68], human activity is complicated. A complex activity is a collection of chronolog-
ically and productively related atomic engagements. In contrast, an atomic movement is a
single unit-level action that cannot be further decomposed under practical comprehension.
Rather than doing a single atomic operation, individuals frequently perform several activi-
ties in various ways, both sequentially and simultaneously. Chen et al. [69] distinguished
two types of human activities: Simple and complex. SHA could be considered as a single
repeated motion that a single accelerometer could recognize. CHA would rarely occur in
repeatable form similar to simple activities and will usually include many simultaneous or
overlapping actions that can be observed only via multimodal sensor data.

2.4. Available Sensor-Based Activity Datasets

Many sensor-based activity datasets are accessible to the public and could develop
deep learning models.

All 51 individuals in the WISDM-HARB dataset [17] were recorded while participating
in 18 activities of daily life. Each participant wore a smartwatch on their dominant wrist
while completing the tasks to ensure accuracy. The research goal was to identify which
integration form of accelerometer and gyroscope sensors achieved the best performance on
both smartphones and smartwatches.

Smartwatch and smartphone data loggers are included in the UT-Smoke dataset [71,72]
to collect various sensor data simultaneously. For three months, the participants in this
study smoked for a total of 17 hours while strolling, standing, sitting, or speaking with
others. Eleven people volunteered to take part in these events. According to our knowledge,
this is the most significant dataset compared to other research of this type.

Annotated data from complicated hand-based movements recorded by smartwatches are
utilized as a baseline for complex hand movement studies in the two datasets above [73–75].
UT-Complex [70], PAMAP2 [76], and OPPORTUNITY [77] are further sensor-based activity
datasets. On the other hand, this research did not include data from an annotated smartwatch
sensor for sophisticated hand-based tasks.
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3. Proposed Methodology

An emphasis is placed in this part on the methods used for the training of the ad-
vanced learning model and the identification of individuals through wearable sensors
and smartwatches which incorporate built-in sensors. In Figure 1, the proposed method-
ology for the CHM-UserIden framework is shown, which comprises data acquisition,
pre-processing, training the model, and user identification. Each stage is explained in
further detail as follows.

Iter. 1

Iter. 2

Iter. 3

Iter. 4

Iter. 5

Iter. 6

Iter. 7

Iter. 8

Iter. 9

Iter. 10
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80%

20%

Figure 1. The proposed CHM-UserIden framework for smartwatch-based user identification used in
this study.

3.1. Data Acquisition

The benchmark datasets utilized to evaluate this research were the focus of this section.
The assessment employed two public datasets (UT-Smoke and WISDM-HARB datasets).
The inertial data from smartwatch sensors were included in the UT-Smoke and WISDM-
HARB datasets. As a group of individuals engaged in everyday tasks, such as dining,
having a drink, smoking, and so on, the data in each dataset were gathered. Data from
accelerometer, gyroscope, and magnetometer-equipped smartwatch sensors were used to
produce these datasets.

To investigate user identification through a smartwatch, we classified human activities
using the SC2 representational taxonomy [68]. This division of human activities into simple
and complex ones was based on their chronological interconnections.

• A simple activity cannot be subdivided further at the atomic scale. For instance,
walking, running, and ascending are all considered simple activities owing to their
inability to be coupled with other activities.

• A complex activity is a high-level activity formed via the sequencing or overlapping
of atomic-level activities. For example, the representation ”smoking while strolling”
incorporates the two atomic actions of ”strolling” and ”smoking”.

Characteristics of both activity-based datasets are described in Table 2.

3.1.1. UT-Smoke Dataset

The UT-Smoke dataset, which was previously provided in [71,72], is used in this
study as a public complex hand-based activity dataset. Over three months, 11 volunteers
(two female and nine male) aged 20–45 were tracked using a smartwatch application.
The program records data from a smartwatch and a smartphone’s triaxial accelerometer
and gyroscope, as well as a timestamp. 50 Hz is the sampling rate for all data. The activities
included smoking while standing (SmokeSD), smoking while sitting (SmokeST), smoking
while walking (SmokeW), smoking in a group chat (SmokeG), drinking while standing
(DrinkSD), drinking while sitting (DrinkST), dining, standing, sitting, and walking (Walk).
Identifying smoking and behaviors comparable to smoking are the primary goals of this
dataset. Every individual takes part in every activity except for SmokeG and SmokeW,
which are carried out by a combined total of eight and three individuals, respectively.
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Table 2. Characteristics of the selected activity-based datasets.

Dataset Category Activity Description Raw Sensor Data Percentage

UT-Smoke

Simple Sitting Sitting 649,000 14.28%
Standing Standing 649,000 14.29%

Complex
Smoking Smoking 1,298,000 28.57%
Eating Eating 649,000 14.29%
Drinking Drinking 1,298,000 28.57%

WISDM-HARB

Simple

Walking Walking 192,531 5.60%
Jogging Jogging 187,833 5.46%
Stairs Walking upstairs and downstairs 180,416 5.24%
Sitting Sitting 195,050 5.67%
Standing Standing 194,103 5.64%
Kicking Kicking a soccer ball 191,535 5.57%

Complex

Dribbling Dribbling a basketball 194,845 5.66%
Catch Playing catch a tennis ball 187,684 5.46%
Typing Typing 187,175 5.44%
Writing Writing 197,403 5.74%
Clapping Clapping 190,776 5.55%
Teeth Brushing teeth 190,759 5.54%
Folding Folding clothes 193,373 5.62%
Pasta Eating pasta 189,609 5.51%
Soup Eating soup 187,057 5.44%
Sandwich Eating a sandwich 190,191 5.53%
Chips Eating chips 192,085 5.58%
Drinking Drinking from a cup 197,917 5.75%

3.1.2. WISDM-HARB Dataset

Fifty-one people were recruited to participate in the WISDM-HARB dataset [17]
and complete various everyday tasks, including easy and sophisticated studies using
smartphones and smartphone sensors. The subjects performed these tasks for three minutes.
The accelerometer and gyroscope sensors recorded data at 20 Hz. Individuals aged 19 to 48
volunteered to participate in the study, which collected sensor data.

3.2. Data Pre-Processing

Due to the participants’ lively motions throughout the data collection, raw sensor data
contained measurement noise and other unanticipated noise. Signals with a lot of noise
distort the data they convey. As a result, it was critical to limit the impact of noise on signal
processing so that useful information could be retrieved from the signal [42,78]. Mean, low-
pass, and Wavelet filtering are some of the most frequently used techniques for filtration.
Using a 3rd order Butterworth filter, we de-noised all three dimensions of accelerometers,
gyroscopes, and magnetometers using the 20 Hz cutoff frequency. At this pace, 99.9% of
body movements are captured, making it ideal for the recording of motion [79].

It was necessary to alter the sensor data once it had been cleansed of unwanted
noise. Each data point was transformed using a Min–Max normalization approach, which
projects its values into the range [0, 1]. Having a way to balance the impacts of different
dimensions might be beneficial for the learning processes. Normalized data from all sensors
are split into equal-sized sections for model training using fixed-size sliding windows in
the data segmentation stage of the process. To construct sensory data streams with a
length, we employed a sliding window with a duration of 10 s in this study as suggested
by [17]. The 10-s window is utilized for user identification because it is long enough to
record crucial features of a person’s activities, such as numerous repeats of fundamental
motions such as walking and stair ascending, and it enables faster biometric identification.
Additionally, prior activity recognition investigations revealed that a 10-s window size
surpasses others [80].

