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Abstract: Electroencephalography (EEG) is immediate and sensitive to neurological changes result-
ing from sleep stages and is considered a computing tool for understanding the association between 
neurological outcomes and sleep stages. EEG is expected to be an efficient approach for sleep stage 
prediction outside a highly equipped clinical setting compared with multimodal physiological sig-
nal-based polysomnography. This study aims to quantify the neurological EEG-biomarkers and 
predict five-class sleep stages using sleep EEG data. We investigated the three-channel EEG sleep 
recordings of 154 individuals (mean age of 53.8 ± 15.4 years) from the Haaglanden Medisch Centrum 
(HMC, The Hague, The Netherlands) open-access public dataset of PhysioNet. The power of fast-
wave alpha, beta, and gamma rhythms decreases; and the power of slow-wave delta and theta os-
cillations gradually increases as sleep becomes deeper. Delta wave power ratios (DAR, DTR, and 
DTABR) may be considered biomarkers for their characteristics of attenuation in NREM sleep and 
subsequent increase in REM sleep. The overall accuracy of the C5.0, Neural Network, and CHAID 
machine-learning models are 91%, 89%, and 84%, respectively, for multi-class classification of the 
sleep stages. The EEG-based sleep stage prediction approach is expected to be utilized in a wearable 
sleep monitoring system. 

Keywords: electroencephalogram; sleep stages; physiological biomarker; neuroscience;  
polysomnography; machine-learning; sleep monitoring 
 

1. Introduction 
Sleep is a biological activity that occurs spontaneously in humans and has an influ-

ence on task performance, physical and mental health, and overall quality of life. Sleep 
accounts for about one-third of an individual's whole lifetime. Sleep deprivation is the 
root cause of insomnia, anxiety, schizophrenia, and other mental illnesses. Moreover, 
drowsiness, an outcome of sleep deprivation, is a reason for around one-fifth of vehicle 
accidents and injuries. Sleep is a dynamic phenomenon including a variety of sleep 
phases, wake (W), non-rapid eye movement (NREM) sleep, and rapid eye movement 
(REM) sleep. Furthermore, NREM sleep stages are classified into NREM-1 (N1), NREM-2 
(N2), and NREM-3 (N3) [1]. A healthy sleeper goes through multiple NREM and REM 
cycles throughout the night. The N1 stage occurs when the individual feels sleepy and 
marks the shift from the awake state. In Stage N2, the dynamics of vital signals, such as 
ocular movements, heart rate, body temperature, and brain activity start to attenuate. The 
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N3 stage is considered deep sleep or slow-wave sleep; no eye or muscular movement oc-
curs, and muscles and tissues are healed. The last stage, referred to as the REM state, is 
characterized by rapid eye movements and fast breathing. During this period, the body 
becomes relaxed, and dreaming begins. About 75% of the sleeping period is spent in 
NREM sleep, while REM sleep accounts for about 25% [2]. 

Physiological signal monitoring can be employed for health monitoring, disease prog-
nostics, and functional response in daily activities, such as sleeping, driving, walking, work-
ing, and so on [3–10]. Tracking brainwaves is one of the essential methods for assessing 
cognitive load, and electroencephalography (EEG) is the physiological tool for measuring 
the electrical potential from the scalp that directly reflects the activities originating from the 
brain [11–14]. Polysomnography (PSG) has traditionally been used in the clinical environ-
ment to examine sleep quality and sleep disorders. PSG is a multi-sensor recording tech-
nique that collects physiological signals from the sleeping individual and is considered the 
primary tool in the diagnosis of sleep disorders. These biomedical signals include EEG, elec-
tromyography (EMG), electrooculography (EOG), and electrocardiography (ECG) [15]. 
These biosignals are measured to understand physiological activity, such as EEG for brain 
activity, EOG to track eye movement, EMG to measure the activity of muscles, and ECG to 
monitor the electrical activity of the heart [15]. Each 30-second epoch of the PSG signal is 
analyzed and given a sleep stage by a sleep specialist. The American Association of Sleep 
Medicine (AASM) classifies sleep-wake cycles into five phases: waking (W), REM sleep, and 
three types of NREM sleep: N1, N2, and N3. Moreover, the N1 and N2 stages are considered 
light sleep, and N3 is considered deep-sleep or slow-wave sleep [1]. 

The gold-standard PSG sleep scoring procedure is time-consuming and labor-inten-
sive; it requires a human expert to score a whole night of sleep data manually by examin-
ing signal patterns. Additionally, a patient must attend a lab or clinic and spend the whole 
night PSG recording in a clinical environment, which is often an expensive and complex 
process. Aside from that, the PSG signal is very inconvenient and uncomfortable for indi-
viduals since its highly sticky electrodes and cabling are continually connected to the 
body. These challenges compelled physicians to depend only on subjective questionaries 
to determine sleep quality for neurological therapy and a variety of sleep disorder diag-
nostic methods. Therefore, developing an automated sleep staging system that is simple 
to use and reliable would have a significant contribution to this field [16–19]. HeathSOS, 
a wearable health monitoring system consisting of an eye mask embedded with EEG and 
EOG electrodes, has been reported as an alternative system for sleep monitoring [12,18]. 
Big-ECG, a cyber-physical cardiac monitoring system consisting of a wearable ECG sen-
sor, a big data platform, and health advisory services, has been studied for disease pre-
diction in the resting state, sleep, and other daily activities [15]. Several studies have re-
ported that EEG signals are more helpful during sleep scoring than any other kind of PSG 
signal [20]. EEG signals directly track the brain’s activity and differentiate various sleep 
patterns [8,18,19]. 

