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Abstract: The rapid development of Internet of Things (IoT) applications calls for light-weight IoT
sensor nodes with both low-power consumption and excellent task execution efficiency. However,
in the existing system framework, designers must make trade-offs between these two. In this
paper, we propose an “edge-to-end integration” design paradigm, Butterfly, which assists sensor
nodes to perform sensing tasks more efficiently with lower power consumption through their
(high-performance) network infrastructures (i.e., a gateway). On the one hand, to optimize the
power consumption, Butterfly offloads the energy-intensive computational tasks from the nodes to
the gateway with only microwatt-level power budget, thereby eliminating the power-consuming
Microcontroller (MCU) from the node. On the other hand, we address three issues facing the
optimization of task execution efficiency. To start with, we buffer the frequently used instructions
and data to minimize the volume of data transmitted on the downlink. Furthermore, based on
our investigation on typical sensing data structures, we present a novel last-bit transmission and
packaging mechanism to reduce the data amount on the uplink. Finally, we design a task prediction
mechanism on the gateway to support efficient scheduling of concurrent tasks on multiple MCU-free
Butterfly nodes. The experiment results show that Butterfly can speed up the task rate by 4.91 times
and reduce the power consumption of each node by 94.3%, compared to the benchmarks. In addition,
Butterfly nodes have natural security advantages (e.g., anti-capture) as they offload the control
function with all application information up to the gateway.

Keywords: IoT; data efficiency; wireless sensing; ultra-low-power; security

1. Introduction

Ultra-Low-Power (ULP) consumption and high task efficiency are two urgently needed
for Internet of Things (IoT) sensor nodes. In the current architecture, however, the task
performance of IoT sensor nodes is tightly coupled with its power consumption, and thus
most of the IoT applications have to make trade-offs between them. The reason is that, on
existing sensor nodes, all the tasks are executed using a general-purpose MCU, and thus
the optimization for power consumption is essentially realized at the expense of high MCU
working speed.

In state-of-the-art studies, a rich set of methods for low-power sensor nodes design are
proposed in two ways. One branch focuses on switching the working mode of the MCU,
aiming to reduce average power overhead of the node by limiting the high-speed operating
of MCU. For instance, ULP sensor nodes like WISP [1], MOO [2] and LILAC [3] suffer from
MCU working power at the milliwatt-level (mWs) and have to lower their duty cycle to
save energy [4,5]. However, the low duty cycle inversely limits the task execution efficiency.
Another direction is proposed based on edge computing [6–8] where heavy tasks can be
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offloaded from sensor nodes to a high-performance gateway, thereby optimizing the power
and task efficiency of the nodes. However, making offloading decisions requires the MCU
as well as the programs running on it, which brings extra computing and power overhead,
and thus becomes the bottleneck of further reducing the power consumption.

The fundamental cause for these aforementioned issues is that the existing optimiza-
tion efforts are presented for the MCU-based sensor node architecture, which always needs
to run embedded programs with either high power or low duty cycle. With this fact in our
mind, in this paper, we ask if we can introduce a new architecture that can achieve high
task efficiency without incurring the high power of MCU. To this end, we should address
two basic issues, i.e., (1) how to efficiently realize sensing function without involving the
MCU, and (2) how to achieve high task efficiency on such a dumb MCU-free sensor node.

In this paper, we propose Butterfly, a methodology for the design of lightweight
sensor nodes with both ULP overhead and high task efficiency. Our basic idea is to
design a µW level digital circuit with Finite State Machine (FSM) functions to replace the
general MCU for sensors control and offload all remaining tasks to an edge gateway via
ULP communications. Then, by designing an efficient data transmission and utilization
mechanisms in the FSM, Butterfly can minimize the volume of data required by computing
offloading, and thus minimize the communication time cost to support rapid task execution
on µW level ULP Lightweight IoT sensor nodes (LSN)s. However, to turn our butterfly
design into a practical working system, we need to address the following three technical
obstacles that need to be settled urgently.

First, it is non-trivial for an LSN to read sensors efficiently without a general MCU.
Specifically, most digital sensors utilize computer bus interfaces (In the initial state, we
consider controlling digital sensors via digital bus interfaces. For analog sensors, an
analog-to-digital conversion unit can be added to the circuit in practical applications.) for
interactions, which were once accessed by the MCU with running embedded programs.
However, as the MCU is removed for ULP design, it is hard for an LSN to provide required
bus signals to access on-board sensors efficiently. Specifically, the possible approach might
be to utilize the gateway to directly control sensors on LSNs via wireless signals, where
the LSN converts the received wireless signal into bus signals for sensor control. However,
a complete bus interface contains multiple signal lines with strict timing. Transmitting
the full information of bus signals will bring a huge load on wireless communication
and ultimately become obstacles to the efficient sensor reading. To settle this issue, we
designed an Efficient Bus Signal Transmission (EBST, Section 4) mechanism to convert
wireless gateway signals into Serial Peripheral Interface (SPI) bus signals for sensor control
with high efficiency. Compared with the previous work [9], this mechanism achieves four
times higher transmission efficiency.

Second, it is hard for an LSN to achieve rapid task execution under a given commu-
nication data rate with frequent gateway interactions for IoT applications. Specifically,
since application functions and sensor control are separately operated on the gateway and
LSN, it requires frequent interactions between them with diverse data formats according
to various IoT applications. However, the LSN has a limited data rate due to the limited
power budget, which inevitably obstructs the rapid execution of sensing tasks. To solve
this challenge, we design a Data-Efficient Sensor Control (DESC, Section 5) mechanism
with simple FSM logic to cut down communication overhead on both downlink and uplink
aspects. By buffering frequently used commands and instructions in downlink and remov-
ing sensory data redundancy in the uplink, an LSN can perform mass sensing tasks with
minimized time cost on data transmission, thus significantly accelerating the task rate.

Third, it is difficult for the edge gateway to manage tasks on multiple LSNs when they
need to be operated in parallel. It may lead to possible task failures caused by multiple LSNs
that upload sensory data simultaneously, which cause data collisions. To settle this issue, we
design a task prediction mechanism on the edge gateway, which calculates future bandwidth
occupation for each LSN based on its running mode, clock frequency and recorded time
mark in previous data uploading. By this, the edge gateway can effectively predict the time
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available for future communication resources to better manage parallel tasks on multiple
LSNs and further improve efficiency. The details are presented in Section 6.

We implement a Butterfly prototype system for the proof of concept, i.e., multiple
Butterfly LSNs based on ULP FPGA (IGLOO nano-AGLN060) and an edge gateway based
on software-defined radio (USRP-2922). We conduct extensive field experiments and
simulations with the prototype system. The results demonstrate that a Butterfly LSN can
sample a 12-bit ADC at 137 kHz with only 703 µW consumption, which only needs 5 nJ
power for each sample. In addition, compared with traditional ULP sensor nodes, the LSN
can accelerate 4.91 times the maximum task rate and reduces the power consumption by
94.3%, respectively. In addition, as all application information is shifted to execute on the
gateway, the LSN achieves anonymity security, as it contains no private information, thus
anti-capture for attackers. The main contributions made in this work are as follows:

• We propose a new methodology for the design of lightweight IoT sensor nodes, which
has µW level power consumption, rapid task performance and anonymity security.

