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Abstract: Realizing robust six degrees of freedom (6DOF) state estimation and high-performance
simultaneous localization and mapping (SLAM) for perceptually degraded scenes (such as under-
ground tunnels, corridors, and roadways) is a challenge in robotics. To solve these problems, we
propose a SLAM algorithm based on tightly coupled LiDAR-IMU fusion, which consists of two
parts: front end iterative Kalman filtering and back end pose graph optimization. Firstly, on the
front end, an iterative Kalman filter is established to construct a tightly coupled LiDAR-Inertial
Odometry (LIO). The state propagation process for the a priori position and attitude of a robot,
which uses predictions and observations, increases the accuracy of the attitude and enhances the
system robustness. Second, on the back end, we deploy a keyframe selection strategy to meet the
real-time requirements of large-scale scenes. Moreover, loop detection and ground constraints are
added to the tightly coupled framework, thereby further improving the overall accuracy of the 6DOF
state estimation. Finally, the performance of the algorithm is verified using a public dataset and the
dataset we collected. The experimental results show that for perceptually degraded scenes, compared
with existing LiDAR-SLAM algorithms, our proposed algorithm grants the robot higher accuracy,
real-time performance and robustness, effectively reducing the cumulative error of the system and
ensuring the global consistency of the constructed maps.

Keywords: perceptually degraded scenes; LiDAR; IMU; state estimation; SLAM

1. Introduction

SLAM is the basis for autonomous navigation in robots [1], which use various sensors
to conduct real-time 6DOF state estimation in 3D space; this state estimation is the key
to achieving high-performance SLAM. The LiDAR-based approach can obtain accurate
range information for a scene in 3D space in real time and is invariant to ambient lighting
conditions. However, due to the problems of motion distortion [2], low-frequency updates,
and sparse point clouds [3] in LiDAR measurements, pure LiDAR is unsuitable for robots
dealing with aggressive movements or repetitive structures, such as tunnels or narrow
corridors. The shortcomings of LiDAR can be compensated for by fusing IMU. Unlike
LiDAR, IMU is not affected by drastic changes in structural features or the environment and
can provide high-precision pose estimation with high frequency in a short time. However,
due to noise and the bias of IMU sensors, error accumulation can drift over time. To
overcome these drawbacks of independent sensors, the reliability of state estimation [4,5] can
be improved by fusing multiple sensors together. Thus, the robustness of state estimation
can be effectively improved through tightly coupled LIO. Many studies have shown that
introducing loop detection in SLAM systems can effectively resolve pose drift caused
by the accumulation of sensor errors [6,7]. After detecting the loop frame, the pose is
continuously optimized to ensure the global consistency of the map, which greatly improves
the positioning accuracy.
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Despite the superior performance of 3D LiDAR, scenes characterized by single spatial
structures, complex environments, uneven illumination [8], narrow spaces and other issues
pose new challenges for LiDAR-SLAM: (1) The geometric features in an environment
that are recognized by LiDAR (such as points, lines and surfaces) are usually manually
defined by mathematical methods, and LiDAR-based solutions can easily degrade when
robots operate in environments with no geometric features, repetitive environments and
symmetrical structures. (2) The data measured by LiDAR show a high degree of similarity
in one dimension, mainly because of the sidewalls in promenade environments, which
can provide a lateral localization reference but not a vertical one. In this case, the fea-
ture matching of the sidewalls can easily lead to incorrect attitude constraint estimates.
(3) Repeated laser features can lead to misleading constraints and attitude drift in the
longitudinal direction such that the point cloud alignment converges to the wrong result
and the localization performance deteriorates rapidly or fails completely. This severely
affects overall SLAM performance and limits the ability of robots to operate autonomously
in such environments. At the same time, as the mileage of a robot increases, the trajectory
estimated by the odometer will gradually deviate from the real trajectory. To improve the
positioning accuracy of the system and the global consistency of the map and suppress the
accumulated error of the odometer, when the robot recognizes that the environment is near
the pose of a historical frame, relative pose constraints are integrated into the cost function
by calculating the relative relationship between the current frame and the loop frame to
establish the solution for the overall pose of the system. The main difficulties of loop
detection are as follows: (1) Perceived ambiguity. For example, scenes with very similar
structures, such as corridors, tunnels and stairs, increase the difficulty of judgment. (2) The
sparsity of the point clouds extracted by the LiDAR sensor itself limits the robustness and
discrimination of the observation data. (3) The scale of the data can gradually increase the
number of frames to be judged as the running time increases, which reduces the real-time
performance of the map construction.

Robust 6DOF state estimation and high-performance SLAM can be used to enable
robots to more effectively deal with these special perceptually degraded scenes. In this
paper, we propose a tightly coupled LiDAR-SLAM fusion algorithm with two sensors,
LiDAR and IMU, as input information sources. The framework of the system consists
of two parts: front end iterative Kalman filtering and back end pose graph optimization,
these are less dependent on external features, have a strong ability to adapt to the envi-
ronment and are especially suitable for perceptually degraded scenes such as corridors
and roadways. However, in perceptually degraded scenes, ensuring the tradeoff between
the estimation accuracy, computational complexity and robustness of SLAM systems is
still a major problem faced by tightly coupled LIO [9]. Therefore, research in this area is of
great importance.

The main contributions of this paper are as follows:

(1) We propose a tightly coupled LiDAR-IMU fusion SLAM algorithm that uses both
LiDAR and IMU sensors as input information for perceptually degraded scenes. The
results show that our algorithm improves the accuracy, real-time performance and
robustness of robots working in such scenarios.

(2) Our algorithm achieves robot state updates by establishing an error-state-based itera-
tive Kalman filter at the front end and adds loop detection and ground constraints in
the tightly coupled framework at the back end, which effectively reduces the cumula-
tive error of the system and ensures the global consistency of the constructed maps by
optimizing the relative poses between adjacent keyframes.

(3) Our algorithm fuses different types of sensors in a tightly coupled framework to
achieve robust 6DOF state estimation and high-performance SLAM for perceptually
degraded scenes and outputs motion trajectories, a global map and state estimation
in real time after global graph optimization.

The remainder of this paper is organized as follows: In Section 2, we discuss relevant
related research. We outline the framework of the system and provide a detailed system
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overview in Section 3. We describe the pre-processing of the sensor data in preparation for
the subsequent work in Section 4. The construction of the front end of the tightly coupled
LIO is described in Section 5. We conduct back end pose graph optimization in Section 6.
The relevant experiments and results are analyzed in Section 7, followed by conclusions in
Section 8.

2. Related Work

Of the many studies related to LiDAR-SLAM, we focus on work related to SLAM
algorithms for 6DOF state estimation and multi-sensor fusion in robots. The different fusion
frameworks of these algorithms are usually classified as loosely coupled and tightly coupled.