3.3. Data Generation

Data samples are separated into training and test data in this phase, while temporal
windows from the signals are utilized to create a model, and test data are used to assess
the learned model. Cross-validation is the standard approach for separating data into
training and test sets [81]. Numerous strategies, such as k-fold cross-validation [7], could
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be used to separate the data for training and testing. This stage estimates the learning
algorithm’s capacity to generalize to new data. This stage takes advantage of stratified
ten-fold cross-validation inside the framework for smartwatch-based user identification.
The entire dataset is partitioned into 10 equal folds or subsets for this validation approach.
Nine of these folds are utilized for training and one for testing in each cycle. This procedure
is performed 10 times, utilizing all data for both training and testing. Stratified data imply
that each fold has about the same amount of data from each participant.

3.4. The Proposed 1D-ResNet-SE Model
3.4.1. Architecture of the Proposed Model

This work introduces the 1D-ResNet-SE identification model based on complex hand
motions acquired by smartwatch sensors to achieve effective biometric user identification.
The presented model can automatically extract characteristic features from input sensor
data. A convolutional block and SE-ResNet blocks are shown in Figure 2 for capturing
spatial features, accompanied by a global average pooling (GAP) layer, and flattened and
connected layers directly for further processing.

Figure 2. Architecture of the 1D-ResNet-SE.

The input sensors were processed using convolutional blocks and SE-ResNet blocks.
An ELU layer, a convolutional layer, a batch normalization layer, and a max-pooling layer
were all included in the convolution component. Each of the trainable convolutional kernels
in the convolutional layer creates a feature map, which is then used in the convolutional
layer. One-dimensional kernels are just like the input spectrum. Because of this, BN was
used to stabilize and speed up the learning process. The model’s expression capability
was improved with the help of ELU, a nonlinear function. Preserving key characteristics
was achieved by using the MP layer to minimize map size. The following section goes
into further detail about the SE-ResNet module. Flattened layers were utilized to turn the
averages of each feature map into a 1D vector using the GAP. Using a Softmax function,
the result of the fully linked layer was transformed into probabilistic reasoning. The cross
entropy loss function, which is often used in classification applications, was applied to
compute the network’s losses.

3.4.2. SE-ResNet Block

As the network layers increased, a degradation incident occurred: Accuracy rapidly
reached saturation and ultimately declined [82]. Adding a bypass link to ResNet’s residual
block could successfully solve the degradation issue [24]. Figure 3 depicts the architecture
of a residual block. Convolutional layers, BN, ELU, and a bypass connection are all part of
this algorithm. There are no differences between the residual block and the convolutional
block except for the bypass link. A residual function F(x): = H(x) − x is defined as the
sum of the foundation mappings H(x) and F(x) placed on top of each other. Since the
initial mapping was transformed into F(x) + x, the initial mapping is no longer relevant.
The residual learning is simpler to implement and avoids the degradation issue than simply
fitting H(x) using stacked layers.
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Figure 3. Structure of the residual block.

3.4.3. Squeeze-and-Excitation Module

By combining spatial and channel-specific data, convolutional neural networks ex-
tracted the features [83]. The SE module aims to improve the representative capacity of
the model’s channel association. After the convolution procedure, many feature maps are
obtained. Nonetheless, a few feature maps could well be overloaded with duplication
of data. The SE block performs feature recalibration to improve the valuable traits while
inhibiting the less valuable ones. Each feature map is squeezed as a first step, and a weight
vector is generated. The feature weights are then redistributed using fully connected layers
and a sigmoid activation function in the excitation procedure. A gradient descent technique
is used to direct the redistribution. Weights are then used to adjust the weights of the
features. To recalibrate the feature maps obtained from the stacked layers, the SE block was
put behind BN in each residual block in this investigation. Figure 4 depicts the SE-ResNet
component’s overall structure and functionality.

Figure 4. Structure and functionality of the squeeze-and-excitation block.

3.4.4. Activation Function

The activation function provides a nonlinear element in the model as an essential
component. Nonlinear distributed data are challenging to adjust in a network lacking
activation functions. Because of this, a network’s capacity to conform to its environment is
greatly improved by the activation function. The activation functions that are utilized in
this study are as follows.
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• Sigmoid function:

σ(x) =
1

1 + e−x (1)

• Rectified Linear Unit (ReLU):

ReLU(x) = max(x, 0) =

{
x if x ≥ 0
0 if x < 0

(2)

• Exponential Linear Unit (ELU)

ELU(x) =

{
x if x ≥ 0
α(ex − 1) if x < 0, and α defaults to 1.0

(3)

3.5. Evaluation Metrics

User identification could be seen as a categorization with many classes. Accuracy,
F1-score, and Equal Error Rate are commonly used performance indicators for evaluating
and comparing identification systems. These performance indicators are determined using
a confusion matrix to determine the model’s ability to detect objects.

Let consider a multiclass classification problem with set A containing the n different
class labels Ci(i = 1, 2, 3, . . . , n) denoted by {C1, C2, C3, . . . , Cn}. The confusion matrix for
that problem is an n× n matrix presented in Figure 5. Each row of the matrix represents
the instances of an actual class, while each column represents the instances of a predicted
class. An element Cij of the confusion matrix at row i and column j provides the number of
instances for which the actual class is i and the predicted class is j.

Figure 5. Confusion matrix for a multiclass classification problem.

True positive (TP), false positive (FP), true negative (TN), and false negative (FN)
are all aspects that could be derived from the confusion matrix and utilized to produce
performance metrics. Consider the following mathematical formulae for calculating the
label classes Ci, TP(Ci), FP(Ci), FN(Ci), and TN(Ci).

TP(Ci) = Cii (4)

FP(Ci) =
n

∑
l=1

Cli − TP(Ci) (5)

FN(Ci) =
n

∑
l=1

Cil − TP(Ci) (6)

TN(Ci) =
n

∑
l=1

n

∑
k=1

Clk − TP(Ci)− FP(Ci)− FN(Ci) (7)
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From Equations (4)–(7), we defined accuracy, precision, recall, and f1-score, for a
multiclass confusion matrix in Table 3.

When a biometric-based user identification approach recognizes an invalid individual
or fails to realize an actual individual, an error of accuracy happens. False Acceptance Rate
(FAR) and False Rejection Rate (FRR) are the most usually exploited measures to determine
issues. Equal Error Rate (EER) represents the rate at which FAR and FRR become equal,
and hence, a lower EER rate indicates more accuracy.

The typical technique for assessing FAR and FRR for multiclass classifiers is converting
the multiclass classification issue to multiple binary classifications. Each class has its
own FAR and FRR error values. The EER can be calculated as, EER = FAR+FRR

2 , where
|FAR + FRR| is the smallest value.

Table 3. Performance metrics for a multiclass confusion matrix.