• We design an efficient bus signal transmission mechanism for sensor control on MCU-
free LSNs, which achieves four times the efficiency higher than the previous work.

• We design a data-efficient sensor control mechanism, which removes data redundancy
in both downlink and uplink aspects, and thus further accelerates the task rate.

• We design a task prediction mechanism to manage sensing tasks on multiple LSNs,
which can significantly improve the execution efficiency of concurrent tasks.

The rest of this paper is organized as follows: in Section 2, we introduce state-of-the-
art related works and provide a background for our design. In Section 3, we present our
system overview. Next, in Section 4, we introduce the detailed design towards efficient
signal transmission, which corresponds to the first challenge in the introduction. Then, in
Sections 5 and 6, we present the design of data-efficient sensor control and task prediction
mechanisms, which correspond to the second and third challenges in the introduction,
respectively. Furthermore, the implementation and evaluation of Butterfly are illustrated in
Sections 7 and 8, respectively. Next, we discuss security and other concerns in Section 9.
Finally, we conclude this paper in Section 10.

2. Related Works

Ultra-low-power consumption and excellent task performance are two coveted in-
dicators that are pursued by IoT sensor nodes, where the former enables the node to
achieve longer battery life, prolong maintenance cycles and can thus significantly reduce
application costs under large-scale needs. In addition, the latter gives the nodes a better
versatility to meet the requirements of diverse applications. Under the needs of large-scale
applications, a rich set of existing schemes have been proposed, aiming to reduce the power
consumption of IoT sensor nodes, however, all of which are achieved at the expense of
device performance. For a better presentation, we present the state-of-the-art related works
in two ways as follows:

(1) Work mode optimized on MCU. This branch focuses on optimizing the power con-
sumption of the node by adjusting the operating mode of its MCU, such as WISP [10],
MOO [2], LILAC [3] and many other battery-less nodes [11–13] which can even work
with ambient power [14–18]. For these works, the indispensable design lies in the
operating state control of MCU, where methods of duty-cycle [19] and DVFS [20] are
useful to reduce its average power consumption by switching the MCU’s operating
state or clock frequency. However, since the total workloads for the same tasks remain
unchanged, such approaches hardly cut down the total power consumption in the task
execution but may even bring additional energy overhead due to frequently switching
the working states of MCU. Finally, the above approaches principally reduce the
average running speed of MCU, which eventually obstructs the node to achieve a
good task efficiency.

(2) Computing offloading. This direction focuses on computing offloading that utilizes
gateways to share part of the computing tasks with the node and optimize its power
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consumption. There are representative works like literature [21–25], where many use-
ful methods are proposed to share tasks with sensor nodes and the edge gateway for
lower power overhead. However, as the decision of offloaded tasks requires additional
program functionality in the MCU, it brings extra computing and communication
loads and thus becomes the bottleneck of further reducing the power consumption.

The major barrier that obstructs the above works to achieve both ULP design and
high task efficiency is the MCU-based architecture, where each IoT sensor node is gener-
ally operated as an autonomous and independent system, as shown in the Figure 1. The
MCU runs a built-in embedded program for sensor control to control the node for sensing
and data collection. In recent years, benefits by ULP sensors [26,27] and ULP commu-
nications (e.g., backscatter [28–31]), the power overhead of sensing, and communication
can drop to the µW scale. However, the MCU, which is in essence a microcomputer in
Harvard or Von Neumann architecture [32] that executes all operations by a complex series
of steps (e.g., fetching, decoding, addressing), becomes the final obstacle for ULP sensor
nodes to further optimize power overheads. In principle, all power optimizations on MCUs
are achieved at the expense of their running speed, which inevitably sacrifices the task per-
formance of IoT sensor nodes. For instance, in [33], the authors adopt a duty-cycle scheme
on an MSP 430 MCU to help the node operate under the RF power supply. However, to
satisfy the ULP requirements, the MCU splits a simple CRC16 calculation into 16 parts and
takes more than 6 s to complete (which only needs 840 µS originally).

Figure 1. A general operating architecture of IoT sensor nodes, where each node works as an
autonomous subsystem that functioned by an on-board MCU running embedded programs, i.e., read
sensors and upload the collected sensory data. The gateway works as a data relay that collects the
uploaded sensory data from distributed nodes and provides them for corresponding IoT applications.

To settle the high power issue of MCU, recently, the Radio-to-Bus (R2B) [9] designed
a set of circuits to convert RF signals into SPI Bus signals for sensor control directly via
a gateway. By this, general MCU can be removed from the node and achieves 4.5 times
lower power overhead than traditional works. However, to achieve sensor control without
the help of a general MCU, it needs to convey the complete information of bus signals,
thus bringing huge time costs on wireless transmission and eventually limiting the task
efficiency. Specifically, this work adopts a PIE encoded signal to convey both the data and
clock information of the SPI bus in a symbol. Considering the maxim processable frequency
of wireless receiver on the node is f , then the shortest interval between logic high and logic
low transitions could be defined as τ (τ = 1

f ). In this work, it requires 5 τ to transmit the
symbol of data 1 (4 τ for logic high and 1 τ for logic low) and 3 τ to transmit the symbol
of data 0 (2 τ for logic high and 1 τ for logic low) . Hence, the achievable data rate is only
1
4 f (25% of the circuit process capabilities). In addition, to handle sensor control in multi
nodes scenarios, mass extra information is required to be transmitted for system control,
e,g., chip select, node ID, , etc., which further reduce the transmission efficiency. As a result,
to transmit 1 bit of valid bus data to the sensor, it usually takes 10 to 20 τ in the time cost.

In summary, to the best of our knowledge, there is no successful solution that achieves
ULP designs on IoT sensor nodes without sacrificing the task execution efficiency. To achieve
both ULP design and high task efficiency simultaneously, it is necessary to design a µW
scale logic circuit for sensor control that replaces the general MCU and is also vital to build-
ing up efficient data transfer and utilization mechanisms that cut down communication
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overhead. The design should effectively avoid excessive dependencies with the gateway
without the help of a general MCU.

3. Butterfly in a Nutshell

The core idea of Butterfly design is to offload all task logic from distributed LSNs
to a centralized gateway and remove data redundancy in the communication links. By
this, both computing and communication overhead on LSNs can be significantly reduced,
which minimizes its power consumption while keeping good task efficiency. As depicted
in Figure 2, a Butterfly system is typically constituted by a number of Butterfly LSNs and
an edge gateway.

Figure 2. The architecture of a Butterfly system, which consists of a gateway and distributed LSNs
connected via a wireless network.

3.1. Butterfly LSN

A Butterfly LSN works as an interpreter that connects the gateway with its deployed
sensors, which consists of the following three units:

(1) Efficient Bus Signal Transmission (EBST): For a Butterfly LSN to execute tasks rapidly,
the EBST unit plays an essential role, handling efficient signal converting in both
downlink and uplink aspects. Specifically, on the downlink side, the EBST decodes
the received wireless signals in an efficient way and converts it into standard computer
bus signals, which the LSN and deployed sensors can recognize. In addition, in the
uplink aspects, the sensory data are conveyed to the gateway via backscatter with
ultra-low-power consumption. With efficient signal converting, the EBST unit gives
an essential foundation for the LSN to control sensors and execute sensing tasks
rapidly. Compared with the previous work [9], our EBST theoretically improves 400%
efficiency in downlink bus signal transmission (as described in Section 4.1).