2.1. LiDAR Odometry and Mapping

LiDAR odometry is usually performed by using scan-matching methods such as
ICP [10] and GICP [11] to calculate the relative positional transformation between two
consecutive LiDAR frames. Feature-based matching methods have become a popular
alternative to matching complete point clouds due to their computational efficiency. For
example, in [12], a plane-based real-time LiDAR odometry alignment method was pro-
posed. Assuming an operation in a structured environment, this method extracts planes
from a point cloud and matches them by solving a least squares problem. In [13,14], LiDAR
odometry was implemented by matching feature points with edge lines and planes using
the LOAM algorithm and its improved algorithm, which achieved good results in various
scenarios. However, the scanned point cloud is often skewed due to the internal rotation
mechanism of the 3D LiDAR and the motion of the sensor. The use of LiDAR alone for
attitude estimation is not ideal because using skewed point clouds or features for regis-
tration will eventually lead to large drifts. Therefore, LiDAR is often used in conjunction
with other sensors, such as cameras or IMUs, for state estimation and SLAM. For example,
in [15–19], IMU, LiDAR and GNSS were fused into an extended Kalman filter (EKF) in the
optimization phase for robot state estimation.

2.2. Loosely Coupled LiDAR-Inertial Odometry

The loosely coupled fusion method usually processes the measurement of each sensor
input separately and weights the measurement results to infer the motion state of the
robot. LOAM [13] and LeGO-LOAM [14] are loosely coupled systems in which IMU
measurements are typically used to mitigate laser degradation in featureless environments,
and only the IMU-calculated pose is used as an initial estimate for LiDAR scan alignment
and motion distortion correction, not as a constraint for global optimization. The EKF
is a commonly used method for loosely coupled fusion. To improve the localization
accuracy of autonomous robots, ref. [20] incorporated a wheel speedometer in the loosely
coupled LIO framework and established the observation equations of the EKF using the
velocity and distance measured by the wheel speedometer. Further, ref. [21] fused LiDAR,
IMU, odometry and GNSS based on graph optimization, with the flexible handling of
scan matching and joint IMU constraints as well as other observation constraints. In
general, loosely coupled methods are computationally efficient [22] and relatively flexible
in implementation. However, because these methods ignore the correction of the internal
state of the IMU, they are easily disturbed by noise, and the loosely coupled system treats
the measurement part as a black box and decouples the measurements of individual sensors;
this decoupling leads to information loss [23].

2.3. Tightly Coupled LiDAR-Inertial Odometry

Unlike loosely coupled methods, tightly coupled methods typically fuse raw LiDAR
feature points (rather than the scanning registration results) with IMU data, which yields
a high robustness and accuracy, and can be divided into optimization-based and filter-
based methods.
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An optimization-based method [7] introduced IMU in the LIO-mapping system pre-
integration to minimize the residuals of the IMU and LiDAR measurements; the proposed
approach can correct long-term drift through loop detection to achieve good accuracy, but
the real-time application of the algorithm is time-consuming. As one of the most advanced
algorithms available, LIO-SAM [24] has undergone a large number of experimental tests
and outperforms many LIO algorithms that only use LiDAR or are loosely coupled. The
sliding window of the LiDAR keyframe is introduced to limit the computational complexity,
and the factor graph is used for joint IMU and LiDAR constraint optimization to obtain
higher accuracy. This fusion framework is based on a factor graph, which is suitable for
multi-sensor fusion. The filter-based method often uses an EKF. However, it is susceptible
to linearization errors, which can lead to poor performance and even divergent results [25].
The authors of [6] proposed LINS, which is a robot-centered LiDAR-inertial estimator that
recursively corrects the robot state estimation for ground vehicles by using an error state
iterative Kalman filter. Although this method has high accuracy and high computational
efficiency, it also has drift problems in the long-term navigation process. To reduce the
impact of estimation errors caused by linearization, R-LINS [26], FAST-LIO [27] and FAST-
LIO2 [28] all use an iterative Kalman filter. Compared with R-LINS and FAST-LIO, FAST-
LIO2 uses a new data structure ikd-Tree to save the map; this method can register the
original points directly to the map without extracting features, which enables the algorithm
to work faster and more accurately.

The most significant difference between our approach and other tightly coupled
methods is the specific environment of perceptual degradation. We have chosen a filter-
based optimization approach at the front end to improve the system’s robustness, which
often uses an extended Kalman Filter (EKF). However, the EKF can easily cause a system to
be affected by linearization errors [29]. With regard to the scanning constraints observed by
LiDAR, this disadvantage is particularly prominent. If the initial pose is incorrect and leads
to the mismatch of extracted features, it is considered to be highly nonlinear. To eliminate
the errors caused by incorrect matching, we propose an iterative Kalman filter [30], which
can repeatedly find a better match in each iteration. In addition, we use an error state
representation to ensure the validity of the linearization [31]. Therefore, our proposed
approach constructs an iterative Kalman filter on the front end to fuse LiDAR and IMU
measurements to achieve tightly coupled LIO, thus laying the groundwork for back end
global optimization studies.

3. Overview
3.1. System Framework

Our system receives data from 3D LiDAR and IMU sensors. The goal of the system
is for a robot to perform real-time 6DOF state estimation and build a globally consistent
map. The system framework of our proposed algorithm, which is shown in Figure 1, is
mainly composed of two parts: front end iterative Kalman filtering and back end pose graph
optimization. First, pre-processing is conducted on the sensor measurements to compensate
for the motion of the original point cloud by pre-integrating the IMU measurements
between two consecutive LiDAR frames. Then, stable features are extracted from the
corrected point cloud. On the front end (Section 5), the sensor data are pre-processed, the
IMU prediction model and the LiDAR observation model are built, the iterative Kalman
filter is constructed and the a priori positional attitude of the robot is propagated through
a state propagation process, which consists of predictions and observations, to increase
the accuracy of the updated pose. Then, the loop is iterated to obtain a tightly coupled
LIO. On the back end (Section 6), the keyframe is used to determine if the current pose
should be added to the pose graph optimization and loop detection is used to determine
if the current position is revisited, which can be expressed as a maximum a posteriori
(MAP) problem. In addition, loop detection and ground constraints are added to the
tightly coupled framework to optimize the relative pose between adjacent keyframes,
reduce cumulative drift, maintain global consistency and improve the positioning accuracy.
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Finally, information such as the motion trajectory, global map and state estimation are
output after pose graph optimization.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 22 
 

 

observations, to increase the accuracy of the updated pose. Then, the loop is iterated to 
obtain a tightly coupled LIO. On the back end (Section 6), the keyframe is used to 
determine if the current pose should be added to the pose graph optimization and loop 
detection is used to determine if the current position is revisited, which can be expressed 
as a maximum a posteriori (MAP) problem. In addition, loop detection and ground 
constraints are added to the tightly coupled framework to optimize the relative pose 
between adjacent keyframes, reduce cumulative drift, maintain global consistency and 
improve the positioning accuracy. Finally, information such as the motion trajectory, 
global map and state estimation are output after pose graph optimization. 