Our study attempts to automate this sleep scoring process by utilizing data from 
three representative EEG channels from three cortical positions (F4, C4, and O2). F4 is 
representative of the frontal lobe, C4 is representative of the central lobe, and O2 is repre-
sentative of the occipital lobe. We hypothesized that sleep-stage dependent responses of 
the central nervous system would be immediately sensed by the EEG. Signal processing, 
feature extraction, and a machine-learning approach are likely reliable methods to explore 
the physiological and neurological patterns of sleep stages. 

We aim to investigate the EEG activity and identify the physiological biomarkers 
during sleeping. We developed the neurological state prediction model to classify the neu-
rological responses in different phases of sleep. The key contributions of this paper can be 
summarized as follows: 
• EEG biomarkers, consisting of frequency spectral measures for sleep stages, have 

been identified using statistical analysis. 
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• Machine-learning models have been developed to classify the neurological states in 
different sleep stages. 
We organized the remainder of this article into four sections. The datasets and the meth-

odology for EEG pre-processing, feature extraction, and statistical and machine-learning anal-
ysis methods are described in Section 2. After that, the results are reported in Section 3, trailed 
by the discussion. Lastly, we state our conclusions in Section 5. 

2. Materials and Methods 
To identify the physiological biomarkers of sleep stages and develop a machine-learn-

ing-based prediction model to classify the sleep stages, we performed EEG data pre-pro-
cessing, feature extraction, feature selection, statistical analysis of features, and a machine-
learning classification approach (Figure 1). Details about the EEG data processing, statistical 
analysis, and machine-learning classification methods are presented in the following sub-
sections. 

 
Figure 1. Methodology of EEG-based sleep stages classification using a machine-learning approach. 

2.1. Dataset 
We utilized the sleep recording of Haaglanden Medisch Centrum (HMC, The Hague, 

The Netherlands), available as an open-access public dataset in PhysioNet [21,22]. It was 
collected in 2018 and published very recently on 1 July 2021. The dataset includes a whole-
night PSG sleep recording of 154 people (88 Male, 66 Female) with a mean age of 53.8 ± 
15.4 years. Patient recordings were chosen at random and represented a diverse group of 
people who were referred for PSG examinations in the context of various sleep disorders. 
All signals were captured at 256 Hz using AgAgCl electrodes on SOMNOscreen PSG, 
PSG+, and EEG 10–20 recorders (SOMNOmedics, Randersacker, Germany). Each record-
ing consists of four-channel EEG (F4/M1, C4/M1, O2/M1, and C3/M2), two-channel EOG 
(E1/M2 and E2/M2), one-channel bipolar chin EMG, and one-channel ECG. The record-
ings also contain the sleep scoring, consisting of W, N1, N2, N3, and R for an epoch of 30 
sec. The AASM guidelines were used to score sleep stages which were manually scored 
by well-trained sleep technicians [1]. We have decided to use three EEG channels (F4, C4, 
and O2) in this study according to the international 10–20 EEG system. 

2.2. Pre-Processing 
The EEG signal was filtered to remove any 60 Hz AC noise from the nearby electrical 

grid. The eye-blink and muscle artifacts were separated and removed using EOG and 
EMG recordings from the EEG signal. Independent component analysis (ICA) was then 
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used to eliminate ocular and muscle artifacts from the EEG signal using the FastICA meth-
ods [23]. Low-frequency motion artifact interference was produced by head and sensor 
movement close to the skin. A signal-to-noise ratio (SNR) was obtained for each signal by 
calculating the power ratio of the movement-affected EEG signal and the undisturbed 
measurement [24]. A band-pass filter was used to filter the EEG waveform within the fre-
quency range of 0.5–44 Hz. The pre-processing and feature extraction of EEG data were 
carried out using the AcqKnowledge version 5.0 program (Biopac Systems Inc., Goleta, 
CA, USA). 