(2) Data-Efficient Sensor Control (DESC): The DESC unit is the key element that further
accelerates the task rate of sensor reading for LSNs. By buffering the frequently
used commands in input aspects and simplifying the sensory data by its formats in
output aspects, a DESC can minimize the amounts of transmitted data between the
gateway and LSNs in both downlink and uplink aspects. By this, even a small amount
of data transmission can support the execution of a large number of tasks, thereby
further improving task performance and efficiency. The detailed design is presented
in Section 5.

(3) Onboard sensors: The Commercial Off-The-Shelf (COTS) sensor can be directly pur-
chased online or offline. We connect the sensor to our LSN for feasibility verification
and performance evaluation.

3.2. Butterfly Gateway

The gateway works as a master that coordinates the access to all sensors deployed on
one or multiple LSNs in the system, which consists of the following four components:
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(1) Commands Encoding unit: This unit encodes downlink commands for the LSN
control. According to the application requirements and current task status, this unit
issues corresponding commands to control the target LSN to perform operations such
as buffer writing, sensor reading, etc.

(2) Task Progress Prediction (TPP): The TPP unit is a key component that is designed to
predict the task execution states of each LSN to better utilize resources in a gateway
network and further improve the task efficiency. Specifically, based on the running
speed of each LSN, this unit can calculate the possible timing for future bandwidth
occupation, which also indicates the available part that the gateway can issue com-
mands to execute other tasks simultaneously. Such a design can effectively reduce
the task delay and cut down the waiting time for sensory data receiving, thereby
effectively improving the execution efficiency of concurrent tasks. In addition, it can
efficiently avoid possible data collisions caused by multi-LSNs uploading the data
simultaneously. The detailed designs are discussed in Section 6.

(3) Sensory data decoding: This unit is designed to decode the uploaded sensory data
and provide it for corresponding IoT applications through the application interface.
At the same time, the decode results are also provided to the task prediction unit to
obtain current task progress of the target LSN.

(4) Application interface: The interface for IoT users to enter the requirements for specific
IoT applications, e.g., reading an accelerometer at 1.2 kHz for 10 s on a specific LSN.
Based on the recorded requirements, the gateway controls the target LSN to execute
corresponding sensing tasks accordingly.

In the following three sections (Sections 4–6), we discuss the design of the three key
units: Efficient Bus Signal Transmission (EBST), Data-Efficient Sensor Control (DESC),
and Task Progress Prediction (TPP) in detail, which correspond to the three challenges we
mentioned in the Introduction (Section 1).

4. Efficient Bus Signal Transmission (EBST)

Efficient signal transmission is the basis for rapid task execution. As most digital
sensors can be accessed by computer bus signals (e.g., I2C, SPI), an efficient RF signal to
bus signal conversion and transmission mechanism is required to be designed on the LSN
to replace the MCU for efficient interactions with on-board sensors, which transmit control
commands and data for the target sensor in the downlink and return sensory data to the
gateway in the uplink.

At the initial state, we take the transmission of the SPI bus signal as an example,
and the design in downlink (bus signal input) and uplink (bus signal output) aspects are
presented as follows.

4.1. Downlink Signal Transmission

An ordinary SPI Bus interface mainly contains four kinds of lines, i.e., a signal line
for Serial Data Input (SDI), a signal line for Serial Data Output (SDO), a signal line for syn-
chronous clock input (SCK) and one or multiple signal lines for chip select (CS) input (each
deployed sensor needs a CS line for chip select control). In downlink transmission (signal
input), at least three kinds of signals need to be transmitted (SDI, CLK and CS), which
would bring a huge load in wireless communication and ultimately sacrifice task execution
efficiency (as described in Section 2). Hence, we consider only transmitting the information
on the data input line in the SPI Bus interface and generating the synchronous clock locally
on the LSN. For the CS signal, it can be generated via instructions in digit circuit (the details
are present in Section 5). The detailed design is presented in the following:

In the data line, data ‘1’ and data ‘0’ are represented by logic high and logic low,
respectively. In addition, the synchronous clock is designed for the sensor to receive the
data correctly, where each bit of the data are recognized at the rising edge (mode 0) or
falling edge (mode 1) of the clock [34]. To generate SPI signals efficiently, we designed
a circuit to decode the received RF signal, where each τ of wireless signal transmission
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can generate one bit of bus data (considering that the shortest duration of logic high and
logic low in the baseband signal is τ. In the corresponding, the maximum signal changing
frequency that the LSN needs to handle is 1

τ ).
As illustrated in Figure 3, in the downlink aspect, the received RF signals are first

decoded into baseband signals by a passive envelope detection circuit with ULP design (we
utilize the same circuit like [9], which works in few µWs). In order to improve the transmis-
sion efficiency, we directly utilize the decoded baseband signal as the data line of the SPI
bus. In this way, the gateway only needs to modulate the signal of SPI data on the carrier
through Amplitude Shift Keying (ASK), and the LSN can directly get the corresponding
signal after envelope detection, thus achieving the 1 to 1 transmission efficiency from
wireless signal to bus data.

Figure 3. In the downlink, the LSN efficiently converts gateway wireless signals into on-board SPI
bus signals for sensor access.

Next, to generate the synchronous clock, we set a local internal clock that has the same
period (τ) with the downlink wireless signal. In order to keep the synchronization, we
design a synchronization frame (110101) and a synchronizer. Specifically, the synchroniza-
tion frame will be transmitted at the beginning of each downlink packet. In addition, in a
large data package, the synchronization frame will be sent again after every (N) bit of data
transmission to avoid possible data error caused by frequency deviation. As a result, we
obtain the SPI data and clock signals as

fdata(t) =
{

Hlevel , 0 ≤ t < τ (Data 1)
Llevel , 0 ≤ t < τ (Data 0)

(1)

fclock(t) =
{

Hlevel , 1
4 τ ≤ t < 3

4 τ

Llevel , 0 6 t < 1
4 τ & 3

4 τ 6 t < τ
(2)

where Hlevel and Llevel denote the logic-high and logic-low voltages, respectively; fdata and
fclock denote the data and clock signals in the SPI bus, respectively.

Based on the above design, we have obtained the 1:1 transmission efficiency of wire-
less data to bus data, which is 400% more efficient than the previous work [9]. Since the
minimum change interval (τ) between the logic high and logic low in the baseband remains
the same, which brings the same processing load for the envelope detection circuit, thus
requiring no need for circuit parameter modification and avoiding the increase of power
consumption to the rapid rise of transmission rate. As a result, compared to the previ-
ous work, we have theoretically reduced the time cost by 75% for each bit of bus signal
transmission by using the same envelope detection circuit.

Finally, in order to further improve the task efficiency, the generated bus signal will
not be directly used for sensor control but first sent to the state machine for management,
which buffers the common data and removes data redundancy to minimize the required
amount of data transmission in the wireless channel. Such progress is discussed in detail
in Section 5.