LiDAR

IMU

Point cloud 
segmentation

Pre-integration

Motion 
compensation

Status 
propagation Status update

Feature 
extraction

LiDAR-Inertial 
Odometry

InitializationLocal MapKeyframes

Tightly coupled pose graph optimization Global Map

Ground 
restraint

Loop 
detection

Extraction 
ground

6DOF state 
estimation

Front end

Map 
Management

Back end

 
Figure 1. System framework. 

3.2. Relevant Agreement 
To clearly describe the ranging process, we define three reference coordinates. 

Additionally, we assume that the IMU and robot coordinates are consistent, the origin of 
the world coordinates is the origin of the robot coordinates when the coordinate is 
initialized, and the robot coordinates are consistent with the center of the LiDAR and 
IMU coordinates. Because the connection between the sensors is rigid, the external 
calibration between the LiDAR and IMU sensors is obtained by offline calibration. The 
z-axis of the world coordinate is defined as coinciding with the normal to the surface of 
the Earth’s ellipsoid, with the other two axes lying in the plane orthogonal to the z-axis, 
which conforms to the right-hand rule. Table 1 lists the meanings of all variables. 

Table 1. Meaning of the variables involved in this paper. 

Symbol Meaning Symbol Meaning 
3p∈  Position B

Ap  Translation of A to B (matrix) 
3v∈  Velocity B

Aq  Rotation of A to B (quaternion) 
3θ ∈  Euler angular pose B

AR  Rotation of A to B (matrix) 

q  Quaternion pose B
At  Translation of A to B (vector) 

4T ∈  Transformation matrix B
AT  Transformation matrix from A to B 

3ω∈  Angular velocity w  World coordinates 
3a∈  Acceleration l  LiDAR coordinates 
3g∈  Gravity b  Robotics, IMU coordinates 

Figure 1. System framework.

3.2. Relevant Agreement

To clearly describe the ranging process, we define three reference coordinates. Addi-
tionally, we assume that the IMU and robot coordinates are consistent, the origin of the
world coordinates is the origin of the robot coordinates when the coordinate is initialized,
and the robot coordinates are consistent with the center of the LiDAR and IMU coordinates.
Because the connection between the sensors is rigid, the external calibration between the Li-
DAR and IMU sensors is obtained by offline calibration. The z-axis of the world coordinate
is defined as coinciding with the normal to the surface of the Earth’s ellipsoid, with the
other two axes lying in the plane orthogonal to the z-axis, which conforms to the right-hand
rule. Table 1 lists the meanings of all variables.

Table 1. Meaning of the variables involved in this paper.

Symbol Meaning Symbol Meaning

p ∈ R3 Position pB
A Translation of A to B (matrix)

v ∈ R3 Velocity qB
A Rotation of A to B (quaternion)

θ ∈ R3 Euler angular pose RB
A Rotation of A to B (matrix)

q Quaternion pose tB
A Translation of A to B (vector)

T ∈ R4 Transformation matrix TB
A Transformation matrix from A to B

ω ∈ R3 Angular velocity w World coordinates
a ∈ R3 Acceleration l LiDAR coordinates
g ∈ R3 Gravity b Robotics, IMU coordinates
ba, bω ∈

R3
Acceleration and angular

velocity bias bk kth frame of LiDAR under B

na, nω ∈
R3

Acceleration and angular
velocity noise (•)k State of the kth frame

P 3D point cloud (•)t State at moment t
M Map (•̂) Priori state

4. Sensor Data Pre-Processing
4.1. IMU Pre-Integration

The IMU pre-integration algorithm was proposed by Geneva [32]. To avoid continuous
propagation of the initial attitude, the world coordinates are separated and only the state
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change between two consecutive frames in the IMU coordinate is calculated. The position,
speed and attitude of two consecutive frames, bk and bk+1, can be expressed as:

pbk
bk+1

= Rbk
w pw

bk+1
= Rbk

w

(
pw

bk
+ vw

bk
∆tk − 1

2 gw∆t2
k

)
+ α

bk
bk+1

vbk
bk+1

= Rbk
w vw

bk+1
= Rbk

w

(
vw

bk
− gw∆tk

)
+ β

bk
bk+1

γ
bk
bk+1

=
[
qw

bk

]−1
⊗ qw

b′k+1

(1)

where α
bk
bk+1

,βbk
bk+1

and γ
bk
bk+1

are the real values of the IMU pre-integration. Therefore, the
IMU pre-integration model can be simplified as:

α
bk
bk+1

=
s

t∈[tk ,tk+1]
R
(

γ
bk
t

)
(ât − bat − na)dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
R
(

γ
bk
t

)
(ât − bat − na)dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]

[
1
2 (ω̂t − bωt − nω)

]
R

γ
bk
t dt

(2)

4.2. Motion Compensation

Due to the rotational mechanism inside the LiDAR sensor, the LiDAR measurements
are not synchronized and, therefore, the current frame point cloud is prone to distortion.
The LiDAR moves at constant angular and linear velocities at a constant speed. Therefore,
the timestamp information of each point can be obtained, a linear interpolation operation
used to obtain the pose transformation matrix corresponding to each moment, and the
motion compensation of the current frame point cloud can be achieved by using IMU
measurements [13,14].

The current frame point cloud is divided into N subframes by Pk, where Pi
k is the ith

subframe of the current laser frame, and i ∈ {1, 2, . . . , N}. Let the pose transformation
matrix between two consecutive LiDAR frames in the time interval [tk, t] be TL

k , which can
be obtained by pre-integration of the IMU data and is not explained in detail here. Then,
TL
(k,i) is the current ith subframe for the LiDAR attitude transformation in the time interval

[tk, ti], which can be calculated by the linear interpolation of:

TL
(k,i) =

ti − tk
t− tk

TL
k (3)

By performing the current subframe transformation, the motion compensated point
cloud for P′k is obtained as:

P′k =
{

TL
(k,1)P

1
k , TL

(k,2)P
2
k , . . . , TL

(k,i)P
i
k

}
, i = 1, 2, . . . , N (4)

4.3. Feature Extraction

The feature extraction and matching method in this paper is similar to the one intro-
duced in LOAM [13]: the smoothness evaluation variables are first used to select edge
points and plane points, and then the corresponding edge line points and plane points in
other keyframes are selected and used to construct the residuals of the LiDAR observation
model. When a new frame of LiDAR point cloud data is motion compensated, feature ex-
traction is performed. Firstly, by calculating the local smoothness, edge and plane features
can be extracted. In addition, the reflectance of a point is used as an additional determinant.
If the reflectance of a point is different from the adjacent threshold, it is also considered to
be another edge point. Second, the curvature of the points is used to calculate the plane
smoothness as an indicator for extraction of the feature information of the current frame.
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Let S be the set of consecutive points i returned by the LiDAR in the same scan. Then, the
smoothness c of the local surface can be defined and evaluated as:

c =
1∣∣∣S∣∣∣·‖XL
(k,i)‖

∥∥∥∥∥ ∑
j∈S,j 6=i

(
XL
(k,i) − XL

(k,j)