2.3. Feature Extraction 
EEG can be defined in terms of frequency and power within different frequency bands. 

The delta (δ) band ranges in frequency from 0.5 to 4.0 Hz, the theta (θ) band ranges in fre-
quency from 4.0 to 8.0 Hz, the alpha (α) wave runs on 8.0–13.0 Hz, the beta (β) band is main-
tained in frequency from 13.0 to 30.0 Hz, and the gamma (γ) wave attained 30.0–44.0 Hz band 
[25,26]. EEG features were extracted from EEG signals using Fast Fourier transforms (FFT) 
and other methods to study the power within the EEG data. The power spectrum was com-
puted using power spectral density (PSD) for each time epoch using the Welch periodogram 
technique [27]. For each epoch, the mean power, median frequency, mean frequency, spectral 
edge, and peak frequency features were extracted from this PSD. The epoch width was speci-
fied as 30 s. Extracted EEG features are summarized in Table 1 of this study. This EEG dataset 
contains a total of 89 sets of EEG features. 

Table 1. Features extracted from the EEG signal. The Global channel is averaged over F4, C4, and 
O2 electrodes. 

EEG Channel EEG Spectral Waves EEG Feature Number of Features 
F4, C4, and O2 δ, θ, α, β, and γ Mean Power 15 
F4, C4, and O2 δ, θ, α, β, and γ Median Frequency 15 
F4, C4, and O2 δ, θ, α, β, and γ Mean Frequency 15 
F4, C4, and O2 δ, θ, α, β, and γ Spectral Edge 15 
F4, C4, and O2 δ, θ, α, β, and γ Peak Frequency 15 

Global δ, θ, α, β, and γ Mean Power 5 
F4, C4, and O2 DAR (δ/α) and DTR (δ/θ) Mean Power 6 
F4, C4, and O2 - Total Mean Power 3 

2.3.1. EEG Frequency-Domain Features 
The EEG Frequency Analysis was performed using FFT and the Welch periodogram 

[27] on artifact-free EEG signals with 10% hamming and extracted absolute power in the 
following spectral frequency bands: delta (0.5–4.0 Hz), theta (4.0–8.0 Hz), alpha (8.0–13.0 
Hz), beta (13.0–30 Hz), and gamma (30.0–44 Hz). The average power of the power spec-
trum within the epoch was defined as the mean power. The median frequency was de-
fined as the frequency at which half of the total power in the epoch is attained. The mean 
frequency was defined as the frequency at which the epoch’s average power is obtained. 
The spectral edge is defined as the frequency below which 90% of the total power inside 
the epoch is attained. The frequency at which the maximum power occurs throughout the 
epoch was identified as the peak frequency. To normalize the amplitudes of distinct EEG 
bands, relative power (RP) was computed as the ratio of each band's power to the total 
power of all bands. For every 30 s epoch, all band power features were calculated. The 
following is the definition of the spectral power density of an EEG time-series signal x(t) 
with frequency j: E୨ =  lim୲→ஶ 1t |x୲ෝ (j)|ଶ (1)
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where x୲ෝ (j) is the Fourier transform of x(t) at frequency, j (in Hz) using the Welch peri-
odogram. The EEG Band Relative power is defined in Equation (2). e୨ = E(୨భ,୨మ)∑ E୨ସସ୨ୀ଴.ହ  (2)

where Ej is absolute spectral power density with frequency j (with j = 0.5, ..., 44) and j1 and 
j2 are the low and high frequency in Hz, respectively, and (j1, j2) is defined as δ (0.5, 4), θ 
(4, 8), α (8, 13), β (13, 30), and γ (30.0, 44) [28]. 

2.3.2. DAR, DTR, and DTABR 
The delta-alpha ratio (DAR), defined as the ratio of delta to alpha band power, was 

calculated according to Equation (3). The delta-theta ratio (DTR) was defined as the ratio 
of delta band power to theta band power and computed according to Equation (4). Equa-
tion (5) defines the (Delta + Theta)/(Alpha + Beta) ratio (DTABR), identified as the relative 
sum of slow-wave (delta rhythm and theta rhythm) power to fast-oscillating wave (alpha 
rhythm and beta rhythm) power [29]. DAR = e୨ୀஔe୨ୀ஑ (3)

DTR = e୨ୀஔe୨ୀ஘ (4)

DTABR = e୨ୀஔ + e୨ୀ஘e୨ୀ஑ + e୨ୀஒ (5)

where j is the spectral frequency range, delta (δ) ranges 0.5–4.0 Hz, theta (θ) ranges 4.0–
8.0 Hz, and alpha (α) ranges 8.0–13.0 Hz; e୨ୀஔ and e୨ୀ஑ is the EEG Band Relative delta 
and alpha power, respectively, in different sleep stages (W, N1, N2, N3, and R). 

2.4. Features Selection 
Feature selection greatly reduces the time and memory required for data processing, 

enabling machine learning algorithms to focus on just the most important features. The F-
statistics [30] were used to determine the relevance of each feature on a scale ranging from 
zero to one. We used the p-value (probability) based on F-statistics for feature selection to 
investigate the most contributing features after performing the one-way ANOVA F-test 
for each continuous predictor. In the first step, we eliminated any features that had con-
stant or missing values. The significance of each feature was measured by its effectiveness 
in independently predicting the target class. In this study, features with feature im-
portance (1-p) of more than 95% were selected, where p is the F-test result. 