4.2. Uplink Signal Transmission

In the uplink phase, we employ the backscatter communication [28] to convey the
uploaded bus data to the gateway with ultra-low-power consumption. As illustrated in
Figure 4, we utilize SPI mode 0 to output the de-redundant (as described Section 5) sensory
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data for uplink, i.e., the output of each bit of data is driven by the falling edge of the clock.
To prevent the backscattered uplink signal from being swamped by the gateway carrier
with much higher amplitude and power, we mix the bus data signal with the clock signal
to increase the baseband frequency so that the backscattered signal can be shifted away
from the carrier in frequency. The baseband signal changes the antenna impedance by
controlling the on/off of a N-type MOSFET (N-MOS) switch, thus modulating the signal
on the carrier provided by the gateway. Considering that the carrier frequency is f0, the
clock frequency is fc, and the signal change frequency on the data line is fd, the uplink
backscatter frequency fb can be expressed as:

fb = f0 + fc + fd (3)

Figure 4. In the uplink aspects, the LSN uploads the de-redundant sensory data to the gateway via
ultra-low-power backscatter communication.

5. Data-Efficient Sensor Control (DESC)

One major barrier that obstructs the MCU-free ULP sensor nodes from executing
tasks efficiently is the requirement of mass data transmission. Specifically, as the MCU
is removed for ULP consumption, it causes heavy reliance on the gateway as the node
cannot run embedded programs and control on-board sensors locally. In the literature [9],
each step of sensor operations can only be achieved by issuing the gateway commands
and thus brings huge communication overhead. For instance, if the reading of a deployed
sensor contains operations like Chip Select (CS), read command input, read register address
input and sensor data readout, as each operation is required to be executed by a wireless
command with 16-bit length, it causes 64 bits of data transmission for a single sensor
reading operation. At the same time, the sensory data uplink also needs to be accompanied
by a large number of protocol transmissions (e.g., Preamble, device ID, etc.). Ultimately,
although the design of the MPU-Less node brings advantages in ULP overhead, the huge
overhead in both uplink and downlink transmission also causes obstacles for the rapid
execution of sensing tasks. In order to avoid such a bad situation, we design a Data-Efficient
Sensor Control (DESC) scheme in both the input and output sides for sensor interaction,
buffering frequently used commands and removing redundancy in the sensory data. The
detailed design is presented as follows:

5.1. Control Input Buffering

We observe that the control logic is fixed for the same sensor in general. Hence, there
is no need to issue the commands with the full control sequence for the same sensor in
every sampling. To this end, we designed a state machine logic to achieve efficient sensor
control by buffering the control logic for every onboard sensor, as shown in Figure 5. The
designed four working states in the FSM are as follows:

• Standby (flag = 00). When the LSN is powered on, it initially goes to the stand by state
for commands receiving and will jump to another three states if the corresponding
command is received. In addition, the gateway can also control an LSN from other
states to jump to the standby state by issuing the standby (ST) command.

• Buffer Writing (flag = 01). The buffer writing state is a necessary state before a LSN
performs sensor control, which is designed to buffer the frequent used information
and thus save bandwidth in future operations. Specifically, in this state, the gateway
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can write the control sequence of a sensor into the buffer of the target LSN, with which
all required underlying signal (including the required input signal in SPI interface)
can be generated for sensor control. In addition, the configuration of sensory data
de-redundancy in the uplink channel is also written by the gateway in this state. By
issuing a buffer writing (BW) command, a gateway can transfer the target LSN into
the buffer writing state; after that, the corresponding sensor can be operated with
minimized communication overhead.

• Loop Scheduling (flag = 10). In this state, the LSN cyclically reads with one or
more sensors selected, minimizing communication overhead. A Loop Scheduling (LS)
command with loop configurations can transfer an LSN into this state, where the target
sensors are sampled under the loop configuration—for instance, if the configuration
represents reading three selected sensors for 500 cycles at 25 Hz. When received,
the LSN can automatically read corresponding sensors for 500 times at the defined
speed and upload the results after de-redundancy (as described in Section 5.2). For
the gateway, it receives the uploaded sensory data and calculates the time mark of
each sample based on the preset sample rate to recover the complete information of all
sensory data. In this way, a large amount of complete sensor data can be obtained with
minimized communication overhead. In addition, if the application needs, the gateway
can issue an ST command or random scheduling (RS) command to interrupt the sensor
reading and turn the LSN state into standby or random scheduling, respectively.

• Random Scheduling (flag = 11). In this state, the gateway can control sensors on the
target LSN in a random sequence with minimized overhead. Specifically, in this state,
each bit of the gateway command will correspond to the scheduling decision of a
sensor, where 1 means read the current sensor and 0 means skip for the next sensor. For
a better understanding, we make an example in Figure 6. For instance, if the gateway
sends 010100111 to an LSN with three sensors selected to operate, it means read the
2-nd sensor in the first loop, read the 1-st sensor in the second loop, and read all
sensors in the third loop. By this, each sensor can be decided to read or skip with only
1-bit of command transmission, ensuring a random order of sensor reading for the
requirements of various IoT applications while minimizing communication overhead.

Figure 5. The main states and transfer logic of a Butterfly LSN.

Based on the above design, the downlink data overhead can be greatly reduced for
various IoT applications, thus achieving data-efficient task execution with ultra-low power
consumption. In addition, for security consideration, the buffered data are only related
to the control of Commercial Off-The-Shelf (COTS) sensors, which are public and do not
contain any application logic and sensitive information. Hence, the LSN has natural security
advantages (e.g., anti-capture) as all application-related information is offloaded to the
gateway and the locally stored data are useless for attackers.
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Figure 6. In the random scheduling mode, each bit of the scheduling sequence can determine the
read or skip the operation for a selected sensor (0 for skip, 1 for read), thus significantly reducing
communication overhead and improving task efficiency.

5.2. Sensor Output Simplification

The design of sensor output simplification mechanism consists of two parts, i.e.,
sensory data de-redundancy and data packaging, as follows:

5.2.1. Sensory Data De-Redundancy

We observed that the sensory data output contains a lot of redundancy where most
data bits will remain unchanged in two consecutive outputs from the same sensor. Specifi-
cally, the outputted sensory data have a certain functional relationship with the physical
quantity as the sensor monitors, and the output data change a little if the change of the
monitored physical quantity is far from the sensing range. In addition, many sensor out-
puts are accompanied by fixed data padding, which also increases the transferred data in
total. For instance, TMP125 [35] is a 10-bit temperature sensor (TMP125), but its output is
16 bits in total, with only the 6-th to 15-th bits effective. In addition, if the sensed ambient
temperature is 6◦ and 15◦ in the adjacent sample, its output will be 0000-0011-0000-0000 and
0000-0111-1000-0000, respectively. Hence, an effective method to improve the transmission
efficiency is only transferring the four changed bits instead of all 16 bits. In practice, in sce-
narios with higher sampling frequency for sensors on a LSN, the variation in continuously
sensory data could be minor. Hence, removing redundancy in sensory data could be an
effective method to cut down the uplink overhead.