)∥∥∥∥∥ (5)

The feature points can be divided into two main categories: plane points and edge
points. Then, the points in the scan are sorted according to the c value and the maximum c
point is selected as the edge point, that is, the point on the sharp edge in 3D space, which
varies greatly in size compared to the surrounding points and has a higher curvature and a
higher smoothness. The minimum c point is selected as the plane point, that is, the point
on a smooth plane in 3D space, which varies slightly in size compared to the surrounding
points and has a lower curvature and a lower smoothness. The LiDAR scanning features of
the extracted edge line and plane at time I are expressed as Fei and Fpi. Then, a set of all
extracted features Fi in frame i is formed, which can be expressed as Fi =

{
Fei,Fpi

}
.

4.4. Extraction Ground

Inspired by [14], adding ground constraints can provide additional constraints on
the z-axis displacements of keyframe nodes when the ground robot works in different
spatial regions while reducing cumulative errors by using more constraint information to
improve the pose estimation accuracy. The key to establishing ground constraints is to
accurately extract the road planes; determining how to spend the shortest amount of time
to complete the planar segmentation and choosing a robust estimation method with few
iterations, a high resistance to noise and random sample consensus (RANSAC) are also
essential processes [33]. According to the basic principle of RANSAC, a plane is obtained
by selecting any three points from each frame of a point cloud. The most commonly used
plane equation is ax + by + cz = d, where a a2 + b2 + c2 = 1, d > 0, (a, b, c) is the plane normal
vector and d is the distance from the LiDAR sensor to the plane. These four parameters can
determine a plane.

Because the robot may travel over uneven ground, it is not possible to construct pose
maps with fixed planes as nodes as a constraint. To ensure that the constructed constraints
are consistent with the actual situation, a subgraph-based ground extraction method is
proposed. Based on the constructed local point cloud map, the true planar parameters are
extracted as follows: πm = [na, nb, nc, d]. To improve the efficiency of ground extraction,
the current position is taken as the origin and the point cloud is searched for in a submap
within the radius of the LiDAR measurement distance. Based on the 3D LiDAR attitude
at the current moment, the ground parameters are converted to LiDAR coordinates using
Equations (6) and (7): [

n′a, n′b, n′c
]T

= Rt·[na, nb, nc]
T (6)

d′ = d− tt·
[
n′a, n′b, n′c

]T (7)

where π′m = [n′a, n′b, n′c, d] denotes the coordinates of the ground in the LiDAR coordinate
and [Rt, tt] is the positional attitude of the LiDAR at moment t.

The calculation of the error between the attitude node and the ground plane node [34]
can be expressed as:

ei,m = q
(
π′m
)
− q(πt) (8)

q(π) =

[
arctan(

na

nb
), arctan(

nc

|n| ), d
]

(9)

5. Front End: Tightly Coupled LiDAR-Inertial Odometry

Tightly coupled LIO uses IMU measurements and features extracted by LiDAR in two
consecutive scans to estimate the relative positional transformation of the robot. To avoid
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large linearization errors caused by growing uncertainty due to IMU measurements [35],
we constructed a robot-centric iterative Kalman filter.

5.1. State Definitions

To facilitate the derivation of the iterative Kalman filter, we define the state xbk
bk+1

from
time k to k + 1 under the IMU coordinate, expressed as:

xbk
bk+1

:=
[

pbk
bk+1

, vbk
bk+1

, qbk
bk+1

, ba, bg, gbk
]

(10)

According to the basic principle of the ESKF [36], once the error state δx is solved, we
add the error state to the a priori state xbk

bk+1
to obtain the a posteriori state xbk

bk+1
, which can

be expressed as:

xbk
bk+1

= xbk
bk+1
⊕ δx =



pbk
bk+1

+ δp

vbk
bk+1

+ δv

qbk
bk+1
⊗ exp(δθ)

ba + δba
bg + δbg
gbk + δg


(11)

where⊗ is the product of quaternions, and exp(·) represents the Euler angles to quaternions.

5.2. Definition of the Motion Equation

The equation of motion over linearized continuous time is defined as:

δx̂(t) = Ftδx(t) + Gtw (12)

where w is the Gaussian noise vector w =
[
nT

a , nT
g , nT

ba
, nT

bg

]T
, Ft is the error state transfer

matrix at moment t and Gt is the noise Jacobi matrix at moment t.

Ft =



0 I3 0 0 0 0
0 0 −Rbk

t [α̂t]× −Rbk
t 0 −I3

0 0 −[ω̂t]× 0 −I3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(13)

Gt =



0 0 0 0
−Rbk

t 0 0 0
0 −I3 0 0
0 0 I3 0
0 0 0 I3
0 0 0 0


(14)

where [·]× ∈ R3×3 represents the conversion of a 3D vector to a skew-symmetric matrix.
I3 is the unit matrix. ât is the true value of the acceleration at moment t and ω̂t is the true
value of the angular velocity at moment t.

Therefore, the equation of motion linearized in continuous time by Equation (12)
is discretized [37] to obtain the mean value of the prior state via Equation (15) and the
variance via Equation (16), respectively.

δxi+1 = (I + Fi∆t)δxi (15)

Pbk
i+1 = (I + Fiδt)Pbk

i (I + Fiδt)T + (Viδt)Q(Viδt)T (16)
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where P is the covariance matrix of δx. Q is the covariance matrix of w, which is obtained
offline by sensor calibration.

5.3. Definition of the Observation Equation

The observation model is mainly obtained by matching the features extracted by the
LiDAR to the point cloud and is defined as:

δŷ(t) = f (xbk
bk+1
⊕ δx)

(JkMkJT
k )
−1 (17)

where Jk is the measurement noise of f (·), and Mk is the covariance matrix of the measure-
ment noise. f (·) represents a stacked residual vector computed from point-to-edge pairs or
point-to-plane pairs.