2.5. Classification Algorithms 
Machine-learning algorithms were used to classify neurological features during 

wakefulness, stages N1, N2, N3, and R. EEG feature data from 80% of selected features 
was used for training, while 20% of data were used for testing classification algorithms. 
The Neural Network, CHAID, and C5.0 models were used to distinguish the neurological 
features of sleep stages. As the N1 stage dataset is smaller compared with the other sleep 
stage datasets, we implemented the “class weighting” technique [31], heavily weighting 
the N1 stage and under-weighting the majority classes to deal with the imbalanced da-
taset. 

2.5.1. The Neural Network Model 
The neural network is a data analysis technique that makes predictions based on the 

growth of a complex multi-layered network [32]. In this research, we employed a multi-
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layer perceptron (MLP) neural network. This model is capable of estimating a broad vari-
ety of analytical models with minimal requirements on the model structure and assump-
tions. This model is comprised of multiple input nodes, a neural network with hidden 
layers, and an output layer. 

2.5.2. Chi-squared Automatic Interaction Detector (CHAID) Model 
The chi-squared automatic interaction detector (CHAID) method creates a decision 

tree by incrementally breaking a subset into two or more child nodes, starting with the 
entire data set [33]. The optimal partition across all nodes is obtained by merging the clas-
sifiers’ pairs until no significant difference in the target’s pair is noticed. As a decision tree 
model, the output of the CHAID model is visually appealing and simple to read in a clin-
ical decision support system. This technique is commonly used in applications involving 
biological data analysis. 

2.5.3. C5.0 Model 
The C5.0 model is a supervised data analysis method that attempts to construct de-

cision trees or rule sets [34]. This model partitions the data according to the field with the 
greatest gain ratio. The model constructs a decision tree which is then pruned to reduce 
the tree’s estimated error rate. This model requires little training time and is resilient to 
missing data and a large number of input variables. 

2.6. Data Analysis 
This study employed descriptive statistics to compare the participants’ demographic 

data. The characteristics of the EEG spectra features were shown in a bar chart with an 
error bar. The data in the bar chart represents the mean value of the data along with their 
respective 95% confidence intervals (CI). Methods of statistical analysis consisted of de-
scriptive statistics and hypothesis tests. The independent-samples t-test was used as a 
comparative measure of EEG features among sleep stages. A p-value of less than 0.05 was 
marked as statistically significant. Statistical analyses were accomplished using SPSS 26 
software (IBM, Armonk, NY, USA). For the classification of sleep phases, we utilized state-
of-art machine learning methods. EEG feature datasets were partitioned into the training 
and the testing dataset. We trained the machine learning algorithms on the training da-
taset to build the classification models which were then utilized for prediction on the EEG 
testing datasets. To eliminate overfitting, we used non-exhaustive k-fold (k = 10) cross-
validation on the training dataset. For machine learning evaluations, we utilized IBM SPSS 
Modeler 18 software (IBM, Armonk, New York, NY, USA). 

3. Results 
3.1. Statistical Analysis 
3.1.1. EEG Biomarkers for Sleep Stages 

The EEG waveform varied during sleep with the change in sleep stages. Figure 2 
shows the bar charts with error bars with a 95% confidence interval (C.I.) of EEG features 
of frequency bands during sleep stages W, N1, N2, N-3, and R. The global data indicates 
the average measures of the features of the frontal, central, and occipital lobes. The hori-
zontal bars (brown color) are the outcomes of the hypothesis tests and indicate significant 
differences (p < 0.05) in EEG features among the sleep stages.  
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Figure 2. Results from EEG spectral power features during sleep stages W, N1, N2, N-3, and R. The 
bar chart describes the relative mean power of the EEG waves, and the vertical error bar (black color) 
is the 95% CI. (a) Alpha relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, 
and global. (b) Beta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, 
and global. (c) Theta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, 
and global. (d) Delta relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, 
and global. (e) Gamma relative power for sleep stages in the frontal lobe, central lobe, occipital lobe, 
and global. Global indicates the average measures of features of the frontal, central, and occipital 
lobes. The horizontal bars (brown color) are the outcomes of the hypothesis tests and indicate sig-
nificant differences (p < 0.05) in EEG features among the sleep stages. 

Alpha was highest in the wake stage and lowest in the N3 or deep sleep stage in all 
cortical positions. Alpha gradually weakens as sleep becomes deeper. In the REM sleep 
stage, the alpha wave again gains strength. Beta was also dominant in the wake stage and 
lowest in the N3 or deep sleep stage in all cortical positions. Beta gradually becomes 
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dormant as sleep propagates from light sleep to a deep sleep state. In the REM sleep stage, 
the beta wave again increases. 

