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Abstract: Physical exercise (PE) is beneficial for both physical and psychological health aspects.
However, excessive training can lead to physical fatigue and an increased risk of lower limb injuries.
In order to tailor training loads and durations to the needs and capacities of an individual, physical
fatigue must be estimated. Different measurement devices and techniques (i.e., ergospirometers,
electromyography, and motion capture systems) can be used to identify physical fatigue. The field
of biomechanics has succeeded in capturing changes in human movement with optical systems, as
well as with accelerometers or inertial measurement units (IMUs), the latter being more user-friendly
and adaptable to real-world scenarios due to its wearable nature. There is, however, still a lack of
consensus regarding the possibility of using biomechanical parameters measured with accelerome-
ters to identify physical fatigue states in PE. Nowadays, the field of biomechanics is beginning to
open towards the possibility of identifying fatigue state using machine learning algorithms. Here,
we selected and summarized accelerometer-based articles that either (a) performed analyses of
biomechanical parameters that change due to fatigue in the lower limbs or (b) performed fatigue
identification based on features including biomechanical parameters. We performed a systematic
literature search and analysed 39 articles on running, jumping, walking, stair climbing, and other
gym exercises. Peak tibial and sacral acceleration were the most common measured variables and
were found to significantly increase with fatigue (respectively, in 6/13 running articles and 2/4
jumping articles). Fatigue classification was performed with an accuracy between 78% and 96%
and Pearson’s correlation with an RPE (rate of perceived exertion) between r = 0.79 and r = 0.95.
We recommend future effort toward the standardization of fatigue protocols and methods across
articles in order to generalize fatigue identification results and increase the use of accelerometers
to quantify physical fatigue in PE.

Keywords: human movement; biomechanical phenomena; inertial measurement units; artificial
intelligence; running; walking; physical activity

1. Introduction

Physical exercise (PE) benefits human beings in many ways: from a psychological
perspective, reducing anxiety and risk of depression [1]; from a physiological perspective,
avoiding a sedentary lifestyle and reducing risks of cardiovascular diseases [2].; from a
biomechanical perspective, reducing risk of musculoskeletal disorders (MSDs) [3]; and
from a neurological perspective, improving cognitive functioning and counteracting aging
processes [1]. However, PE can also lead to injuries, especially when PE activities are
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performed by individuals with a poor level of physical fitness [4–6]. Cumulative repetition
of movements over time can also lead to physical fatigue, which increases the risk of MSDs
instead of reducing it [7,8]. A tailored PE program for the needs of each individual would
help increase fitness and avoid overloading. Timely identification of physical fatigue would
be a key factor to design individualized PE programs and maximize its health benefits.

Estimation of physical fatigue in PE can be based on subjective scales (i.e., Borg’s rate
of perceived exertion (RPE) [9]). However, such scales are particularly suited to capture
an individual’s perception rather than the physical components of fatigue. Maximal oxy-
gen consumption (VO2max) is considered the gold standard for fatigue estimation [10],
although ergospirometers are not comfortable to wear and unsuitable for prolonged mea-
surement sessions in daily life. Muscle fatigue is usually assessed with electromyography
(EMG), considered a gold standard to measure muscle activity [11]. However, wearable
EMG systems have only recently been developed, and they are yet to be validated as a tool
to estimate physical fatigue. Furthermore, EMG is well-suited to capture information about
acute fatigue but much less informative about cumulative fatigue generated by prolonged
training sessions.

PE can also be analyzed from a biomechanical perspective. Two types of measurement
systems are commonly used in modern biomechanics: optical motion capture systems
(OMCs) and accelerometers. OMCs are traditionally marker-based systems that estimate an
object’s position via time-of-flight triangulation (e.g., VICON) [12] and evolved recently into
markerless systems. Markerless systems have the potential of being applied outside of the
lab in sports and clinical applications [13] but still require expensive video cameras and have
yet to be fully validated. On the other hand, accelerometers are nonintrusive, wearable, and
cheap sensors that can measure accelerations in the human body. Widely used sensors that
incorporate accelerometers are inertial measurement units (IMUs). They allow kinematic
estimation by integrating information from an accelerometer, a gyroscope, and often a
magnetometer (IMMUs), for example, using a Kalman filter to estimate individual sensor
orientation and combining IMU outputs with a biomechanical model [14]. They have the
possibility to continuously measure data in a wide variety of real-life applications, ranging
from work tasks [15–17] to PE [18,19] and assessment of injury risk in running [20,21].