To this end, we designed a last-bit transmission mechanism. By comparing the varia-
tion of the valid database on the data format of the sensor and only uploading the changed
bits, an LSN can significantly reduce the uplink overheads and greatly improve the task
efficiency in a given bandwidth, as shown in Figure 7.

Figure 7. In the last bit transmission mechanism design, an XOR gate is deployed to compare
variation between the adjacent outputted sensory data in two SIPO registers, which extracts the
changed part of the sensory data for uploading to minimize the load in the uplink aspect.

We utilize two Serial-In, Parallel-Out (SIPO) shift registers to store the raw data from a
sensor for the current output and the last output, respectively, and compare the Parallel
outputted data bit by bit via an XOR gate. Based on the record format information (as
described in Section 3.1), the XOR gate compares the valid bit of the sensory data and
outputs the results for further processing. Specifically, the changed and unchanged bits are
marked as 1 and 0, respectively. For instance, the XOR output (00001110) means the valid
data are 8 bits at length, and the changed bits are the 2nd to 4th bits.



Sensors 2022, 22, 3082 11 of 23

For the design purpose, we only want to transmit the three changed bits to minimize
communication load in the uplink. However, to make the gateway recognize the uploaded
data and recover the complete value, information about the location of changed bits is
required, which in turn leads to the surge of communication overhead. Therefore, we
consider transmitting all the bits from the first change to the end of valid data. With a fixed
rule, there is no need to transmit the bit count information. Although some extra bits will
be transmitted, it is much less than the bit count information or the raw sensory data. For
instance, in the example in the figure, we need to transmit the last four bits of sensory data,
which is one bit more than the changed bits but much less than the raw 20-bit data.

It should be noted that each sensor needs a set of such mechanisms, which do not
introduce significant power overhead as the design is simple. In addition, in practice, few
sensor deployments are often sufficient for one LSN for environment sensing.

5.2.2. Sensory Data Packaging

To avoid the fragmented of bandwidth usage, we combine the simplified sensory data
in one package for uploading. It can also effectively reduce the protocol overhead as each
packet needs to have a packet header that carries the leading code, device ID, length setting,
etc. The design is presented in Figure 8.

Figure 8. By packaging the simplified sensory data, a Butterfly LSN can effectively avoid fragmented
usage in the uplink channel and significantly reduce the protocol overhead.

Considering the simplified sensory data have random lengths, we utilize two different
frequencies to transmit the adjacent sensory data. By this, the gateway can split the data
from each sensor and recover the complete data for the corresponding IoT applications.
In addition, with information on data transmission rates and sensor sampling rate of the
target LSN, the gateway can precisely calculate the accurate time mark for each sensory
data, thus recovering the completed trend of the corresponding monitored physical quan-
tities. To enhance the robustness of the system, LSN performs a complete transmission
for all sampled sensors in every n packet to avoid possible cumulative errors caused by
communication bit errors. Finally, the length of the package can be set by the real-time
requirements of IoT applications. In exceptional cases, each piece of sensory data can be
uploaded separately to achieve high real-time sensing.

6. Butterfly Networks

In a Butterfly network, the edge gateway issues downlink commands to manage tasks
on multiple LSNs and predict when these LSNs may upload data, thus calculating future
bandwidth availability for the issue of the next command, thereby improving bandwidth
utilization and extending the network capacity of the gateway to support more LSNs, as
shown in Figure 9. For a better understanding, we consider discussing the task perdition of
LSNs separately in loop scheduling mode and random scheduling mode, as follows:

6.1. Task Prediction in Loop Scheduling

Consider that m of the deployed sensors on an LSN are selected to read for s times
in a loop. Suppose that the data preparing time (Time required for a sensor to convert the
monitored physical quantity into sensory data, usually recorded in the chip data sheet
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provided by the manufacturer. ) for the i-th sensor is ti, and its control sequence and output
sensory data are ci and si bits in length, respectively. The local processing speed is p. If
the sensory data are uploaded after every n sensor output is collected and merged in a
packet (as described in Section 5.2), the predicted time mark (Tj) for uploading the j-th data
package can be expressed as:

Tj =
n

∑
1

( c(i%m) + s(i%m)

p
+ t(i%m)

)
(4)

In addition, at the end of the task, the LSN will upload the final data packet. If k
packets have been uploaded before, the predicted time mark (Tend) for uploading the last
package can be expressed as:

Tend = s
m

∑
1

(
ci + si

p
+ ti

)
−

k

∑
1

Tj (5)

Based on Equations (4) and (5), a gateway can predict the accurate time mark for
each packet uploading on an LSN and better manage tasks by estimating the future avail-
able bandwidth.

Figure 9. The edge gateway predicts the task execution progress on each LSN to estimate the possible
bandwidth occupation in the future and optimize the time mark for each command issue. By this, the
gateway can effectively extend the network capacity and support more LSNs in its control.

6.2. Task Prediction in Random Scheduling

In random scheduling mode, the data remain uploaded when n sensory data are
collected, but each sensor may have a different proportion in the data contribution. Consid-
ering that the i-th sensor is read by ri times after the last uploading, the time mark for the
next uploading (calculated from the last uploading) can be expressed as:

T =
m

∑
1

(
ci + si

p
+ ti

)
∗ ri (6)

Based on the above equation, the gateway can better manage tasks by the predicted
occupation and available time slots, which effectively improves the multi-task efficiency
and extends the network capacity to support more LSNs.

7. Implementation

To verify the feasibility of our design, we implement a Butterfly prototype system and
test our prototype in two proof-of-concept application scenarios.

7.1. Implementation Details

The implementation of a Butterfly prototype contains two entities, i.e., a gateway and
one or multiple LSNs, as follows:

• Butterfly LSN. As illustrated in Figure 10a, the logic part of the LSN prototype is
implemented using an IGLOO nano FPGA (AGLN060V2), where 6.2 k of logic gates
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(10.3% of FPGA chip resources) are used for the logic control, and 1 kb of the memory
are used for the buffer. We also deploy an ultra-low-power SIT1581 [36] oscillator
to run the FPGA, which only consumes 51 µW (30 µA, 1.7 V) power at 2.5 MHz.
The receiver works with an RF signal at 915 mHz with Non-Return to Zero (NZR)
encoding and On-Off-Keying (OOK) modulation. We implemented the receiver by
duplicating the RF envelope detection circuit in [9] but simplified the form of the
transmitted signal, thus we can achieve a longer communication range. The passive
transmitter generates uplink backscatter signals by controlling the on-off state of
the switch MOSFET (DMG2302UK), which superimposes the sensory data on the
carrier provided by the gateway. We also set three sensor interfaces on the Printed
Circuit Board (PCB) to deploy different SPI-based sensors. By this, we verified the
performance of Butterfly LSN by using different types of COTS sensors, including
thermometers (BME280 and DS1722S), accelerometers (ADXL362, BMX160 and IIM-
42351), a microphone (VM1010), and an ADC (ADS1118).