Metrics Formulas

Accuracy Accuracy =
∑n

i=1 TP(Ci)

∑n
i=1 ∑n

j=1 cij

Recall of class Ci Recall(Ci) =
TP(Ci)

TP(Ci) + FN(Ci)

Precision of class Ci Precision(Ci) =
TP(Ci)

TP(Ci) + FP(Ci)

F1-score of class Ci F1− score(Ci) = 2× Precision(Ci)× Recall(Ci)

Precision(Ci) + Recall(Ci)

Recall Recall =
1
n

n

∑
i=1

Recall(Ci)

Precision Precision =
1
n

n

∑
i=1

Precision(Ci)

F1-score F1− score = 2× Precision× Recall
Precision + Recall

False Acceptance Rate of class Ci FAR(Ci) =
FN(Ci)

FN(Ci) + TP(Ci)

False Rejection Rate of class Ci FRR(Ci) =
FP(Ci)

FP(Ci) + TN(Ci)

4. Experimental Results

This section provides the results of all of the experiments we conducted to find the
successful deep learning models for sensor-based user identification. The UT-Smoke and
WISDM-HARB datasets were used as the two benchmark datasets for person identification
utilizing smartwatch sensing data in the research. The accuracy, F1-score, and confusion
matrix of the deep learning models were evaluated using these measures.

4.1. Software Configuration

Google Colab Pro+ [84] was utilized in this investigation. A graphics processor
device called the Tesla V100-SXM2-16GB was used to accelerate the training of the deep
learning models. There are several basic deep learning techniques in the Python library,
including the 1D-ResNet-SE and Tensorflow backend (version 3.9.1) [85] and CUDA (8.0.6).
The following Python libraries were the subject of these explorations:

• When reading, manipulating, and interpreting sensor data, Numpy and Pandas were
utilized for data management.

• For plotting and displaying the outcomes of data discovery and model assessment,
Matplotlib and Seaborn were utilized.

• Scikit-learn (Sklearn) was used in experiments as a library for sampling and data generation.
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• Deep learning models were implemented and trained using TensorFlow, Keras,
and TensorBoard.

4.2. Experimental Findings

The UT-Smoke and WISDM-HARB datasets were used to validate the developed
approach against baseline deep learning methods. These deep learning approaches trained
on smartwatch sensing data from the benchmark datasets are described in the following
subsections, which give experimental findings. Summary hyperparameters of all models
conducted in this study are described in Appendix A.

4.2.1. UT-Smoke

The UT-Smoke dataset was used to collect smartwatch sensor data from 11 participants.
Smoking, Eating, Drinking, and Inactive are the four categories of physical activities listed
in Table 4. Using classification performance indicators, the evaluated results of the deep
learning models were measured (Accuracy and F1 measurements).

Several combinations of smartwatch sensor data and other deep learning techniques,
such as CNN and the proposed 1D-ResNet-SE method, can be investigated on the UT-
Smoke dataset. To see the categorization results for the DL models mentioned in Table 4,
F1 of our recommended 1D-ResNet-SE model derives the score of 97.24% for smoking,
98.13% for eating, and 96.44% for drinking when employing accelerometer, gyroscope,
and magnetometer data accordingly. The proposed 1D-ResNet-SE has a greater accuracy
and F1 score than existing smartwatch sensor variations. Therefore, we could infer that
the approach we propose can recognize smartwatch users quite effectively by employing
complex hand movements.

4.2.2. WISDM-HARB

As a second dataset, we used the WISDM-HARB dataset. Smartwatch sensor readings
from 44 persons performing 18 physical activities are included in this dataset. This dataset’s
classification effectiveness is summarized in Tables 5–7.

With the WISDM-HARB dataset, we conducted extensive analysis utilizing two base-
line DL models and proposed the 1D-ResNet-SE model. Three separate sensor configura-
tions made use of data from the smartwatch. For ”Clapping” and ”Teeth”, the proposed
approach obtained the highest F1 (>95 percent) utilizing both accelerometer and gyroscope
data, as shown in Tables 5–7.

Table 4. Identification effectiveness on classifier evaluation of deep learning models using various
combinations of sensor data from UT-Smoke dataset.

Sensor Activity

Recognition Achievement of DL Models Using Sensors Data from UT-Smoke Dataset

CNN LSTM 1D-ResNet-SE

Accuracy±SD F1±SD EER Accuracy±SD F1±SD EER Accuracy±SD F1±SD EER

Acc. Smoking 69.42 (±0.530) 69.35 (±0.545) 32.41 (±1.17) 65.47 (±3.885) 65.00 (±4.409) 31.26 (±1.12) 89.06 (±0.560) 89.04 (±0.577) 13.49 (±0.87)
Eating 80.85 (±0.523) 80.64 (±0.602) 21.22 (±0.70) 79.92 (±2.653) 79.81 (±3.136) 18.35 (±1.26) 88.33 (±5.448) 88.20 (±5.608) 14.60 (±1.29)

Drinking 66.41 (±1.574) 65.86 (±1.746) 33.20 (±1.35) 66.20 (±2.704) 65.75 (±3.436) 43.19 (±1.25) 84.81 (±1.052) 84.77 (±1.090) 15.14 (±1.08)
Inactive 14.61 (±0.560) 5.54 (±1.068) 91.19 (±0.32) 14.82 (±0.109) 6.77 (±0.564) 90.66 (±0.41) 14.54 (±0.273) 8.01 (±1.120) 90.44 (±0.56)

Avg. (all) 57.82 55.35 44.51 56.60 54.33 45.87 69.19 67.53 33.42
Avg. (active) 72.23 71.95 28.94 70.53 70.19 30.93 87.40 87.34 14.41

Gyro. Smoking 51.28 (±0.380) 51.07 (±0.418) 50.53 (±0.69) 45.81 (±0.649) 45.19 (±1.065) 56.99 (±1.86) 68.64 (±5.345) 68.63 (±4.833) 33.74 (±7.32)
Eating 67.03 (±0.394) 66.36 (±0.431) 35.29 (±1.27) 61.62 (±1.548) 59.92 (±1.717) 44.20 (±2.25) 80.42 (±4.736) 80.77 (±4.417) 21.07 (±7.20)

Drinking 43.00 (±0.657) 42.67 (±0.515) 57.71 (±0.54) 37.09 (±3.286) 34.79 (±3.426) 65.06 (±2.30) 46.40 (±5.949) 45.72 (±6.773) 54.97 (±3.14)
Inactive 11.49 (±0.650) 7.03 (±0.904) 92.97 (±0.42) 15.08 (±0.168) 4.40 (±0.250) 91.14 (±0.05) 13.11 (±0.705) 7.21 (±0.479) 90.80 (±0.35)

Avg. (all) 43.20 41.78 59.13 39.90 36.08 64.35 52.14 50.58 50.15
Avg. (active) 53.77 53.37 47.84 48.17 46.63 55.42 65.15 65.04 36.59

Mag. Smoking 54.77 (±3.998) 53.79 (±4.619) 48.86 (±2.92) 57.85 (±2.779) 56.77 (±3.134) 40.62 (±1.43) 78.06 (±10.695) 78.18 (±10.496) 21.49 (±8.35)
Eating 76.10 (±3.206) 76.10 (±3.163) 25.01 (±1.02) 78.77 (±2.733) 78.34 (±2.959) 22.21 (±3.35) 89.81 (±3.266) 89.85 (±3.194) 15.08 (±5.63)

Drinking 44.09 (±4.993) 42.58 (±6.440) 53.45 (±3.64) 63.66 (±1.984) 63.69 (±2.074) 40.68 (±1.62) 76.82 (±7.711) 76.92 (±7.568) 24.07 (±4.91)
Inactive 15.41 (±0.006) 4.11 (±0.003) 90.92 (±0.02) 14.59 (±0.230) 8.64 (±1.611) 90.43 (±0.51) 14.34 (±0.343) 8.69 (±1.485) 89.95 (±0.67)

Avg. (all) 47.59 44.15 54.56 53.72 51.86 48.49 64.76 63.41 37.65
Avg. (active) 58.32 57.49 42.44 66.76 66.27 34.50 81.56 81.65 20.21
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Table 4. Cont.