A promising approach to overcome the use of subjective scales and avoid intrusive
measurement techniques (i.e., EMG and ergospirometry) is to study physical fatigue using
a biomechanical approach, in particular, identifying changes that happen in movement
patterns over time. In fact, lower limb changes in kinetic, kinematic, and spatiotemporal
parameters due to fatigue have been found in a wide range of activities. The scientific
literature has focused particularly on work activities, where fatigue has been assessed
by means of changes in heart rate, tremor, gait parameters, and coordination between
segments in the lower limbs and trunk [15]. In PE, running has been mostly investigated.
Changes in lower limbs joint angles [22–24] and segmental accelerations [25–27] have
been found in running activities ranging from short recreational runs to marathons. The
increase in data availability and computer power in recent years has paved the way for
the use of machine learning in biomechanical research. Machine learning is a subfield
of artificial intelligence that aims to identify, estimate, or classify outcomes (e.g., fatigue)
by learning from examples [28]. Accelerometer-derived data are particularly suited for
machine learning algorithms, which have the advantage of learning from large amounts of
data to predict outcomes. Still, the types of problems that are better addressed by machine
learning than traditional biomechanics are yet to be established [29].

While a large amount of the literature is present regarding the ability of wearables
to identify, estimate, and monitor fatigue in the workplace [30], the main focus in the
field of accelerometers and PE or sports activities concerns performance and quality of
movement rather than fatigue [31–33]. A comprehensive systematic review regarding
accelerometer-based identification of physical fatigue in the lower limbs during PE is still
lacking, as well as an interpretation and comparison of results obtained with traditional
biomechanical and machine learning approaches.
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In this study, we aim to contribute to state-of-the-art PE monitoring with a compre-
hensive overview of the performance of accelerometer-based methods to identify fatigue in
cyclical PE, since cyclical tasks allow for a comparison across different PE activities. A liter-
ature search is performed including articles that assess biomechanical changes in fatiguing
cyclical PE activities or use such changes to identify a fatigued state. We aim to provide
an overview of the literature regarding accelerometer-based measures of biomechanical
changes due to fatigue, as well as an overview of the literature regarding the detection of
fatigue via models or machine learning approaches that use kinematic features measured
via accelerometers.

2. Materials and Methods
2.1. Search Strategy

This review was reported following the PRISMA guidelines (Table S1, Supplemen-
tary Materials) [34]. An exhaustive search strategy was developed by an experienced
information specialist (WMB). The search was developed in Embase.com, optimized for
sensitivity, and then translated to other databases following the method described by
Bramer et al. [35]. The search was carried out in the following databases: Embase.com
(date of inception 1971), Medline ALL via Ovid (1946 to Daily Update), Web of Science
Core Collection, and CINAHL Plus via EBSCOhost. After the original search was per-
formed on 5 August 2020, the search was last updated on 31 May 2021 using the methods
described by Bramer et al. [36].

The search strategies for Embase and Medline used relevant thesaurus terms from
Emtree and Medical Subject Headings (MeSH), respectively. In all databases, terms were
searched in the titles and abstracts of references. The search contained terms for: (1) fatigue
or exhaustion; (2) physical exercise, gait, walking, or running; and (3) inertial measurements
or accelerometry. Terms were combined with the Boolean operators AND and OR, and
proximity operators were used to combine terms into phrases. The full list of the keywords
used in each search strategy for all four databases is available in Appendix A (Table A1).
The searches in Embase and Web of Science were limited to exclude conference papers
older than 3 years. In all databases, non-English articles and animal-only articles were
excluded from the search results. No study registries were searched. The reference lists of
retrieved nonincluded relevant review articles and of the included references, as well as
articles citing these papers, were scanned for relevant references missed by the search. No
authors or subject experts were contacted, and we did not browse unindexed journals in
the field. The references were imported into EndNote, and duplicates were removed by the
medical librarian (WMB) using the method described by Bramer et al. [37].