Theta was highest in the REM stage and lowest in the N3 or deep sleep stage in all 
cortical positions. Theta increases in light sleep. In the REM sleep stage, the theta wave 
again gains strength. Delta was highest in deep sleep or N3 stage and lowest in the wake 
stage in the frontal and occipital cortical positions. An exception is observed only in the 
central lobe. In the central lobe, delta was highest in the wake stage and sharply went 
down in the N1 and N2 stages. Delta again gradually increased as sleep became deeper 
and was highest in REM sleep in the central cortex. Gamma was highest in the wake stage 
and lowest in the N3 or deep sleep stage in all cortical positions. Gamma gradually weak-
ens as sleep becomes deeper. In the REM sleep stage, the gamma wave again became 
dominant. Statistical results (Mean and Standard Deviation) of EEG spectral features (δ, 
θ, α, β, and γ) during sleep stages are reported in Table 2. 

Table 2. Statistical results (Mean and Standard Deviation) of EEG spectral features (δ, θ, α, β, and 
γ) in the frontal, central, and occipital lobes during sleep stages W, N1, N2, N-3, and R. Global indi-
cates the average measures of features of the frontal, central, and occipital lobes. 

 EEG  
Feature 

N1 N2 N3 R W 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Frontal 
Lobe 

Alpha 0.102 0.056 0.082 0.042 0.048 0.028 0.089 0.042 0.112 0.079 
Beta 0.113 0.070 0.070 0.045 0.033 0.028 0.088 0.051 0.140 0.092 

Theta 0.137 0.064 0.130 0.051 0.093 0.037 0.147 0.058 0.125 0.078 
Delta 0.613 0.186 0.694 0.144 0.813 0.108 0.648 0.148 0.570 0.234 

Gamma 0.036 0.061 0.024 0.070 0.013 0.061 0.028 0.060 0.053 0.071 

Central 
Lobe 

Alpha 0.115 0.062 0.092 0.045 0.053 0.032 0.102 0.044 0.137 0.087 
Beta 0.126 0.075 0.083 0.048 0.040 0.033 0.100 0.050 0.169 0.097 

Theta 0.151 0.069 0.147 0.053 0.104 0.043 0.169 0.060 0.141 0.084 
Delta 3.922 27.494 1.572 19.725 1.954 10.219 1.982 25.349 4.922 32.353 

Gamma 0.048 0.092 0.037 0.101 0.021 0.085 0.043 0.101 0.067 0.092 

Occipital 
Lobe 

Alpha 0.112 0.064 0.096 0.046 0.057 0.032 0.108 0.048 0.142 0.097 
Beta 0.117 0.074 0.086 0.050 0.043 0.033 0.102 0.048 0.161 0.101 

Theta 0.144 0.071 0.153 0.064 0.116 0.052 0.156 0.060 0.137 0.086 
Delta 0.580 0.207 0.620 0.170 0.759 0.136 0.590 0.156 0.499 0.261 

Gamma 0.047 0.091 0.046 0.112 0.025 0.084 0.045 0.100 0.061 0.089 

Global 

Alpha 0.109 0.058 0.090 0.041 0.052 0.028 0.100 0.041 0.130 0.084 
Beta 0.119 0.070 0.080 0.045 0.039 0.029 0.097 0.046 0.156 0.090 

Theta 0.144 0.064 0.143 0.050 0.104 0.040 0.157 0.054 0.134 0.079 
Delta 1.701 9.200 0.960 6.591 1.175 3.422 1.071 8.468 1.994 10.825 

Gamma 0.043 0.071 0.036 0.084 0.020 0.068 0.038 0.076 0.060 0.075 

3.1.2. Association of DAR, DTR, and DTABR with Sleep Stages 
Delta power ratios, such as DAR and DTR, were explored during sleep stages W, N1, 

N2, N-3, and R (Table 3). Figure 3 shows the bar charts with error bars with a 95% confi-
dence interval of DAR, DTR, and DTABR in sleep stages. Global delta ratio parameters 
(DAR, DTR, and DTABR) were dominant in the wake and N1 stages; they decreased 
sharply in the N2 and N3 stages. In the REM sleep stage, DAR, DTR, and DTABR further 
increase compared with the deep sleep N3 stage. 
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Table 3. Statistical results (Mean and Standard Deviation) of EEG Delta features (DAR, DTR, and 
DTABR) in the Global cortex during sleep stages W, N1, N2, N-3, and R. Global indicates the average 
measures of features of the frontal, central, and occipital lobes. 

 EEG  
Feature 

N1 N2 N3 R W 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Global 
DAR 296.0 3326.7 103.0 1917.7 73.6 723.5 180.5 3406.5 292.8 2914.9 
DTR 89.8 824.5 31.2 486.4 24.3 195.8 48.9 790.4 96.6 748.6 

DTABR 166.0 1912.7 62.5 1219.8 48.6 440.1 105.1 1950.1 153.8 1678.6 

 
Figure 3. Results from DAR, DTR, and DTABR during sleep stages W, N1, N2, N-3, and R. The bar 
chart describes the relative mean power of the EEG waves and the vertical error bar (black color) is 
the 95% CI. Global indicates the average measures of features of the frontal, central, and occipital 
lobes. The horizontal bars (brown color) are the outcomes of the hypothesis tests and indicate sig-
nificant differences (p < 0.05) in EEG features among the sleep stages. 