Sensor Activity

Recognition Achievement of DL Models Using Sensors Data from UT-Smoke Dataset

CNN LSTM 1D-ResNet-SE

Accuracy±SD F1±SD EER Accuracy±SD F1±SD EER Accuracy±SD F1±SD EER

Acc.+ Gyro. Smoking 71.11 (±0.928) 70.92 (±1.067) 29.13 (±0.78) 69.24 (±2.088) 69.29 (±2.119) 9.58 (±1.61) 91.20 (±0.610) 91.19 (±0.612) 9.74 (±1.94)
Eating 83.27 (±0.420) 83.10 (±0.425) 17.74 (±1.23) 84.12 (±2.734) 84.42 (±2.471) 15.51 (±0.38) 91.65 (±1.781) 91.69 (±1.756) 8.42 (±1.66)

Drinking 67.92 (±0.905) 67.58 (±1.027) 32.90 (±1.46) 65.87 (±3.575) 66.06 (±3.352) 31.38 (±2.72) 84.78 (±2.265) 84.73 (±2.367) 13.63 (±0.41)
Inactive 14.21 (±0.829) 6.77 (±1.379) 91.48 (±0.34) 14.61 (±0.352) 8.01 (±0.966) 90.96 (±0.11) 14.14 (±0.608) 8.47 (±1.316) 90.24 (±0.65)

Avg. (all) 59.13 57.09 42.81 58.46 56.95 36.86 70.44 69.02 30.51
Avg. (active) 74.10 73.87 26.59 73.08 73.26 18.82 89.21 89.20 10.60

Acc.+Mag. Smoking 87.14 (±1.329) 87.14 (±1.329) 11.82 (±0.98) 82.27 (±2.381) 82.24 (±2.449) 18.64 (±2.91) 96.63 (±0.489) 96.63 (±0.490) 3.07 (±0.51)
Eating 96.08 (±0.462) 96.07 (±0.449) 4.81 (±0.58) 93.34 (±3.324) 93.40 (±3.181) 5.66 (±2.15) 97.98 (±0.088) 97.96 (±0.082) 2.88 (±0.79)

Drinking 86.80 (±0.974) 86.90 (±0.906) 12.66 (±1.00) 78.65 (±6.253) 78.69 (±6.262) 20.23 (±4.56) 96.47 (±0.237) 96.46 (±0.245) 3.41 (±0.36)
Inactive 15.26 (±0.181) 4.54 (±0.710) 90.94 (±0.04) 14.81 (±0.197) 7.05 (±0.460) 89.98 (±0.42) 14.54 (±0.481) 8.73 (±0.651) 8.38 (± 1.82)

Avg. (all) 71.32 90.04 30.06 67.27 84.78 33.63 76.41 74.95 4.44
Avg. (active) 90.01 54.93 9.76 84.75 64.97 14.84 97.03 97.02 3.12

Gyro.+Mag. Smoking 60.64 (±1.497) 60.54 (±1.645) 40.23 (±3.16) 61.35 (±2.468) 60.59 (±2.604) 38.22 (±4.16) 86.76 (±3.827) 86.79 (±3.738) 17.74 (±4.98)
Eating 81.14 (±1.512) 81.17 (±1.449) 20.61 (±1.47) 81.67 (±1.875) 81.50 (±1.917) 20.29 (±1.46) 87.24 (±4.701) 87.52 (±4.434) 7.71 (±1.80)

Drinking 49.13
(±16.952)

46.86
(±21.449) 47.88 (±3.49) 63.93 (±2.815) 63.79 (±2.591) 40.80 (±2.80) 78.58 (±2.384) 78.60 (±2.304) 20.04 (±4.20)

Inactive 15.10 (±0.577) 4.61 (±0.967) 90.91 (±0.01) 15.01 (±0.206) 6.34 (±1.098) 90.63 (±0.23) 14.43 (±0.162) 8.56 (±1.152) 89.93 (±0.45)

Avg. (all) 51.50 48.30 49.91 68.98 53.06 47.49 66.75 65.37 33.86
Avg. (active) 63.64 62.86 36.24 44.39 68.63 33.10 84.19 84.30 15.16

Acc.+Gyro.+Mag. Smoking 88.68 (±0.492) 88.68 (±0.477) 11.60 (±1.10) 80.40 (±2.335) 80.39 (±2.450) 21.50 (±6.94) 97.24 (±0.280) 97.24 (±0.280) 2.85 (±0.46)
Eating 95.84 (±1.247) 95.83 (±1.246) 5.02 (±0.57) 95.18 (±0.658) 95.18 (±0.613) 5.93 (±2.22) 98.15 (±0.178) 98.13 (±0.179) 2.32 (±0.27)

Drinking 88.16 (±0.916) 88.27 (±0.888) 14.15 (±1.65) 80.18 (±4.504) 80.36 (±4.613) 19.53 (±3.39) 96.54 (±0.511) 96.54 (±0.496) 3.39 (±0.22)
Inactive 15.34 (±0.136) 4.13 (±0.038) 90.90 (±0.01) 14.89 (±0.325) 8.38 (±1.965) 90.57 (±0.56) 14.62 (±0.330) 9.22 (±1.107) 89.92 (±0.68)

Avg. (all) 72.01 69.23 30.42 67.66 66.08 34.38 76.64 75.28 24.62
Avg. (active) 90.89 90.93 10.26 85.25 85.31 15.65 97.31 97.30 2.85

Table 5. Recognition effectiveness on classifier evaluation of deep learning models using WIDSM-
HARB dataset (Acc. and Gyro. sensors).

Activity

Identification Performance on Classifier Evaluation of DL Models Using WIDSM-HARB Dataset (Acc. and Gyro.).