2.2. Screening of Articles and Eligibility Criteria

Two reviewers (LM and BS) independently screened titles and abstracts in EndNote
using the method described by Bramer et al. [38]. Any discrepancies in the verdict were
resolved by discussion with a third reviewer (JR). A total of seven exclusion criteria in the
abstract screening phase (Table A2) and eight exclusion criteria in the full-text screening
phase (Table A3) were used and can be found in Appendix A. Two reviewers (LM and BS
for the first half of the articles in alphabetical order, and LM and RvM for the second half
of articles) independently screened the full-text articles. Any discrepancies in the verdict
were resolved by discussion with a third reviewer (JR).

The aim of this review was to assess accelerometer-based methods to identify fatigue
in cyclical PE. In the initial search strategy, work activities were still included. However,
the recovery time and intensity of such activities have very large variations compared
to cyclical individual PE activities (i.e., running, walking, jumping, and stair climbing).
Furthermore, work task movement patterns lack continuity when compared to cyclical PE
tasks and were, therefore, excluded (EC2.2, Table A3).
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2.3. Data Extraction

A total of 2889 articles were retrieved, resulting in a total number of 39 articles included
in this review after the screening process (Figure 1). After the initial search (5 August 2020),
removal of duplicates, screening of titles, and abstract and screening of full-texts, thirty
articles were included (Supplementary Material, Figure S1). After performing the search a
second time (31 May 2021), eight new articles were identified (Supplementary Material,
Figure S1). One article was identified through citation searching.
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2.4. Outcomes of Interest

All articles included in this review aimed to identify fatigue in the lower limbs during
PE using accelerometers. Articles that aimed to quantitatively identify changes due to
fatigue in lower limb biomechanics were classified as Type I. The outcomes of interest
for these articles were biomechanical parameters measured before and after a fatiguing
intervention. Biomechanical parameters were kinematic or spatiotemporal variables that
can be measured directly using accelerometers: segment accelerations, shock attenuation,
and stride parameters. Articles that aimed to identify, predict, or classify fatigue states
based on quantitative biomechanical features were classified as Type II. The outcomes
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of interest for Type II articles were the performance metrics of the proposed model or
classifier. Additional variables for which data were sought concerned study protocol,
subject population, measurement system, intervention (fatigue protocol), fatigue reference,
and data analysis techniques.

2.4.1. Segment Accelerations

The lower limb accelerations considered in this review were feet, tibia, thigh, and
sacrum segmental accelerations. Peak segmental accelerations are commonly used to
understand human motion, and they have been linked, in particular, to tibial bone load-
ing [39], which could provide relevant information in understanding injury risk. Peak tibial
accelerations are commonly used as an indirect measure of impact during running [27].

2.4.2. Shock Attenuation

Shock attenuation is the magnitude or frequency reduction of the impact shock wave
in human movements that involve an impact of the lower limbs with the ground [40]. Shock
attenuation strategies are used by the body to deal with high impacts with the ground that
can happen during various PE activities [27]. The shock attenuation outcomes considered
in this review were between the tibia and sacrum, trunk, or forehead.

2.4.3. Stride Parameters

Stride spatiotemporal parameters are commonly used to describe the human gait
(e.g., stride frequency, stride length, and stride time). Stride parameters can be related to
cumulative load and contain relevant information to prevent running-related injuries [41],
and were, therefore, considered in this review.