3.2. Machine Learning Analysis 
Machine-learning algorithms were utilized to predict the physiological states of var-

ious sleep stages. Machine Learning analysis is comprised of three steps: feature selection, 
model training, and model testing (or validation). During the feature selection process, 
the F-statistics were used to assess the feature relevance of sleep EEG features. EEG fea-
tures with a p-value larger than 0.95 were selected for further classification investigation. 
The confusion matrix, also known as the error matrix, clearly demonstrates prediction 
outcomes for all target classes. Other performance parameters are computed using the 
confusion matrix, including accuracy, sensitivity, and precision. Accuracy was defined as 
the ratio of correct predictions to total observations and was regarded as the most intuitive 
performance metric for identifying the optimal model. The following standard formulas 
are used to estimate the performance evaluation matrix: Sensitivity =  TPTP + FN 
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Specificity =  TNTN + FP Precision =  TPTP + FP 

Negative predictive value (NPV) =  TNTN + FN Accuracy =  TN + TPTN + TP + FN + FP 

where TP stands for the true positive, TN means the true negative, FP stands for the false 
positive, and FN means the false negative. 

Multi-Class Classification of Sleep Stages 
We utilized the machine learning algorithms for the multi-class classification of the 

sleep stages W, N1, N2, N-3, and R. The confusion matrices of the three machine-learning 
models (C5.0, Neural Network, and CHAID Models) were demonstrated in Tables 4–6 as 
the outcomes of prediction performance for sleep stages. The performances of the three 
machine-learning models (C5.0, Neural Network, and CHAID Models) were demon-
strated in Figure 4 to classify the sleep stages using a training and testing dataset of EEG 
features. 

Table 4. Confusion matrix of the C5.0 Model using training and testing datasets for the classification 
of EEG features of the sleep stages W, N1, N2, N-3, and R. 

C5.0 
Prediction 

N1 N2 N3 REM Wake N1 N2 N3 REM Wake 

Actual 

N1 5760 1529 78 705 1451 748 632 42 383 585 
N2 837 27,581 1849 842 481 493 5713 858 548 226 
N3 88 2262 14,656 66 63 38 976 3083 38 20 

REM 665 1110 103 11,046 233 400 676 55 2060 117 
Wake 622 443 37 152 14,192 391 237 25 86 3170 

Table 5. Confusion matrix of the Neural Network Model using training and testing datasets for the 
classification of EEG features of the sleep stages W, N1, N2, N-3, and R. 

Neural Network 
Prediction 

N1 N2 N3 REM Wake N1 N2 N3 REM Wake 

Actual 

N1 2197 2,634 88 1948 2656 550 666 29 470 675 
N2 845 24,746 3078 1883 1038 196 6149 753 483 257 
N3 22 4250 12,647 42 174 7 1039 3066 13 30 

REM 699 2,504 86 9331 537 176 624 21 2372 115 
Wake 980 796 68 318 13,284 243 212 23 78 3353 

Table 6. Confusion matrix of the CHAID Model using training and testing datasets for the classifi-
cation of EEG features of the sleep stages W, N1, N2, N-3, and R. 

CHAID 
Prediction 

N1 N2 N3 REM Wake N1 N2 N3 REM Wake 

Actual 

N1 2109 2946 270 1817 2381 541 741 54 451 603 
N2 1392 21,380 4679 3175 964 338 5305 1121 834 240 
N3 80 5835 10,913 147 160 16 1418 2659 31 31 

REM 1366 4547 422 6210 612 354 1152 103 1560 139 
Wake 1970 1697 199 479 11,101 535 407 66 124 2777 
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The C5.0 model showed 94% accuracy using the training dataset and 87% accuracy 
using the testing dataset for multi-class classification of sleep stages (Table 7). N3 and W 
stages were most accurately classified with accuracy for training (95% and 96%) and test-
ing (91% and 92%). The wake stage was classified with the highest sensitivity for training 
(92%) and testing (81%). The sensitivity of the C5.0 model was the lowest in the N1 stage. 
Moreover, the wake stage was classified with the highest precision for training (86%) and 
testing (77%). Furthermore, the negative predictive value of the C5.0 model was highest 
in the wake stage for training (98%) and testing (96%). 

The Neural Network model showed 89% accuracy using the training dataset and 89% 
accuracy using the testing dataset for multi-class classification of sleep stages (Table 8). 
The N3, REM, and W stage were the most accurately classified with accuracy for training 
(91%, 91%, and 92%) and testing (91%, 91%, and 92%). The wake stage was classified with 
the highest sensitivity for training (86%) and testing (86%). The sensitivity of the Neural 
Network model was lowest for the N1 stage. Moreover, the wake stage was classified with 
the highest precision for training (75%) and testing (76%). Furthermore, the negative pre-
dictive value of the Neural Network model was highest in the wake stage for training 
(97%) and testing (97%). 