• Butterfly gateway. As presented in Figure 10b, the gateway is implemented on a
software-defined radio (USRP2922) with GNU Radio software controlled by a PC,
which is equipped with a 3.3 GHz i5-1035G7 CPU, 16 GB memory, and 512 GB hard
disk space, running an Ubuntu 18.04 Linux operating system. The gateway can control
multiple sensors on one or more LSNs wirelessly.

(a) (b)

Figure 10. The prototype implementation of the Butterfly LSN (a) and the edge gateway (b).

7.2. Proof-of-Concept Applications

To verify the feasibility of our design, we made two proof-of-concept applications
based on our prototype with different sensors as follows:

• Ambient Temperature and Humidity Meter (ATHM). As shown in Figure 11a, we
monitor the air temperature and humidity in an open lobby, where six Butterfly LSNs
are deployed to control the sensor for ambient sensing and return the collected sensory
data to the gateway for further processing. In this application, Butterfly LSNs are
equipped with a BME280 chip to collect the ambient temperature (TEMP) and Relative
Humidity (RH). In the deployment of this application, all sensors deployed on all
Butterfly LSNs work properly and successfully return the sensory data from six distinct
locations with minimized bandwidth overhead. Specifically, to read 12,000 times of
sensory data (1000 times for each sensor of the six LSN), in loop schedule mode (as
described in Section 5.1), the total downlink and uplink transmission is only 1.3 kb
and 47.2 kb, respectively; in real-time schedule mode, the total downlink and uplink
transmission 13.3 kb and 78.9 kb, respectively.

• Wireless Sound Collector (WSC). As shown in Figure 11b, we collect the environment
sound in a corridor, where two Butterfly LSNs are deployed to record ambient sound
and return the collected data to the gateway. In this application, a 12-bit Analog
to Digital Converter (ADC) chip (LTC1285) is deployed on the LSN to sample an
analogue microphone (VM1010) for ambient sound collection and return the digitized
sounds information back to the gateway. In this application, all Butterfly LSNs work
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properly and successfully upload the sound data from two distinct locations with
minimized bandwidth overhead. Specifically, to read 30 s of sound data (150 k of
samples on each LSN), in loop schedule mode (as described in Section 5.1), the total
uploaded data are only 570 k bit and 513 k bit by those two LSNs, respectively (the
original ADC data are 3000 k bit before de-redundancy).

(a) (b)

Figure 11. To verify the feasibility of our design, we made two proof-of-concept applications based
on our prototype, i.e., an ambient air conditional meter in an open lobby (a) and a wireless sound
collector in a corridor (b).

8. Evaluation

To verify the feasibility of our design, in this section, we build up comprehensive
evaluations on our Butterfly prototype in multidimensional aspects.

8.1. Benchmark Selection

To start with, we consider three representative nodes as the benchmark (The results
of the benchmark are obtained by calculation or conversion of the results from the cited
papers.), as follows:

• Benchmark 1, R2B node: the design of literature [9], an ultra-low-power node with
direct radio-to-bus (R2B) communications that can directly control sensors by the gate-
way without the help of the general MCU. It has the simplest hardware architecture in
node design that controls sensors with simple logic gates and a set of RC circuits and
achieves the lowest power overhead in the state-of-the-art.

• Benchmark 2, Passive Bluetooth node: the design of literature [37], ULP sensor nodes
with passive Bluetooth communications and ultra-low-power MSP430F2132 [38] MCU
that can achieve data interactions with sensors down to 1.56 nJ per bit. In addition,
this node has 232-bit size for each data packet, containing up to a 168-bit payload
and 64-bit protocol, which can transmit multiple sensory data in one packet with
good efficiency.

• Benchmark 3, simplest tradition node: we build a traditional node with the simplest
design on embedded architecture as a baseline in the evaluation. It utilizes the same
passive radio with our LSN design and controls sensors via an ultra-low-power
STM32L431 [39] MCU. It only functions for sensor reading with the latest ULP MCU,
thus eliminating all other influencing factors.

8.2. Task Efficiency

We first evaluate the data transmission overhead of the test nodes in sensing tasks.
Given this, we deploy three sensors on each node, i.e., a 16-bit ADS1118 ADC (obtain data by
sampling a VM1010 microphone), a BMX 160 gyroscope, and an ADXL 357 accelerometer.
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Figure 12 shows the transmission overhead for sampling the three sensors at different
time counts, where the downlink and uplink overhead are presented in Figure 12a,b,
respectively. The results show that our LSN greatly reduces the total communication
overhead compared with the two baselines, especially in the LOOP scheduling mode,
where only the control sequence (352 bits for these three sensors) needs to be transmitted
on the downlink with simple sampling configuration, i.e., sampling rate and time duration.
In contrast, the random schedule mode takes slightly more as the schedule sequence with
1 bit per sensor decision (0 for skip and 1 for read, as described in Section 5.1) needs to be
added. Although the passive Bluetooth node and traditional node achieve lower downlink
overhead as it has a built-in embedded program for sensor control that only needs to
transmit one command to start, and the LSN wins a lot in the uplink with the last bit
transmission mechanism (as described in Section 5.2). By contrast, the R2B node takes the
highest overhead as all sensors deployed on it are directly controlled by the gateway, where
each sampling requires the full transmission of the control sequence and raw sensory data
in the downlink and uplink, respectively.

(a) (b)

Figure 12. Total transmission overhead in downlink (a) and uplink (b) aspects for a Butterfly LSN
compared with other three baselines in 1 to 10,000 times of sensor samples.

To better present the effect of our last bit transmission mechanism, we intercepted
the sampling result of a piece of accelerometer data, as shown in Figure 13. It can be seen
that the mechanism reduces 70.5% of uplink overhead where the transmitted data are only
29.5% of the raw data after removing redundancy.

Figure 13. The design of LSN reduces 70.5% of uplink loads when uploading 3000 samples of the
data from a three-axis accelerometer.

8.3. Extreme Performance

Next, we deploy a 12 bit high-speed ADC (The high-speed ADC we selected is only a
tool for evaluations that seek the maximum task rate for tested nodes. It is not a part of our
prototype, so we do not consider its power consumption for the test results.) (MCP33141-05),
which can be continuously sampled at up to 500 kHz, thus eliminating the impact of sensor
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data conversion delays on the node’s performance. We utilize a signal generator (AFG1062)
to generate analog signals for the ADC sampling. As only one ADC is deployed, the LSN
work in Loop scheduling mode and the data are uploaded per 64 samplings and merged in
a packet after simplifying (Section 5.2). We made two versions of LSN for the test, i.e., a
standard (STD) version drive with 2.5 MHz clock and a low-power (LP) version drive with
a 1 MHz clock. The clock is all provided by the SIT 1582 series crystal oscillators where
the 2.5 MHz version consumes 51 µW (30 µA, 1.7 V) and the 1 MHz version consumes
22 µW (13 µA, 1.7 V). The results are shown in Figure 14.

Figure 14. Our LSN achieves a much higher sample rate for the three sensors mentioned compared
with the three selected benchmarks.