CNN LSTM 1D-ResNet-SE

Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER

Si
m

pl
e

M
ot

io
n Walking 68.14 (±1.230) 67.41 (±1.295) 31.35(±3.92) 78.00 (±3.059) 77.30 (±3.504) 20.84(±3.30) 93.26 (±3.302) 93.35 (±3.131) 10.82(±7.16)

Jogging 74.66 (±2.131) 73.84 (±2.309) 27.69(±2.16) 86.84 (±2.473) 86.62 (±2.518) 14.74(±2.32) 96.25 (±2.100) 96.20 (±2.088) 2.43(±0.49)
Stairs 41.84 (±3.244) 42.13 (±2.911) 56.01(±2.29) 58.04 (±3.625) 56.90 (±3.718) 44.54(±2.57) 82.83 (±7.179) 82.53 (±7.345) 13.01(±8.27)
Sitting 68.47 (±1.366) 67.62 (±1.484) 31.42(±1.68) 67.03 (±2.887) 64.80 (±2.883) 33.28(±3.25) 71.66 (±4.868) 69.90 (±5.767) 25.47(±5.56)

Standing 59.47 (±2.546) 58.81 (±2.539) 41.81(±1.63) 61.53 (±1.138) 58.65 (±1.455) 38.48(±2.43) 64.12 (±8.317) 61.68 (±9.090) 36.11(±4.95)
Kicking 37.53 (±2.361) 36.92 (±1.994) 64.52(±3.56) 46.56 (±2.854) 43.75 (±3.225) 54.15(±1.65) 84.28 (±5.572) 84.36 (±5.362) 17.35(±8.92)

H
an

d
C

om
pl

ex
M

ov
em

en
t

Dribbling 58.55 (±6.655) 57.98 (±6.575) 40.81(±2.00) 75.24 (±1.676) 74.43 (±1.958) 26.65(±2.45) 93.43 (±4.231) 93.35 (±4.284) 9.43(±11.91)
Catch 52.55 (±3.207) 51.03 (±3.199) 53.87(±3.78) 64.22 (±4.014) 62.49 (±4.472) 33.74(±4.20) 94.37 (±4.718) 94.31 (±4.806) 4.89(±1.39)

Typing 76.98 (±1.429) 76.26 (±1.701) 22.08(±1.56) 70.74 (±4.555) 67.79 (±5.454) 28.46(±2.52) 84.69 (±2.886) 83.74 (±3.188) 18.34(±3.93)
Writing 72.06 (±2.128) 71.10 (±2.416) 32.28(±2.80) 70.23 (±1.821) 68.06 (±2.037) 31.26(±3.88) 81.67 (±8.008) 81.10 (±8.612) 38.34(±20.69)

Clapping 78.59 (±3.466) 77.96 (±4.025) 17.48(±3.24) 88.89 (±2.398) 88.55 (±2.590) 12.69(±1.32) 95.99 (±2.523) 95.76 (±2.800) 3.14(±2.36)
Teeth 68.09 (±2.737) 67.14 (±3.101) 31.68(±2.35) 68.64 (±4.315) 67.29 (±4.261) 29.63(±2.89) 95.31 (±1.966) 95.16 (±2.079) 5.31(±1.57)

Folding 37.80 (±1.622) 36.31 (±1.761) 59.93(±2.56) 48.84 (±2.396) 46.15 (±2.343) 51.28(±1.90) 76.12 (±11.614) 75.19 (±12.463) 22.84(±8.31)
Pasta 56.11 (±2.703) 55.01 (±2.727) 43.67(±1.52) 62.89 (±2.473 61.09 (±2.401) 37.88(±2.83) 82.81 (±5.391) 82.50 (±5.598) 15.31(±4.55)
Soup 64.68 (±2.369) 64.21 (±2.512) 34.25(±2.91) 71.31 (±2.613) 69.99 (±3.035) 30.06(±0.76) 88.02 (±6.895) 87.92 (±7.091) 10.69(±1.49)

Sandwich 50.83 (±2.568) 49.43 (±2.252) 47.98(±4.74) 56.83 (±1.992) 53.25 (±2.512) 45.50(±1.13) 78.08 (±1.063) 77.83 (±0.953) 21.99(±2.49)
Chips 50.52 (±2.702) 49.53 (±2.206) 52.60(±2.54) 58.42 (±3.183) 55.94 (±3.239) 38.07(±2.41) 81.20 (±6.487) 80.88 (±6.662) 16.35(±2.72)

Drinking 60.11 (±2.413) 59.51 (±2.591) 40.90(±4.19) 61.94 (±2.148) 59.57 (±2.682) 37.74(±1.33) 81.80 (±1.485) 81.38 (±1.675) 17.02(±1.90)

Average 59.83 59.01 40.57 66.45 64.59 34.94 84.77 84.29 16.05

Table 6. Recognition effectiveness on classifier evaluation of deep learning models using WIDSM-
HARB dataset (Acc. sensor).

Activity

Recognition Effectiveness on Classifier Evaluation of DL Models Using WIDSM-HARB Dataset (Acc.).

CNN LSTM 1D-ResNet-SE

Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER

Si
m

pl
e

M
ot

io
n Walking 52.14 (±1.384) 52.16 (±1.541) 44.87(±3.05) 66.05 (±2.426) 64.99 (±3.000) 38.45(±4.01) 91.91 (±1.623) 91.65 (±1.755) 12.01(±4.26)

Jogging 54.80 (±3.332) 54.32 (±3.556) 46.36(±3.85) 77.74 (±3.976) 77.48 (±4.231) 25.76(±2.69) 93.42 (±1.980) 93.28 (±2.238) 7.10(±2.47)
Stairs 32.28 (±2.522) 31.01 (±2.780) 66.85(±1.16) 45.61 (±3.929) 42.67 (±4.630) 52.93(±2.56) 78.01 (±8.410) 77.24 (±8.826) 20.46(±7.40)
Sitting 64.98 (±2.314) 64.45 (±2.472) 35.50(±1.93) 60.35 (±3.066) 57.48 (±3.784) 39.59(±2.06) 71.55 (±5.009) 70.41 (±5.788) 28.85(±3.33)

Standing 61.24 (±1.972) 59.61 (±2.221) 38.37(±2.54) 56.53 (±2.148) 52.08 (±2.355) 43.65(±1.15) 62.47 (±3.619) 60.96 (±3.654) 36.99(±5.82)
Kicking 28.93 (±2.614) 28.05 (±2.555) 68.49(±1.20) 41.58 (±2.884) 38.70 (±3.460) 59.30(±3.39) 72.67 (±5.045) 71.68 (±5.070) 27.05(±2.53)

H
an

d
C

om
pl

ex
M

ov
em

en
t

Dribbling 44.34 (±1.771) 43.48 (±1.764) 54.72(±1.35) 63.01 (±6.270) 61.11 (±6.266) 38.50(±1.26) 90.96 (±3.829) 90.86 (±3.856) 12.20(±14.56)
Catch 37.40 (±3.813) 36.62 (±3.898) 65.13(±2.53) 57.04 (±4.027) 55.43 (±4.389) 42.97(±2.62) 90.66 (±1.680) 90.72 (±1.544) 19.85(±14.15)

Typing 70.12 (±7.315) 68.85 (±7.755) 29.26(±4.93) 68.77 (±2.418) 65.68 (±2.560) 2.18(±2.71) 77.22 (±5.938) 75.81 (±6.881) 25.46(±7.33)
Writing 64.71 (±1.891) 64.06 (±2.342) 37.97(±3.06) 63.23 (±4.084) 60.84 (±4.719) 37.34(±3.96) 54.76 (±16.852) 52.27 (±17.678) 35.14(±10.76)