The CHAID model showed 84% accuracy using the training dataset and 84% accu-
racy using the testing dataset for multi-class classification of sleep stages (Table 9). The W 
stage was most accurately classified with accuracy for training (90%) and testing (90%). 
The wake stage was classified with the highest sensitivity for training (72%) and testing 
(71%). The sensitivity of the CHAID model was lowest in the N1 stage. Moreover, the 
wake stage was classified with the highest precision for training (73%) and testing (73%). 
Furthermore, the negative predictive value of the CHAID model was highest in the wake 
stage for training (94%) and testing (94%). 

Table 7. Classification Performance parameters of the C5.0 Model using training and testing da-
tasets for the classification of EEG features of the sleep stages W, N1, N2, N-3, and R. 

C5.0 

Training (Average Accuracy = 94%) Testing (Average Accuracy = 87%) 

Accuracy Sensitivity Specificity Precision 
Negative 
Predictive 

Value 
Accuracy Sensitivity Specificity Precision 

Negative 
Predictive 

Value 
N1 0.93 0.60 0.971 0.72 0.95 0.86 0.31 0.931 0.36 0.92 
N2 0.89 0.87 0.903 0.84 0.93 0.78 0.73 0.817 0.69 0.84 
N3 0.95 0.86 0.970 0.88 0.96 0.91 0.74 0.944 0.76 0.94 
R 0.96 0.84 0.976 0.86 0.97 0.89 0.62 0.942 0.66 0.93 
W 0.96 0.92 0.969 0.86 0.98 0.92 0.81 0.946 0.77 0.96 

Table 8. Confusion matrix of the Neural Network Model using training and testing datasets for the 
classification of EEG features of the sleep stages W, N1, N2, N-3, and R. 

Neural 
Network 

Training (Average Accuracy = 89%) Testing (Average Accuracy = 89%) 

Accuracy Sensitivity Specificity Precision 
Negative 
Predictive 

Value 
Accuracy Sensitivity Specificity Precision 

Negative 
Predictive 

Value 
N1 0.89 0.23 0.97 0.46 0.91 0.89 0.23 0.97 0.47 0.91 
N2 0.80 0.78 0.82 0.71 0.87 0.80 0.78 0.82 0.71 0.87 
N3 0.91 0.74 0.95 0.79 0.94 0.91 0.74 0.95 0.79 0.94 
R 0.91 0.71 0.94 0.69 0.95 0.91 0.72 0.94 0.69 0.95 
W 0.92 0.86 0.94 0.75 0.97 0.92 0.86 0.94 0.76 0.97 
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Table 9. Confusion matrix of the CHAID Model using training and testing datasets for the classifi-
cation of EEG features of the sleep stages W, N1, N2, N-3, and R. 

CHAID 

Training (Average Accuracy = 84%) Testing (Average Accuracy = 84%) 

Accuracy Sensitivity Specificity Precision 
Negative 
Predictive 

Value 
Accuracy Sensitivity Specificity Precision 

Negative 
Predictive 

Value 
N1 0.86 0.22 0.94 0.30 0.91 0.86 0.23 0.94 0.30 0.91 
N2 0.71 0.68 0.73 0.59 0.80 0.71 0.68 0.73 0.59 0.80 
N3 0.86 0.64 0.92 0.66 0.91 0.87 0.64 0.92 0.66 0.91 
R 0.86 0.47 0.92 0.53 0.91 0.85 0.47 0.92 0.52 0.91 
W 0.90 0.72 0.94 0.73 0.94 0.90 0.71 0.94 0.73 0.94 

 
Figure 4. Performance of the three machine-learning models (C5.0, Neural Network, and CHAID 
Models) to classify the sleep stages W, N1, N2, N-3, and R using training and testing datasets of 
EEG features. 

4. Discussion 
In our study, we characterized the neurological changes in sleep stages and classifi-

cation of sleep stages using three EEG channels located in the frontal (F4), central (C4), 
and occipital (O2) lobes of a diverse group of adults. The extent of neurological change 
depends on the individual’s sleep pattern, dynamics of sleep stage transitions, and the 
individual’s lifestyle overall. We evaluated the neurological biomarkers through EEG in 
every sleep stage. Patient recordings were randomly chosen and reflected a broad sample 
of individuals referred for PSG exams for a variety of sleep disorders. Sleep is classified 
as REM or NREM sleep. Stages N1, N2, and N3 correspond to NREM sleep. Different sleep 
phases must be characterized and classified to identify sleep-related diseases. For in-
stance, detecting REM sleep is an essential job for diagnosing REM sleep behavior disor-
der, and classification of wake and sleep states is required for sleep monitoring. This study 
addresses these demands by classifying W, N1, N2, N3, and REM stages. 