Given the error term in xbk
bk+1

, f (·) corresponds to plk+1
i and the ith characteristic point

in the LiDAR coordinate k + 1 frames, and the observation equation can be described as

fi

(
xbk

bk+1

)
=



∣∣∣∣∣
(

^
p

lk
i −p

lk
a

)
×
(

^
p

lk
i −p

lk
b

)∣∣∣∣∣∣∣∣plk
a −p

lk
b

∣∣∣ if plk+1
i ∈ Fe∣∣∣∣∣∣

(
^
p

l

i−p
lk
a

)T((
p

lk
a −p

lk
b

)
×
(

p
lk
a −p

lk
c

))∣∣∣∣∣∣∣∣∣(p
lk
a −p

lk
b

)
×
(

p
lk
a −p

lk
c

)∣∣∣ if plk+1
i ∈ Fp

(18)

^
p

lk
i = RbT

l

(
Rbk

bk+1

(
Rb

l plk+1
i + pb

l

)
+ pbk

bk+1
− pb

l

)
(19)

where
^
p

lk
i is the pose transformation of the point plk+1

i from the k+1th frame to the kth frame.

For edge points, the distance is between point plk+1
i and the line formed by plk

a plk
b . For

planar points, the distance is between point plk+1
i and the plane formed by plk

a plk
b plk

c .

5.4. Status Update

In this paper, an iterative extended Kalman filter (IEKF) is used and the state update
can be abstracted as an optimization problem. Because the error state is composed of the
deviation of the prior state and the residual of the observation model, the error state update
problem can be turned into a joint optimization problem of solving for the minimum of the
deviation of the prior state and the minimum of the deviation of the observation model
relative to the pose solution, which can be expressed as:

rS(x) = min ‖δx‖P(k)−1 +
∥∥∥ f
(

xbk
bk+1
⊕ δx

)∥∥∥
(JkMkJT

k )
−1 (20)

where ‖·‖ denotes the M-norm.
Thus, the Kalman gain equation for the ESKF iterative observation can be expressed as

Equation (21), and the mean value of the posterior state can be expressed as Equation (22):

Kk,j = Pk HT
k,j

(
Hk,jPk HT

k,j + Jk,j Mk JT
k,j

)−1
(21)

δxj+1 = δxj + Kk,j

(
Hk,jδxj − f

(
xbk

bk+1
⊕ δxj+1

))
(22)

where Hk,j is the Jacobi matrix of
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5.4. Status Update 
In this paper, an iterative extended Kalman filter (IEKF) is used and the state update 

can be abstracted as an optimization problem. Because the error state is composed of the 
deviation of the prior state and the residual of the observation model, the error state 
update problem can be turned into a joint optimization problem of solving for the 
minimum of the deviation of the prior state and the minimum of the deviation of the 
observation model relative to the pose solution, which can be expressed as: 

( ) 11 1( )( mi (n )) k
Tk k k k

b
S bP k
r x x f x xδ δ −−

+
= + ⊕

J M J
 (20)

where   denotes the M-norm. 
Thus, the Kalman gain equation for the ESKF iterative observation can be expressed 

as Equation (21), and the mean value of the posterior state can be expressed as Equation 
(22): 

 ( ) 1

, , , , , ,
T T T

k j k k j k j k k j k j k k jK P H H P H J M J
−

= +  (21)

( )( )11 , , 1
k

k

b
j j k j k j j b jx x K H x f x xδ δ δ δ

++ += + − ⊕  (22)

where ,k jH  is the Jacobi matrix of ( )1 1
k

k

b
b jf δ

+ +⊕x x  and jxΔ  represents the 

correction vector at the jth iteration. Note that in each iteration, new matching edges and 
matching surfaces are found to further minimize the metric error, so ,k jH , ,k jJ  and 

,k jK  are recomputed. 

When ( )1

k

k

b
bf

+
x  is below a certain threshold, kP  is updated using Equation (23), 

which can be obtained after the nth iteration, and the variance of the posterior state can 
be expressed as: 

( ) ( )1 , , , , , ,
T T

k k n k n k k n k n k n k k nP I K H P I K H K M K+ = − − +  (23)

By iterative updates, the exact posterior state 
1

k

k

b
bx +

 can be obtained, and this 
information can be used as the prior state at the next moment, which is in turn set as the 
prior state at the next moment. 

and ∆xj represents the correction vector at
the jth iteration. Note that in each iteration, new matching edges and matching surfaces
are found to further minimize the metric error, so Hk,j, Jk,j and Kk,j are recomputed.
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When f
(

xbk
bk+1

)
is below a certain threshold, Pk is updated using Equation (23), which

can be obtained after the nth iteration, and the variance of the posterior state can be
expressed as:

Pk+1 = (I − Kk,nHk,n)Pk(I − Kk,n Hk,n)
T + Kk,n MkKT

k,n (23)

By iterative updates, the exact posterior state xbk
bk+1

can be obtained, and this informa-
tion can be used as the prior state at the next moment, which is in turn set as the prior state
at the next moment.

5.5. State Composition

The positional information was calculated earlier under the robot-centered reference
coordinate. Therefore, to obtain global coordinate information, state synthesis is needed,
and the synthesis formula can be expressed as:

xbk+1
w =

[
pbk+1

w

qbk+1
w

]
=

 Rbk+1
bk

(
pbk

w − pbk
bk+1

)
qbk+1

bk
⊗ qbk

w

 (24)

6. Back End: Pose Graph Optimization
6.1. Initialization

LiDAR and IMU sensors are used, where the acceleration deviation ba0 of the IMU
and the deviation bω0 of the gyroscope can be obtained by offline calibration. The external
calibration matrix Rb

l , pb
l between the LiDAR and the IMU can be obtained by offline cali-

bration. The initial roll and pitch of the global poses are obtained by unbiased acceleration
measurements before the motion. The initial local gravity is obtained from the initial roll
and pitch by converting the gravity vector represented in the navigation frame to the
current local frame.

6.2. Keyframe Selection

To keep a limited number of poses for estimation, on the back end, we deploy a
keyframe selection strategy. The selection of keyframes can greatly improve the computa-
tional efficiency and ensure that the algorithm can run in real time on larger environmental
maps.

When selecting keyframes, matching errors and redundant keyframes must be reduced
to decrease the computational effort, while sparse keyframes increase the uncertainty of
interframe observations and degrade the map quality. Usually, the first point cloud is used
as the keyframe, and the keyframe selection criteria based on the real-time point cloud are
based on the relative positional change between consecutive frames. Let the pose of the
k−1th keyframe be Tk−1 and the pose of the kth keyframe be Tk [38]. The relative positional
change of consecutive keyframes can be obtained using Equation (25):

∆Tk−1,k = T−1
k−1Tk =

(
∆r ∆s
0 1

)
(25)

where the rotation of the change between two consecutive keyframes can be expressed as
∆R, the translation of the change between two consecutive keyframes can be expressed as
∆s and the time of the transformation between two consecutive keyframes can be expressed
as ∆t.

∆R = arccos
(

trace(∆r)− 1
2

)
(26)

‖∆s‖ =
√

∆x2 + ∆y2 + ∆z2 (27)

When any of the above three criteria exceed the set threshold, the current kth frame
of the point cloud is selected as a keyframe. The other LiDAR frames between the two
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keyframes are discarded. Adding keyframes in this way achieves not only a balance
between map density and memory consumption but also a uniform distribution in space,
which is suitable for real-time nonlinear optimization.