Clapping 71.63 (±5.277) 70.78 (±5.572) 29.46(±2.11) 79.82 (±3.143) 79.16 (±3.505) 20.45(±2.23) 93.09 (±2.551) 93.00 (±2.561) 7.03(±2.25)
Teeth 59.26 (±2.407) 58.51 (±2.259) 37.73(±3.23) 63.27 (±2.111) 61.47 (±1.890) 38.69(±3.05) 90.37 (±3.344) 90.34 (±3.345) 7.91(±1.38)

Folding 36.24 (±3.944) 35.30 (±3.842) 63.66(±2.34) 44.42 (±0.754) 41.62 (±0.719) 54.68(±4.95) 79.54 (±3.411) 79.24 (±3.461) 22.39(±2.81)
Pasta 52.12 (±2.994) 51.58 (±2.995) 48.38(±2.25) 56.60 (±2.922) 54.34 (±3.274) 43.61(±3.34) 82.39 (±2.943) 81.93 (±2.987) 27.56(±11.70)
Soup 59.27 (±3.055) 58.43 (±3.125) 42.73(±4.47) 60.63 (±4.157) 58.12 (±4.833) 39.18(±1.01) 82.68 (±6.134) 81.78 (±7.039) 17.38(±7.21)

Sandwich 50.46 (±2.102) 49.33 (±1.517) 50.20(±2.12) 53.28 (±1.784) 50.06 (±1.866) 23.80(±1.76) 74.28 (±1.979) 73.70 (±2.101) 23.80(±1.76)
Chips 47.76 (±2.208) 46.53 (±2.561) 55.04(±3.66) 52.29 (±2.488) 50.14 (±2.893) 24.22(±2.76) 76.91 (±1.069) 76.47 (±1.202) 24.22(±2.76)

Drinking 55.08 (±2.754) 54.03 (±2.571) 45.96(±2.47) 56.44 (±1.570) 53.36 (±1.842) 24.81(±3.13) 74.23 (±3.473) 73.21 (±3.614) 24.81(±3.13)

Average 52.38 51.51 47.82 59.26 53.93 36.12 79.84 79.14 21.12
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Table 7. Recognition effectiveness on classifier evaluation of deep learning models using WIDSM-
HARB dataset. (Gyro. sensor).

Activity

Recognition Effectiveness on Classifier Evaluation of DL Models Using WIDSM-HARB Dataset (Gyro.).

CNN LSTM 1D-ResNet-SE

Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER Accuracy ± SD F1 ± SD EER

Si
m

pl
e

M
ot

io
n Walking 54.72 (±1.465) 54.18 (±1.506) 45.97(±1.50) 49.69 (±4.723) 46.49 (±4.400) 51.33(±4.89) 84.74 (±13.344) 83.92 (±14.802) 7.89(±3.86)

Jogging 58.73 (±2.690) 57.80 (±2.572) 42.06(±2.87) 61.87 (±4.805) 59.95 (±5.992) 38.91(±4.88) 92.74 (±11.612) 92.15 (±12.797) 8.80(±6.26)
Stairs 23.57 (±1.631) 22.37 (±1.524) 76.48(±1.59) 24.48 (±3.510) 21.656 (±2.971) 75.56(±3.52) 83.57 (±8.468) 83.22 (±8.659) 15.12(±6.85)
Sitting 18.53 (±1.513) 17.97 (±1.147) 82.53(±1.63) 09.57 (±0.354) 7.31 (±0.710) 91.07(±0.29) 19.61 (±1.308) 18.00 (±1.280) 81.55(±2.27)

Standing 14.76 (±2.124) 14.22 (±2.384) 86.09(±1.98) 8.118 (±0.802) 05.87 (±1.002) 92.83(±1.15) 20.76 (±6.836) 19.57 (±7.979) 73.52(±8.14)
Kicking 17.07 (±2.259) 16.01 (±2.424) 83.26(±1.97) 25.31 (±4.754) 22.65 (±4.271) 75.62(±4.49) 80.47 (±5.510) 80.06 (±5.909) 18.14(±3.50)

H
an

d
C

om
pl

ex
M

ov
em

en
t

Dribbling 49.88 (±1.678) 48.88 (±1.400) 50.08(±1.88) 60.96 (±4.594) 58.01 (±5.165) 39.32(±4.55) 91.75 (±11.119) 91.51 (±11.570) 3.30(±1.73)
Catch 33.93 (±1.015) 33.61 (±0.900) 66.97(±0.84) 32.37 (±5.311) 29.080 (±5.411) 68.47(±5.36) 92.457 (±7.628) 92.17 (±8.210) 3.76(±0.92)

Typing 26.54 (±1.069) 25.02 (±1.136) 74.55(±1.22) 33.27 (±3.089) 29.61 (±3.073) 67.45(±3.26) 82.84 (±11.221) 82.54 (±11.622) 25.63(±6.83)
Writing 23.84 (±1.954) 22.86 (±2.152) 78.04(±1.46) 34.76 (±5.479) 32.16 (±5.968) 66.74(±5.36) 58.64 (±15.074) 54.18 (±17.788) 25.54(±20.07)

Clapping 77.48 (±2.574) 77.14 (±2.449) 22.94(±2.61) 73.66 (±1.376) 71.98 (±1.735) 26.95(±1.46) 95.37 (±6.640) 95.20 (±6.964) 3.77(±2.49)
Teeth 49.38 (±1.549) 48.38 (±1.764) 50.47(±1.48) 40.86 (±4.84) 37.24 (±4.594) 59.50(±4.63) 92.65 (±2.852) 92.57 (±2.887) 11.24(±5.35)

Folding 11.67 (±1.063) 11.21 (±0.950) 88.86(±0.97) 14.41 (±2.488) 12.81 (±2.683) 86.88(±2.37) 74.17 (±1.693) 73.70 (±2.128) 25.83(±7.36)
Pasta 23.67 (±2.899) 22.61 (±3.101) 77.48(±2.74) 15.32 (±1.698) 11.90 (±1.699) 85.23(±1.69) 81.90 (±2.340) 81.38 (±2.690) 14.71(±2.77)
Soup 34.58 (±2.684) 33.87 (±2.541) 65.77(±2.71) 26.41 (±4.782) 22.86 (±4.585) 74.54(±4.90) 85.69 (±7.019) 85.09 (±7.844) 11.14(±9.50)

Sandwich 19.41 (±0.922) 18.56 (±0.911) 80.71(±0.69) 16.10 (±2.210) 12.42 (±2.770) 84.23(±2.25) 53.65 (±9.941) 51.81 (±10.759) 48.61(±17.12)
Chips 18.25 (±2.270) 17.57 (±1.829) 82.18(±2.31) 14.88 (±4.596) 11.26 (±4.318) 85.71(±4.51) 73.12 (±10.084) 73.25 (±10.004) 27.18(±4.45)

Drinking 25.06 (±1.836) 23.83 (±1.812) 76.07(±1.79) 17.44 (±8.376) 14.10 (±8.025) 83.43(±8.37) 55.03 (±15.631) 53.43 (±16.501) 48.35(±14.77)

Average 32.28 31.45 68.36 31.08 28.19 66.02 73.29 72.43 25.23

5. Research Discussion

This study aimed to present a deep learning-based framework for identifying users
through complicated hand movements using a smartwatch. The proposed approach was
evaluated against two distinct benchmark datasets comprising sensor data of various phys-
ical human activities acquired by smartwatch motion sensors (accelerometer, gyroscope,
and magnetometer). The 1D-ResNet-SE model outperformed previous standard deep
learning techniques for smartwatch-based user identification according to experimental
outcomes. The 1D-ResNet-SE model uses shortcut connections to resolve the network’s
vanishing gradient issue. The proposed model includes SE-ResNet blocks consisting of
Conv1D layers, BN layers, ELU layers, squeeze-and-excitation (SE) modules, and a shortcut
connection. By combining spatial and channel-specific data, the SE-ResNet block improves
identification performance and hierarchically extracts features.