It can be seen that the Butterfly LSN has the best performance compared with the
three selected baselines. Benefiting from the design of DESC (as described in Section 5), the
average communication overhead of each sample on LSN is only 4.7 bits, containing the
cost of data packing. In addition, with the design of EBST (as described in Section 4), our
Butterfly LSN achieves four times the maximum data transmission rate (800 kbps) than
the R2B node (200 kbps) while using the same low-power envelope detector circuit. The
limitation of LSN is the speed of local clock, where the standard (STD) and low power (LP)
versions reach the sampling rate of 137 kHz and 53.1kHz at data rates of 290 kbps and
750 kbps, respectively. To further accurate the task rate, a local clock with a higher frequency
could be useful, but it brings additional power overhead accordingly.

In contrast, although the passive Bluetooth node and traditional node can control
sensors via its built-in embedded program that requires less downlink control, the raw
sensory data uplink also becomes a bottleneck of the achieved sampling rate. Among them,
the passive Bluetooth node can upload 14 samples data in one packet (with 168 bits of
the payload) and has the best performance in the selected benchmarks, but our LSN can
also achieve a 2.83 times higher sample rate than it. In contrast, the R2B node achieves
the lowest sampling rate due to the mass data transmission in every sample, i.e., 36 bit
containing raw sampling data, control sequence and protocol. Ultimately, compared to the
selected three benchmarks, i.e., R2B, passive Bluetooth, and traditional nodes, our LSN
achieves 24.5, 2.83, and 4.91 times the maximum sample rates, respectively.

8.4. Power Overhead

To estimate the power consumption of our LSN, we utilize Libero SoC v12.0 [40]
software for simulation. We write Verilog codes and use the default configuration for
the evaluation, where the results are presented in Table 1. We can find that the main
power consumption comes from the functions of Data-Efficient Sensor Control (DESC, as
described in Section 5), where 5.4 k (9% of FPGA chip resources) of logic gates are used in
this part. In contrast, the overhead of Efficient Bus Signal Transmission (EBST, as described
in Section 4) and static power of the FPGA chip are relatively low, as the EBST functions
only take 0.8 k of logic gates (1.3% of FPGA chip resources), and the FPGA chip only takes
11 µW in static. The rest part of the node includes a crystal oscillator, an envelope detection
circuit, and a switching MOSFET for backscattering. Since the envelope detection is mainly
driven by RF power and the MOSFET switch has high impedance in its gate, it consumes
current. Hence, the power consumption of the rest part mainly comes from the 2.5 MHz
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crystal oscillator. Based on such design, an LSN can sample the ADC at 137.3 kHz with
only 703 µw power overhead, thus only needing 5.12 nJ power to sample the ADC once.

Table 1. Power breakdown and task performance of Butterfly LSNs (STD version) in different
communication data rates.

Data Rate
FSM Rest 4

Part
Total Sample

Rate
Single

SampleEBST 1 DESC 2 Static 3

50 kbps 7 µW 34 µW 11 µW 57 µW 109 µW 10.8 kHz 10.1 nJ

100 kbps 13 µW 67 µW 11 µW 58 µW 149 µW 21.5 kHz 6.93 nJ

200 kbps 22 µW 132 µW 11 µW 60 µW 225 µW 42.7 khz 5.27 nJ

400 kbps 43 µW 261 µW 11 µW 63 µW 378 µW 75.2 kHz 5.03 nJ

600 kbps 65 µW 397 µW 11 µW 68 µW 541 µW 109.8 kHz 4.93 nJ

800 kbps 86 µW 532 µW 11 µW 74 µW 703 µW 137.3 kHz 5.12 nJ
1 The function of Effective Bus Signal Transmission, the design details are presented in Section 4. 2 The function of
Data-Efficient Sensor Control, the design details are presented in Section 5. 3 The static power of the AGLN060
FPGA chip, which requires 8 µA at 1.4v. 4 The rest part of an LSN, which contains a 2.5 MHz crystal clock to run
the FPGA, an envelope detection circuit for downlink receiving and a MOSFET switch for backscatter uploading.

Next, we compared our LSN with the three selected baselines on the single sampling
overhead. For the baseline, the data of R2B nodes and passive Bluetooth are calculated
from [9] their literature [9,37], and the data of traditional nodes are estimated (To ensure
the fairness of the comparison, the MCU’s power overhead was obtained from its official
documentation, where we tested its required running speed and found corresponding
value for the evaluation) based on its low-power description file [41]. The results are
demonstrated in Figure 15.

Figure 15. The Butterfly LSN has down to 4.35 nJ power overhead to sample a sensor once, which is
far from that of R2B nodes (33.5 nJ), passive Bluetooth nodes (122 nJ) and traditional nodes (99.2 nJ).

The results demonstrate that both the standard (STD) and low-power (LP) version
have much less power consumption in a single ADC sample compared with the selected
three baselines. In addition, with the increase of sampling rates, the static overhead on LSNs
are shared evenly, thus effectively reducing the power consumption on each sampling. For
the standard version, it can sample the 12-bit ADC at 137.3 kHz with only 703 µW overhead,
thus only consuming 5.12 nJ power for each sample. For the low-power version, the power
overhead of a single sample is down to 4.35 nJ. In contrast, the passive Bluetooth and
traditional nodes have higher power consumption due to the overhead of MCUs. Despite
the passive Bluetooth nodes only requiring 1.56 nJ per bit (25.9 nJ for a single task) for data
transmission, the MCU brings major power overheads in mWs to reach high task rates.
In addition, although R2B has the simplest architecture for sensor control and achieves
the lowest power consumption in the state-of-the-art, its overhead on a single task is still
much higher than that of LSN due to mass data transmission. As a result, compared with
the R2B, passive Bluetooth, and traditional nodes, the standard LSN can save up to 84.7%,
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95.8%, and 94.3% power overhead to sample a sensor once, respectively. For LSNs in the
low-power version, the saved power becomes 87%, 96.4%, and 95.6% compared to the R2B,
passive Bluetooth and traditional nodes, respectively—satisfying both the requirements of
high task rate and low power overhead simultaneously.

8.5. Effectiveness of the Task Prediction Mechanism

We evaluate the effect of our task prediction mechanism through simulation, where
three sensors are virtualized to deploy on each LSN, i.e., a 3-axis accelerometer, a 16 bit
ADC, and a gyroscope, whose conversion delay is set to 25 µs, 10 µs and 60 µs, respectively.
The simulation is established on Matlab 2021a, where the monitored physical quantity
varies randomly within the range of the sensor, and all sensors on all LSNs are sampled at
200 Hz. We configure all simulated LSNs the same as the standard version, which process
data at 2.5 MHz (as described in Section 8.3). In loop reading mode, each LSN is set to
reads above sensors for 200 cycles; in random reading mode, the gateway transmits the
reading sequence for an LSN in every 30 sensor readings. The results of supported devices
under different gateway communication data rates are presented in Figure 16.

Figure 16. The task prediction mechanism can significantly improve bandwidth utilization efficiency
in both the loop and random scheduling mode, which significantly increases the gateway network
capacity that can satisfy the data transmission requirements for more LSNs.