6.3. Mapping

When a point cloud frame is detected as a keyframe, the environment map of the cur-
rent frame needs to be updated, and the main method is to convert the real-time point cloud
information of the keyframe to the world coordinates by coordinate transformation [39].
When k + 1 frames are selected as sub-keyframes, continuous sub-keyframe optimization is
performed using ICP and the relative change in pose between sub-keyframes is TL

k+1. By the
relative change of the kth sub-keyframe to the world coordinates as TW

k , the relative change
of the k+1th sub-keyframe to the world coordinate can be obtained as TW

k+1 = TW
k TL

k+1.
Finally, the point cloud coordinates of the k + 1 sub-keyframes are converted into the
world coordinates, and the converted sub-keyframes are merged into a voxel mapping
Mi. Because two types of features are extracted in the previous feature extraction step, Mi
consists of two sub-voxel maps, that is, the edge feature voxel map set Me

i and the planar
feature voxel map set Mp

i . The interrelationship between the LiDAR frames and the voxel
maps is as follows:

Mi =
{

Me
i , Mp

i

}
(28)

where Me
i = ′F

e
i ∪ ′Fe

i−1 ∪ . . .∪ ′Fe
i−n,Mp

i = ′Fp
i ∪ ′F

p
i−1 ∪ . . .∪ ′Fp

i−n. ′Fe
i and ′Fp

i are the edge
line and plane features, respectively, extracted by the desired transformation sub-keyframe
that are down-sampled to eliminate duplicate features that fall in the same pixel cell, while
the point cloud of the current sub-keyframe is created as a local map and updated by an
octree structure.

6.4. Loop Detection

To reduce the cumulative error of the sensor, we add loop detection. When the robot
detects all historical keyframes during operation, pose graph optimization is combined
with all relevant positions and poses in the historical keyframes. When performing loop
detection, the current real-time keyframe is first compared with the historical keyframe,
and then the candidate loop frame is selected. The following conditions are met: (1) the
index of the current keyframe is larger than the index of the history keyframe; (2) the
difference between the track distance of the current keyframe and the history keyframe is
larger than the set threshold; and (3) the relative translation distance between the current
keyframe and the history keyframe is smaller than the set threshold. Finally, the candidate
loop frame with the highest score is selected by comparing the candidate loop frames and
the currently registered keyframes. The keyframes and candidate loop frames are added
as nodes to the SLAM pose graph optimization, and the edge constraints are the relative
poses obtained from point cloud registration.

The loop detection algorithm [40] is described in Algorithm 1. Suppose the current
frame point cloud is represented as Pm in the B coordinates and its relative pose change
to the world coordinates is Tm. If the keyframe database contains the keyframe pose set
DT and the point cloud set DP, then a kd tree search with radius r is performed. Therefore,
the problem to be solved is to show that the loop has been detected if we can find T′m
in the keyframe pose set DT such that the sum of the root mean square error of the point
cloud Pm of the current frame after the relative change TICP with the nearest point in DP is
minimized. The keyframe pose DT registers the keyframe point cloud DP to the local point
cloud map M constructed in the world coordinate space.
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Algorithm 1 Loop Detection Algorithm.

Input: Pm and Tm from the current frame point cloud
Output: TICP
1: if (Tm,Pm) is Keyframe() then
2: if DT 6= φ or DP 6= φ then
3: T′m← KDtree.RadiusSearch(Tm,DT ,r);
4: M← registerPointCloud(DT ,DP);
5: if T′m 6= 0 then
6: TICP← ComputeICP(Pm, M,Tm);
7: end if
8: end if
9: T′m ← 0
10: DT = DT ∪ Tm and DP = DP ∪ Pm
11: end if

Only the current pose of the point cloud in the world coordinates for the current frame
is obtained, and TICP and M are fed to the pose graph optimization for state correction.
The state correction can be expressed as a modification of Equation (29) by solving the
following cost function:

rM

(
ẑ(j,m), χ

)
= Pw

j − Pw
m = Rw

bk

(
Rb

l Plk
j + pb

l

)
+ pw

bk
− Pw

m (29)

where Pw
m ∈ M is the closest point to Pw

j in the global map. By solving the modified cost
function, the current state can be used for repositioning in the global map.

6.5. Pose Graph Optimization Construction

To effectively solve the large-scale simultaneous localization and map building prob-
lem, the method of cluster adjustment (BA) is often used; that is, the map optimization
uses sensor poses and spatial points. However, as the trajectory of the robot increases, the
BA method decreases the computational efficiency of the system as the size of the map
continues to increase. To address this issue, the pose graph optimization only uses the tra-
jectory as a constraint for the pose estimation and no longer optimizes the pose estimation
of the feature points. Based on bitmap optimization theory, the keyframe pose, ground
constraint and loop detection constraint are calculated to construct a multi-constraint-based
cost function for bitmap optimization.

The pose graph optimization problem can be efficiently solved by standard optimiza-
tion methods such as the Gauss–Newton or Levenberg–Marquardt (LM) algorithms [41].
This problem has also been integrated into the Generalized Graph Optimization (G2O) of
the Optimization Library [42]. Our goal is to estimate the 6DOF self-motion of the robot
and simultaneously build a globally consistent map. Assuming that these measurement
errors conform to a zero-mean Gaussian distribution, solving the maximum a posteriori
(MAP) problem is equivalent to minimizing the negative log-likelihood, which can be
written in the form of the squared Marxian distance:

X̂n = argmin‖rS(x)‖+ ∑
∥∥ei,m

∥∥+ ∑
∥∥∥rM

(
ẑ(j,m), χ

)∥∥∥ (30)

where rS(x) denotes the deviation of the error state estimated by LIO,ei,m denotes the

error between the attitude node and the ground plane node and rM

(
ẑ(j,m), χ

)
denotes the

deviation of the current state of the loop detection in the global map.