5.1. Impact of Squeeze-and-Excitation Modules

It was hypothesized that the squeeze-and-excitation (SE) module might enhance a deep
learning model’s channel representational capability. This effort necessitates numerous
feature maps and subsequent convolutional procedures. Repetitive information could
exist in a few feature maps. The SE module performs feature recalibration to improve the
significant attributes while inhibiting the less effective ones. Additional experiments were
conducted to compare the introduced 1D-ResNet-SE model versus a modified model that
took out the SE component to explore how the SE module affected the results.

To analyze the improvement, a statistical analysis was performed to find out whether
there are significant performance differences of accuracy between the baseline 1D-ResNet
model and the proposed 1D-ResNet-SE. As suggestion in [86], we perform the Wilcoxon
test [87], which is non-parametric statistical test for pairwise comparing the significant
difference. In the statistical test, we assume that the null hypothesis H0 is as follows: ”There
are no significant difference between the model performances”. When performing the
non-parametric Wilcoxon test, the null hypothesis that all model performances were equal
could be rejected with a significance level of α = 0.05. Hence, the result is statistically
significant when p-value < 0.05.

Tables 8 and 9 report the statistical analysis performed via the Wilcoxon test on the UT-
Smoke and WISDM-HARB datasets, respectively. Based on the UT-Smoke dataset, the sta-
tistical test reveals that the SE module significantly improves accuracy of smartwatch-based
user identification using the sensor data of smoking and drinking activities. For statistical
analysis based on the WISDM-HARB, the analyzed results reveal similarly that the SE mod-
ule can improve the user identification using the sensor data of typing, writing, clapping,
eating sandwiches, and drinking activities with statistical significance.
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Table 8. Wilcoxon test based on the accuracy metrics for model performance comparison on the
UT-Smoke dataset.

Hand Complex
Test Models Accuracy ± SD

Wilcoxon Test

Movement p-Value H0

Smoking 1D-ResNet 93.61 (±0.45) 0.043 reject
1D-ResNet-SE 97.24 (±0.28)

Eating 1D-ResNet 97.19 (±0.21) 0.079 accept
1D-ResNet-SE 98.15 (±0.18)

Drinking 1D-ResNet 92.71 (±0.51) 0.022 reject
1D-ResNet-SE 96.62 (±0.33)

Table 9. Wilcoxon test based on the accuracy metrics for model performance comparison on the
WISDM-HARB dataset.

Hand Complex
Test Models Accuracy ± SD

Wilcoxon Test

Movement p-Value H0

Dribbling 1D-ResNet 92.95 (±1.07) 0.686 accept
1D-ResNet-SE 93.43 (±4.23)

Catch 1D-ResNet 94.36 (±0.58) 0.691 accept
1D-ResNet-SE 94.37 (±4.12)

Typing 1D-ResNet 76.67 (±13.19) 0.039 reject
1D-ResNet-SE 84.69 (±2.89)

Writing 1D-ResNet 53.30 (±15.65) 0.012 reject
1D-ResNet-SE 81.67 (±8.01)

Clapping 1D-ResNet 94.78 (±0.93) 0.043 reject
1D-ResNet-SE 95.99 (±2.52)

Teeth 1D-ResNet 95.00 (±2.66) 0.642 accept
1D-ResNet-SE 95.31 (±1.97)

Folding 1D-ResNet 75.41 (±2.57) 0.633 accept
1D-ResNet-SE 76.12 (±11.61)

Pasta 1D-ResNet 81.01 (±2.44) 0.345 accept
1D-ResNet-SE 82.81 (±5.39)

Soup 1D-ResNet 87.35 (±2.08) 0.728 accept
1D-ResNet-SE 88.02 (±6.90)

Sandwich 1D-ResNet 77.83 (±2.80) 0.043 reject
1D-ResNet-SE 78.08 (±1.06)

Chips 1D-ResNet 80.40 (±5.86) 0.138 accept
1D-ResNet-SE 81.20 (±6.49)

Drinking 1D-ResNet 78.86 (±4.68) 0.025 reject
1D-ResNet-SE 81.80 (±1.49)

5.2. Impact of Sensor Combinations

Each sensor’s usefulness to the smartwatch-based user identification is examined in
this task. Using accelerometer and gyroscope data as independent inputs, we evaluated
the efficiency of the suggested 1D-ResNet-SE model. Utilizing raw accelerometer data
with the proposed model resulted in a superior F1 score compared to gyroscope data for
all hand-based activities. To analyze the impact of sensor combinations, we utilized the
Friedman aligned ranking test [88], which is a non-parametric statistical test for comparing
the significant difference. In addition, we applied the Finner post-hoc test [89] with a
significance level of α = 0.05 to examine whether the differences in the performance of the
model accuracies were statistically significant.

Tables 10 and 11 present the statistical analyses, performed with non-parametric
comparisons that relate to the accuracy metrics of the 1D-ResNet-SE using different sensor
data for user identification. The statistical results indicate that the accuracy performance of
the 1D-ResNet-SE can be improved significantly by using both accelerometer and gyroscope
for smoking, drinking, and eating activities.
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Table 10. Friedman aligned ranking test and Finner post-hoc test based on the accuracy metrics of
the 1D-ResNet-SE model using different sensor data on the UT-Smoke dataset.

Activity Models
Friedman Aligned Finner Post-Hoc Test

Ranking Test p-Value H0

Smoking Acc.+Gyro. 1.1526 - -
Acc. 2.6264 0.0000021 reject

Gyro. 4.3519 0.0000203 reject

Eating Acc.+Gyro. 1.2728 - -
Acc. 2.6168 0.0000036 reject

Gyro. 4.5962 0.0016952 reject

Drinking Acc.+Gyro. 1.0607 - -
Acc. 2.8284 0.0000001 reject

Gyro. 4.0607 0.0000001 reject

5.3. Comparison with Previous Works

The recommended 1D-ResNet-SE model is compared to previously trained models
on the same dataset (WISDM-HARB). Previous research [17] has revealed that using a
machine learning technique called the Random Forest (RF) technique makes it possible
to reach high-performance user identification using smartwatch sensors. Prior work pre-
sented the stratified 10-fold cross-validation approach, which we employed in our study.
Table 12 outlines the comparative findings. The comparison results indicate that the pro-
posed 1D-ResNet-SE model achieved better accuracy than the previous model for most of
the activities.