The results demonstrate that the task prediction mechanism significantly improves
the network capacity by 3.42 and 2.45 times in the loop schedule and random schedule
mode, respectively. In the absence of the task prediction mechanism, the gateway can only
perform the tasks on each LSN serially, which brings a lot of waiting time for uploading
sensor data processed by the LSN, resulting in a huge waste of bandwidth. In contrast,
benefiting from the task prediction mechanism, tasks on multiple LSNs can be parallel,
thus significantly reducing the waiting cost and improving the network capacity that can
support data transmission for more LSNs.

8.6. System Coverage

While the LSN utilizes backscatter communication for ultra-low-power, the coverage
evaluations become essential where package loss may result in task failure if the LSN is
too far from the gateway. Hence, we evaluate the task execution success rate of nodes
at different distances for each of the two scenarios mentioned in Section 7.2, where task
success is defined as a complete data package that is successfully returned to the gateway;
otherwise, it is a failure. The gateway transmits the signal at 30 dBm via a Low Noise
Amplifier (LNA) at 915 MHz to the LSN for sensor reading. The results are presented
in Figure 17.

The results demonstrate that, at 800 kbps data rates, an LSN can be deployed at
17 m and 19 m to the gateway in the lobby and corridor scenarios, respectively, where
almost all (≥95%) tasks can be successfully performed. In addition, the coverage of the
gateway can be further improved by reducing the data rate appropriately. For 400 kbps,
the communication distance from the gateway to the LSN can reach 17 m and 24 m in
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the lobby and corridor scenarios, respectively. For 100 kbps, the coverage distance can
be increased to 30 m and 28 m in these two scenarios, respectively. Since the corridor has
lower background noise, and the multi-path can enhance the transmitted signal, a Butterfly
system can achieve greater coverage in the corridor than that in the lobby.

(a) (b)

Figure 17. The task success rate of Butterfly LSN in different distances from the gateway tested in an
open lobby (a) and a corridor with rich multi-paths (b).

We can also see that the task success rate has a sudden drop when the distance reaches
a certain value in both of the two scenarios above. The reason stems from the fact that the
LSN utilizes the envelope detection circuit to receive signals passively. When the signal
strength drops to the threshold, it works unstably. As a result, the Butterfly prototype can
be well applied to indoor scenes (within 30 m), such as smart homes [42–44]. For outdoor
or long-distance required applications such as smart factories [45] and smart cities [46],
active communications (e.g., Lora [47], NB-IoT [48]) with longer communication ranges are
more suitable to be deployed, which is also our future work.

9. Discussion

In this paper, we settle three key challenges that obstruct our design. Nevertheless, we
believe that two additional points should be discussed to instruct our further research.

(1) Security. The removal of local MCU enhances the security of LSNs, i.e., attackers
cannot obtain data by stealing the node as it contains no embedded program that
avoids the security risks with key program data loss. Even if the buffered data are
stolen by technical attackers, it is mostly useless for them as the data are designed
for the control of COTS sensors and thus contain no privacy information. To fur-
ther enhance the security of our Butterfly system, the data transmission between
the gateway and LSNs could be a key consideration. Specifically, to enhance system
security, lightweight encryption schemes like PRESENT [49], Data Encryption Stan-
dard Lightweight (DESL) [50], and Light Encryption Device (LED) [51] are possible
to be incorporated into our further design with FSM logic design with no more than
2K logic gates (3.3% resources on the AGLN060 FPGA chip). In addition, we would
also establish a whitelist mechanism on the gateway to ensure the legitimacy of nodes
in the network by storing the information (device ID, sensor data structure, etc.) of le-
gitimate nodes. Moreover, it is also possible for us to utilize hardware Trojan detecting
methods [52–55] and design authentication mechanisms for sensor nodes to prevent
possible attacks caused by wireless Trojan nodes connected by malicious users.

(2) Error detection and data correction. In this paper, we realized the basic idea of
Butterfly and achieved both ultra-low-power and high task throughput on node
design. In future designs, we consider that the error detection and correction in node
communication links is a key consideration that ensures the system robustness in
practical applications. Specifically, we might incorporate bit level error detection
and correction methods like Cyclic Redundancy Checksum (CRC) [56–58] and MD5
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Message-Digest Algorithm (MD5) [59] by hardware FSM design with logic circuits
to give the node a robust communication link. In addition, it is also possible to
design the hardware FSM with logic gates to solidify functions of intelligent data
recovery [60–62] and re-transmission [63] to further optimize the communication
robustness in environments that has strong signal interference.

(3) ASIC-based local processing. To further optimize the communication overhead and
reduce power consumption, we consider localizing commonly used calculations with
a simple ASIC design to further reduce requirements of sensory data transmission in
some scenarios. For instance, in temperature monitoring scenarios, if the application
only needs an alarm signal for over-threshold temperature notification, which does not
need to upload all the sensed data and processing on the gateway. In that scenario, the
sensed temperature data should be compared with the preset threshold value locally
on the node, and the alarm information could only be uploaded when the sensed
value touches the threshold. To achieve this, we consider curing some common
computational logic (e.g., numeric value comparison, data averaging) with ASIC
design and implementation in the future, which might further reduce the node’s
power consumption while improving its task performance simultaneously.

10. Conclusions

In this paper, we propose Butterfly, a methodology of system design on both node
architecture and gateway functions to support µW level ULP sensor nodes with rapid task
performance. To this end, we offload all application-related tasks from each LSN to the
edge gateway, thus minimizing task loads and power overheads on LSNs by only keeping
the bottommost functions of the sensor reading. To boost task rates, we design efficient
bus signal transmission and data utilization mechanisms on the LSN to achieve rapid
task execution within a given communication data rate. We also set up a task prediction
mechanism on the gateway to predict the task progress on each LSN to better manage tasks
when they need to be executed concurrently. We implement a Butterfly prototype and
make comprehensive evaluations with two proof-of-concept applications. The results show
that a Butterfly LSN can sample a 12-bit ADC at 137.3 kHz at only 703 µW overhead, which
only needs 5.12 nJ power for each sample. Compared with traditional ULP sensor nodes,
the LSN can speed up the task rate by 4.91 times while reducing the power consumption
by 94.3% in processing the same task, respectively. In addition, Butterfly nodes have
natural security advantages (e.g., anti-capture) benefited by the fact that they offload all
application-related functions to the gateway and contain no private data in local, thus
resistance to attackers.
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13. Chamanian, S.; Uluşan, H.; Zorlu, Ö.; Baghaee, S.; Uysal-Biyikoglu, E.; Külah, H. Wearable battery-less wireless sensor network
with electromagnetic energy harvesting system. Sens. Actuators A Phys. 2016, 249, 77–84. [CrossRef]

14. Vandelle, E.; Vuong, T.P.; Ardila, G.; Wu, K.; Hemour, S. Harvesting ambient RF energy efficiently with optimal angular coverage.
IEEE Trans. Antennas Propag. 2018, 67, 1862–1873. [CrossRef]

15. Muncuk, U.; Alemdar, K.; Sarode, J.D.; Chowdhury, K.R. Multiband ambient RF energy harvesting circuit design for enabling
batteryless sensors and IoT. IEEE Internet Things J. 2018, 5, 2700–2714. [CrossRef]

16. Gu, X.; Hemour, S.; Wu, K. Enabling far-field ambient energy harvesting through multi-physical sources. In Proceedings of the
2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 204–206.
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