7. Tests and Analyses

We conducted a series of quantitative and qualitative analysis experiments on the
performance of the proposed tightly coupled LiDAR-IMU fusion SLAM algorithm and
compared the results with those of other state-of-the-art LiDAR-SLAM methods. All
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methods were tested under the same conditions. The hardware platform was an inspection
robot with sensors and an on-board computer, as shown in Figure 2. The sensor consisted
of a LiDAR (Velodyne VLP-16) with a sampling frequency of 10 Hz and an IMU (hipnuc-
CH110) with a sampling frequency of 200 Hz. The on-board computer was an Intel Core i7
with a 2.7 GHz clock, eight cores and 16 G of RAM. All algorithms were implemented in
C++ and executed on an Ubuntu 18.04 system using the medoic version of ROS.
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7.1. Implementation and Datasets

Since accurate true values are not available for comparison for perceptually degraded
scenes, in order to validate the performance of our proposed method (including accuracy,
cumulative error and robustness) while ensuring the experimental soundness, we first used
public dataset 1 and public dataset 2 for quantitative analysis. Note that all algorithms
were tested without the loop module. To verify whether our proposed method causes the
accuracy of the SLAM system to decrease as the speed of motion changes, we used the
public dataset 1, which is a six-set fast-to-slow dataset comparing rotation and translation
errors, whose true values are provided by the indoor high-precision motion capture instru-
ment. To verify whether our proposed method increases the cumulative error of the system
as it operates for a long time, we used public dataset 2, which is the 2011_09_30_drive_0028
sequence of the KITTI datasets, whose true values are provided by outdoor high-precision
GPS. Subsequently, to verify whether our proposed method is robust under three different
real perceptual degradation environments, we recorded three self-picked datasets with our
own experimental platform, and the self-picked datasets were qualitatively analyzed for
real promenade environments under three perceptual degradation scenes. Furthermore, we
compared the method with the a_loam, lego_loam and lio_sam methods. We verified the
excellent robustness of our proposed algorithm through horizontal comparison between
different algorithms and vertical comparison between different scenes. In addition, we
designed ablation experiments to verify the effects of adding ground constraints and loop
detection constraints on the overall optimization results. Finally, a runtime analysis was
performed for the main modules.

7.2. Quantitative Analysis
7.2.1. Tests at Different Movement Speeds

Table 2 shows the root mean square error (RMSE) results for different speeds and meth-
ods. LOAM [1] was considered as the baseline. LIO represents the local window optimized
odometry method, LIO-raw is the result obtained by removing motion compensation on
top of LIO and LIO-no-ext is the result obtained by removing online external parameter
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estimation on top of LIO. The “ours” column represents the proposed LIO generated by
the iterative Kalman filter. The best results are shown in bold.

Table 2. Rotation and translation errors for comparing true values in the following six fast-to-
slow datasets.

Error Dataset LOAM LIO-Raw LIO-No-Ext LIO Ours

Root mean square error of
translation (m)

Fast_1 0.4469 0.2464 0.0957 0.0949 0.0700
Fast_2 0.2023 0.4346 0.1210 0.0755 0.0683
Med_1 0.1740 0.1413 0.1677 0.1002 0.0577
Med_2 0.1010 0.2460 0.3032 0.1308 0.0647
Slow_1 0.0606 0.1014 0.0838 0.0725 0.0248
Slow_2 0.0666 0.1016 0.0868 0.1024 0.0310

Root mean square error of
rotation (rad)

Fast_1 0.1104 0.1123 0.0547 0.0545 0.0283
Fast_2 0.0763 0.1063 0.0784 0.0581 0.0277
Med_1 0.0724 0.0620 0.0596 0.0570 0.0198
Med_2 0.0617 0.0886 0.0900 0.0557 0.0287
Slow_1 0.0558 0.0672 0.0572 0.0581 0.0309
Slow_2 0.0614 0.0584 0.0571 0.0533 0.0284

The results show that our proposed algorithm always provided more accurate trans-
lational and rotational states for both fast and slow motions. The table also shows that,
with motion compensation and online external reference estimation, LIO provided a better
performance, especially in the case of fast motion, probably because more IMU excitation
had to be generated. The proposed method, in contrast, was not affected by the speed of
motion and performed better at any speed of motion relative to LIO.

7.2.2. Deviation Test with Long Time Change

To evaluate how the error varied over time, we used the 2011_09_30_drive_0028
sequence from the KITTI datasets, with the four different algorithms producing roughly the
same motion trajectory but with subtle differences in some areas. To explore the differences
between the algorithms, the EVO tool was used for quantitative analysis. The final motion
trajectories of the different methods are shown in Figure 3 and the trajectory error and the
true value produced by the four different methods are shown in Figure 4.
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Figure 4. Comparison between the trajectory error and the true value produced by the four different,
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To further refine the comparison experiments, we analyzed the maximum deviation,
mean deviation, minimum deviation, root mean square error and standard deviation of the
KITTI datasets 2011_09_30_drive_0028 sequence for the four different algorithms for each
relative translation and rotation, as shown in Table 3. The best results are shown in bold.

Table 3. Error statistics of relative translations and rotations between the four algorithms and the
true values.

Algorithm Aloam Lego_Loam Lio_Sam Ours Aloam Lego_Loam Lio_Sam Ours

Error Translation (m) Rotation (deg)

Max 1.2899 2.5120 4.7334 0.0814 2.9888 6.3016 3.2062 0.6162
Mean 0.1015 1.1715 1.5112 0.0105 0.2889 0.9832 0.2777 0.0381
Min 0.0032 0.0092 0.0066 0.0018 0.0027 0.0073 0.0039 0.0168

RMSE 0.1175 1.2414 1.7136 0.0154 0.3678 1.5164 0.3667 0.0641
Std 0.0591 0.4108 0.8079 0.0112 0.2277 1.1545 0.2395 0.0515

The statistical results show that the proposed algorithm had smaller translation and
rotation errors than the other three algorithms when tested on the same datasets. Therefore,
the accuracy of the state estimation of our proposed algorithm is better than that of the
other methods.

7.3. Qualitative Analysis

We conducted three experiments with the same sensor configuration in different
test environments to verify the performance of the proposed algorithm for perceptually
degraded scenes. The datasets included corridor scene 1 on the 3rd floor of the mechanical
building, corridor scene 2 on the 21st floor of the innovation building and corridor scene
3 on the 11th floor of the science and technology building. The proposed algorithm was
analyzed and compared with the aloam, lego_loam and lio_sam methods, and its point
cloud map was constructed in the current experimental environment, as shown in Figure 5.
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environment, they should be listed as: (a) Corridor scene on the 3rd floor of the mechanical building;
(b) corridor scene on the 21st floor of the innovation building; (c) corridor scene on the 11th floor of
the science and technology building.

As shown in Figure 5, four different SLAM algorithms were used to construct point
cloud maps under three perceptually degraded scenes. The differences between the above
three different scenes are: Figure 5a,b scenes do not differ much in form, only in specific
details, and the “8-letter” structure of Figure 5c is a loop detection structure. The similarity
is that since all three test scenes are all perceptually degraded scenes, their point clouds
have relatively few features, thus posing a great challenge to the proposed algorithm. For
the four different algorithms, the point cloud maps constructed by the proposed method
showed an excellent performance in terms of completeness and the realism of the geometric
structure in all three scenarios. While aloam also performed well in all three scenes, a small
amount of mismatching of the point cloud was caused by the occurrence of successive
similar rotations and translations in scene a. Lego_loam constructed a complete point
cloud map for the rough outline of the corridor in both scenarios a and b. However, the
structure of the generated point cloud map was distorted and incomplete due to the drift
on the Z-axis. In the c scene, the structural symmetry in the annular scene was too similar,
resulting in interference of the extracted features of the original point cloud data by a
large number of similar point cloud features, and the entire SLAM system failed. Lio_sam
constructed the geometric structure of the surrounding environment in a short period of
time for scenarios a, b and c. However, as the mileage of the laser odometer increased, when
the system detected the loop, the point cloud map construction failed because the scenarios
were highly similar, resulting in the establishment of an incorrect loop detection constraint.