Alpha rhythm, one of the basic features of human EEG, is prominent in the relaxed 
eye-closed awake state, N1, and REM sleep [35]. Alpha attenuates during high arousal 
states. In our study, alpha oscillation is higher in the resting awake state and decreases in 
the light sleep stage. The alpha activity also increases during REM sleep due to the short 
bursts of alpha rhythm [36]. A similar nature was observed for beta activity in sleep stages. 
Theta rhythm increases in light sleep (N1 and N2) stages relative to the wake stage and 
attenuates in the slow-wave sleep (N3) stage. A rise in delta activity was observed in the 
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slow-wave deep-sleep (N3) stage compared with light sleep stages. Delta wave is consid-
ered an indicator of slow-wave deep sleep [37]. 

It has been observed that the classification rates for the N1 and N2 sleep stages are 
lower, which is one of the most challenging tasks. The N2 sleep stage is usually the tran-
sition between the light sleep and deep sleep stages [38]. As both N1 and N2 stages are 
light sleep states, the N2 stage is often mislabeled as N1. Therefore, the automated sleep 
staging algorithm misclassified it as N1 or N2 [39]. Moreover, gamma rhythms are iden-
tical in light sleep stages (N1 and N2) and REM sleep. This may also lead to the misclassi-
fication of N1, N2, and REM sleep stages. Furthermore, human sleep is a combination of 
distinct sleep phases with an unequal distribution of sleep epochs. Table 10 demonstrates 
a comparative study of methodologies and results between the current work and previous 
machine learning-based sleep studies. It is observed in Table 10 that our proposed ap-
proach has a notable improvement in prediction performance compared with the existing 
state-of-the-art works related to the five-class sleep states classification. Our classification 
performance is much higher than other multi-class classification studies. 

Table 10. Comparative analysis of the methods and outcomes of the proposed work with other sleep 
studies. 

Study  Year Study Subject  Dataset (Year)/Signal Class Algorithm Accuracy % 
Tzimourta et al. 

[40] 
2018 100 subjects 

ISRUC-Sleep dataset (2009–
2013)/EEG 

Five-class {W, N1, 
N2, N3, and REM} 

Random Forest 75.29 

Kalbkhani et al. 
[41] 

2018 100 subjects 
ISRUC-Sleep dataset (2009–

2013)/EEG 
Five-class {W, N1, 
N2, N3, and REM} 

SVM 82.33 

Tripathi et al. 
[42] 

2020 25 subjects 
Cyclic Alternating Pattern 

(CAP) (2001)/EEG 
Six-class {W, S1, S2, 

S3, S4, and REM} 
Hybrid Classifier 71.68 

Widasari et al. 
[43] 

2020 51 subjects 
Cyclic Alternating Pattern 

(CAP) (2001)/EEG 

Four-class {W, 
Light sleep (S1 + 

S2), Deep sleep (S3 
+ S4), and REM} 

Ensemble of 
bagged tree (EBT) 

86.26 

Wang et al. [44] 2020 157 subjects 
Sleep-EDF Expanded (Sleep-
EDFX) (2000)/EEG and EOG 

Five-class {W, N1, 
N2, N3, and REM} 

Ensembles of  
EEGNet-BiLSTM 

82 

Sharma et al. 
[45] 

2021 80 subjects 
Cyclic Alternating Pattern 

(CAP) (2001)/EEG 
Six-class {W, S1, S2, 

S3, S4, and REM} 

Ensemble of 
Bagged Tree 

(EBT) 
85.3 

Proposed work 2022 157 subjects 
HMC-Haaglanden Medisch 

Centrum (2021)/EEG 
Five-class {W, N1, 
N2, N3, and REM} 

C5.0, Neural Net-
work, and 

CHAID 

C5.0 (91%), 
Neural Net-
work (92%), 
and CHAID 

(84%) 

We analyzed only three-channel EEG data to understand the neurological changes in 
EEG due to sleep stages, focusing on single-channel data from each frontal, central, and 
occipital lobe. Although a standard sleep study consists of multimodal biosignals, we did 
not study all EEG channels to simplify the automatic sleep stage prediction suitable for a 
wearable sleep monitoring system. In the future, we plan to extend this study with mul-
timodal signals to enhance the accuracy of the prediction models. 

5. Conclusions 
Prediction of sleep stages is considered an assistive technology in machine-learning-

enabled wearable sleep monitoring systems. The neurological biomarkers of sleep stages 
have been quantified through the EEG signal of polysomnography. In NREM sleep, atten-
uation of the alpha, beta, and gamma rhythms were observed, as well as the rise of theta 
and delta rhythms with the awake state and the subsequent increase in alpha and beta 
rhythms in REM sleep. Delta wave power ratios (DAR, DTR, and DTABR) are expected 
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to be considered as biomarkers for their nature of decreasing NREM sleep and subsequent 
increase in REM sleep. The overall accuracy of the C5.0, Neural Network, and CHAID 
models are 91%, 89%, and 84%, respectively, in the multi-class classification of the sleep 
stages. This EEG-based sleep stage prediction technique is a promising candidate for fur-
ther neuroscience research in a wearable sleep monitoring system. 
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