Table 11. Friedman aligned ranking test and Finner post-hoc test based on the accuracy metrics of
the 1D-ResNet-SE model using different sensor data on the WISDM-HARB dataset.

Activity Models
Friedman Aligned Finner Post-Hoc Test

Ranking Test p-Value H0

Dribbling Acc.+Gyro. 1.7678 - -
Acc. 3.3941 0.346 accept

Gyro. 3.3234 0.786 accept

Catch Acc.+Gyro. 1.0606 - -
Acc. 3.8890 0.043 reject

Gyro. 3.5355 0.225 accept

Typing Acc.+Gyro. 1.9091 - -
Acc. 3.6769 0.345 accept

Gyro. 2.8991 0.686 accept

Writing Acc.+Gyro. 2.1920 - -
Acc. 3.6062 0.501 accept

Gyro. 2.6870 0.345 accept

Clapping Acc.+Gyro. 1.3435 - -
Acc. 3.8184 0.079 accept

Gyro. 3.3234 0.893 accept

Teeth Acc.+Gyro. 1.6971 - -
Acc. 2.7577 0.043 reject

Gyro. 4.0305 0.138 accept

Folding Acc.+Gyro. 2.9698 - -
Acc. 2.4041 0.982 accept

Gyro. 3.1113 0.502 accept

Pasta Acc.+Gyro. 1.4142 - -
Acc. 3.4648 0.079 accept

Gyro. 3.6062 0.892 accept

Soup Acc.+Gyro. 1.8384 - -
Acc. 3.5355 0.041 reject

Gyro. 3.1112 0.501 accept

Sandwich Acc.+Gyro. 1.0607 - -
Acc. 3.5355 0.138 accept

Gyro. 3.8891 0.042 reject

Chips Acc.+Gyro. 1.4849 - -
Acc. 2.4042 0.041 reject

Gyro. 4.5962 0.015 reject

Drinking Acc.+Gyro. 1.1313 - -
Acc. 3.1113 0.043 reject

Gyro. 4.2426 0.021 reject
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Table 12. The comparison results of the proposed 1D-ResNet-SE model and the previous work model.

Activity

Identification Performance (%Accuracy)

Acc. Gyro. Acc.+Gyro.

Random
Forest [17] 1D-ResNet-SE Random

Forest [17] 1D-ResNet-SE Random
Forest [17] 1D-ResNet-SE

Si
m

pl
e

M
ot

io
n Walking 75.10 91.91 67.00 84.74 78.90 93.26

Jogging 75.00 93.42 74.30 92.74 82.10 96.25
Stairs 52.40 78.01 39.20 83.57 58.70 82.83
Sitting 70.40 71.55 30.10 19.61 69.30 71.66

Standing 64.10 62.47 27.00 20.76 61.20 64.12
Kicking 54.30 72.67 38.30 80.47 59.80 84.28

Average 65.22 78.34 45.98 63.65 68.33 82.07

H
an

d
C

om
pl

ex
M

ov
em

en
t Dribbling 72.30 90.96 74.80 91.75 80.30 93.43

Catch 69.10 90.66 71.30 92.46 75.40 94.37
Typing 81.20 77.22 51.20 82.84 84.20 84.69
Writing 79.60 54.76 47.60 58.64 79.10 81.67

Clapping 83.40 93.09 73.90 95.37 85.30 95.99
Teeth 70.00 90.37 56.30 92.65 76.10 95.31

Folding 60.00 79.54 38.80 74.17 63.00 76.12
Pasta 67.20 82.39 38.10 81.90 71.60 82.81
Soup 74.10 82.68 50.40 85.69 76.60 88.02

Sandwich 61.90 74.28 37.60 53.65 62.10 78.08
Chips 62.60 76.91 38.70 73.12 62.40 81.20

Drinking 63.90 74.23 41.30 55.03 65.30 81.80

Average 70.44 80.59 51.67 78.11 73.45 86.12

6. Conclusions and Future Studies

Using complicated hand gestures and a smartwatch, this study proposes a heteroge-
neous framework for user identification. Two independent benchmark datasets comprising
sensor data from smartwatch motion sensors acquired during diverse individual biological
movements were used to evaluate the system (accelerometer, gyroscope, and magnetome-
ter). Three deep learning models were used to classify each dataset’s sensor data, including
the standard CNN and LSTM and our proposed 1D-ResNet-SE model.

Metrics such as accuracy and the F-measure were used to determine the experimental
outcomes. Classifiers were compared to see how well they performed. Across both datasets,
the proposed 1D-ResNet-SE classifier outperformed every other classifier by a wide margin.
For user identification, the UT-Smoke dataset delivered high performances from complex
hand movements such as eating, smoking, and drinking. We used all three smartwatch
sensors (accelerometer, gyroscope, and magnetometer) to classify eating behavior in the UT-
Smoke dataset to get a great outcome. Each DL classifier employed in this study performed
well with accelerometer data when evaluating its identification capability as a smartwatch
sensor. As an alternative, the gyroscope and magnetometer could be utilized to identify
individuals. Similar to the WISDM-HARB dataset, the three DL classifiers were examined
and assessed using smartwatch sensor data from 18 physical activities. The 1D-ResNet-SE
classifier surpassed the other baseline DL classifiers in the investigation. User identification
also gave valuable insights into the nature of users’ actions. Using a smartwatch to identify
a user was an effective solution for this kind of action.

Even though the existing smartwatch-based user identification sensor method achieves
good results, future studies might benefit from researching different replacements for
the proposed solution. Another option is to include a wide range of activities, such as
more complicated and transitional tasks, within a systematic framework to increase user
identification. In the future, a complete smartphone and smartwatch dataset could be
evaluated that includes numerous body locations for smartphone placements, since the
smartwatch sensor data are only investigated in one position in the current study. Position-
based user identification can be used to enhance identification outcomes in this manner.
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Appendix A

Table A1. The summary of hyperparameters for the CNN network used in this work.

Stage Hyperparameters Values

Architecture

Convolution
Kernel Size 5

Stride 1
Filters 64

Dropout 0.25
Max Pooling 2
Flatten -

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of
Epochs

200

Table A2. The summary of hyperparameters for the LSTM network used in this work.

Stage Hyperparameters Values

Architecture LSTM Unit 128
Dropout 0.25
Dense 128

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Table A3. The summary of hyperparameters for the 1D-ResNet network used in this work.

Stage Hyperparameters Values

Architecture

Convolutional Block

Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
Activation ReLU
Max Pooling 2

Residual Block × 8

Convolution
Kernel Size 5

Stride 1
Filters 32

Batch Normalization -
Activation ReLU

Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
Global Average Pooling -
Flatten -
Dense 128
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Table A3. Cont.

Stage Hyperparameters Values

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Table A4. The summary of hyperparameters for the 1D-ResNet-SE network used in this work.

Stage Hyperparameters Values

Architecture

Convolutional Block

Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
Activation ELU
Max Pooling 2

SE-ResNet Block × 8

Convolution
Kernel Size 5

Stride 1
Filters 32

Batch Normalization -
Activation ELU

Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
SE Module -
Global Average Pooling -
Flatten -
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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