In conclusion, the four different algorithms build different point cloud maps in the
same environment because of their strengths and weaknesses. The scheme of aloam adopts
the assumption of uniform motion model and uses IMU data for distortion correction of
point clouds. The system has good real-time performance, but there is no loop detection
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module, which causes it to drift in large-scale tests. The lego_loam method is an optimized
version of loam which segments and clusters the raw data frames scanned by LiDAR, labels
the ground point cloud, and improves the accuracy of state estimation by two-step LM
optimization. However, because it relies too much on the extraction of point surface point
clouds, once the ground point cloud extraction fails, the state estimation error will increase.
Lio_sam is an extended version of lego_loam which solves the least-squares problem by
continuously adding various factors. However, loop detection requires a high correlation
of correct data, and incorrect matching can lead to the failure of the whole SLAM system.
The method we propose incorporates the advantages of all the above algorithms. First, the
front end adopts the ideas of homogeneous model assumption from loam and extraction
of ground features from lego_loam, respectively. However, we improve the Kalman filter
model in LINS by the RANSAC method for point cloud ground extraction and propose
an iterative Kalman filter model to eliminate the error caused by mismatching in order
to achieve a tightly coupled LiDAR-inertial odometry. Secondly, the back end draws on
the idea of factor graph optimization in lio_sam to construct a cost function for bit-pose
graph optimization by adding ground constraints and loop detection constraints through
the selection strategy of keyframes and further improve the accuracy of state estimation
by solving the maximum a posteriori problem. Therefore, our proposed method performs
well under three different perceptual degradation environments.

7.4. Ablation Experiments

To further analyze the localization and map-building effects of the proposed algorithm,
the effects of the ground constraint and loop detection back end pose graph optimization
modules were analyzed separately.

7.4.1. Effect of Ground Restraint

The results of the experimental analysis show that the ground constraint of the back
end pose graph optimization in the system had a great influence on the map building
results, as shown in Figure 6. Figure 6a shows that without adding ground constraints
in the back end pose graph optimization, the constructed point cloud map could not be
corrected, which tilted it to a certain angle. Figure 6b shows the addition of the ground
constraint in the back end pose graph optimization to correct the Z-axis drift during the
positioning and map-building process and the construction of a globally consistent point
cloud map.
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7.4.2. Effect of Loop Detection

The loop detection of the back end pose graph optimization in the system had a
substantial impact on the construction of the map, as shown in Figure 7. Figure 7a shows
that no loop constraint was used in the back end pose graph optimization, which led
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to a large deviation in the constructed point cloud map, such that part of the map was
overshadowed in some areas in the upper left corner. Figure 7b shows the addition of the
loop constraint in the back end pose graph optimization. The cumulative error of the global
map was corrected, and finally, a globally consistent point cloud map was constructed.
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7.5. Runtime Analysis

To explore the real-time performance of the proposed algorithm, we conducted ex-
periments on the self-selected dataset and the KITTI dataset and analyzed the running
time of the main modules for the down-sampling, pre-processing and scan-matching front
end steps; on the back end, the running time was analyzed for the map construction, loop
detection and pose graph optimization steps. The details are shown in Table 4. As the table
shows, because our self-selected dataset consisted of VLP-16 data and the KITTI dataset
consisted of HDL-64 data, more time was required to process the individual modules of
the KITTI dataset with the same sampling frequency for the LiDAR-SLAM system. We
analyzed the self-selected data, and for the front end LiDAR point cloud and IMU data
pre-processing, the average time per frame was only approximately 10 ms and no large
deviations were observed for the entire process. For LIO, scan matching required approxi-
mately 3 ms, and iterative matching required up to 10 ms for convergence. The construction
of the local map required approximately 2 ms. Because loop detection requires circular
judgment and ICP-based alignment between loop frames for pose graph optimization, the
average loop detection time was approximately 35 ms, and the average time for pose graph
optimization was approximately 13 ms, which quickly satisfied the convergence condition.

Table 4. Average running time statistics for each major module.

Submodule Name Self-Picked Datasets
(ms)

KITTI Dataset
(ms)

Front End
down sampling 4.14 14.13
pre-processing 2.89 8.68
scan matching 3.45 16.21

Back End
map construction 2.19 4.74

loop detection 34.58 125.35
pose graph

optimization 13.41 118.62

Combined with the system framework diagram (Figure 1), we can see that we tightly
couple the 200 hz operating frequency IMU pre-integration with the 10 hz operating
frequency LiDAR and synchronize the 10 hz LiDAR-inertial odometry output to the back
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end optimization module through the tight coupling. While the front end and back end
of our constructed LiDAR-IMU fusion SLAM system work as two independent threads,
the sum of each frame of data processing time of each front end and back end module can
meet the system’s real-time requirements as long as it is less than 100 ms (10 hz).

8. Conclusions

(1) A tightly coupled LiDAR-IMU fusion SLAM algorithm for perceptually degraded
scenes is proposed. The robustness for such special scenarios is enhanced by con-
structing an iterative Kalman filter at the front end and optimizing the pose map at
the back end. By adding loop detection and ground constraints to the tightly coupled
frame, the relative poses between adjacent keyframes are optimized, the cumulative
sensor errors are reduced, the accuracy of the system is improved and global map
consistency is ensured.

(2) The algorithm was quantitatively and qualitatively analyzed on public and self-
selected datasets and compared with existing LiDAR-SLAM algorithms. The results
show that the algorithm was able to achieve robust 6DOF state estimation and high-
performance SLAM in the test environments and output motion trajectories, global
maps and state estimation after pose graph optimization.

(3) Ablation experiments were performed on the algorithm in terms of ground constraint
and loop detection to determine their impacts on the entire system and to explain the
rationality of the algorithm. The running time of each major module on the front end
and back end of the system was statistically analyzed for the different datasets, and
the proposed algorithm was able to meet the real-time performance requirements.

(4) In subsequent work, research on multi-sensor fusion based on LiDAR, vision and
IMU will be conducted in conjunction with other practical scenarios of perceptual
degradation to further improve the positioning accuracy and robustness of the system.
In addition, the structure of the stored point cloud map data, which is the basis for
the map-based positioning and navigation of the robot, was studied and is the key to
ensuring real-time performance.
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