2.4.4. Model Performance Metrics

For Type II articles, models were built to identify or classify fatigue states. The
performances of these models were evaluated by means of accuracy metrics, typically used
in classification problems, or correlation metrics, typically used in regression problems.
The accuracy, sensitivity, and specificity of the classifier are common performance metrics
in classification problems, while root mean squared error (RMSE) and Pearson’s r are
frequently used correlation metrics.

2.5. Quality Assessment

A quality assessment checklist was adapted from the Downs and Black checklist [42],
tailoring criteria regarding reporting, internal and external validity, and power. Twelve
items were selected and used for Type I articles. Additionally, items adapted from the Luo
et al. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical
Research [43] were added for the quality assessment of Type II articles. Four items were
selected and used to replace Downs and Black items in order to tailor the checklist to
Type II articles. The full quality assessments for Type I (Table S2) and Type II (Table S3)
articles are reported in the Supplementary Materials. Selected items from the two quality
assessment checklists are shown in Table 1. The maximum score for both types of articles
was 11; articles that did not exceed a threshold of 5/11 were discarded.
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Table 1. Quality assessment items.

Type I Articles: Aim to Identify Changes Due to
Fatigue in Lower Limb Biomechanics

Type II Articles: Aim to Identify, Predict, or
Classify Fatigue States Based on Quantitative

Biomechanical Features

Quality assessment checklist items adapted from
Downs and Black, 1998 [42]

Quality assessment checklist items adapted from
Downs and Black, 1998 [42] Potential score

1. Is the hypothesis, aim, or objective of the study
clearly described?

1. Is the hypothesis, aim, or objective of the study
clearly described? 0–1

2. Are the main outcomes to be measured clearly
described in the Introduction or Methods section?

2. Are the main outcomes to be measured clearly
described in the Introduction or Methods section? 0–1

3. Are the characteristics of the subject population
clearly described?

3. Are the characteristics of the subject population
clearly described? 0–1

4. Is the intervention (fatiguing protocol) clearly
described?

4. Is the intervention (fatiguing protocol) clearly
described? 0–1

5. Are the main findings of the study clearly
described?

5. Does the study provide estimates of the random
variability in the data for the main outcomes? 0–1

6. Does the study provide estimates of the random
variability in the data for the main outcomes?

6. If any of the results of the study were based on
“data dredging”, was this made clear? 0–1

7. Have actual probability values been reported (e.g.,
0.035 rather than <0.05) for the main outcomes, except
where the probability value is less than 0.001?

7. Were the main outcome measures used accurate
(valid and reliable)? 0–1

Quality assessment checklist items adapted from
Luo et al., 2016 [43]

8. If any of the results of the study were based on
“data dredging”, was this made clear?

8. Was the prediction, classification, or identification
problem defined? 0–1

9. Were the statistical tests used to assess the main
outcomes appropriate? 9. Were the data prepared for model building? 0–1

10. Were the main outcome measures used accurate
(valid and reliable)?

10. Was a classification, prediction, or identification
model built? 0–1

11. Did the study have sufficient power to detect a
clinically important effect where the probability value
for a difference being due to chance is less than 5%?

11. Was the final model performance reported? 0–1

3. Results
3.1. Overview of Article Characteristics

Articles that passed the screening phase and were included in the review are shown in
Table 2. The article identification process led to 39 articles. PE activities included running
(28 articles), walking (4 articles), jumping exercises (4 articles), stair-climbing tests (SCTs)
(2 articles), and gym exercises (1 article). The aim of this section is to summarize the subject
populations, sensor placements, fatiguing protocols, fatigue references, and outcomes of
interest for the included articles.

3.1.1. Subject Population

The subject population characteristics are shown in Table 2. The number of subjects
varied from 3 to 222 (running, 3–222; walking, 9–24; jumping, 8–30; SCTs, 20–21; gym
exercises, 14). The average number of participants across all articles was 23.1 ± 33.8
(mean ± SD). A total of 18 articles reported quantitative information on the training levels
of their participants. In running, the reported pieces of information were training load
(33.2 ± 13.5 km/week across nine articles) and frequency (2.4 ± 0.89 times per week across
five articles). In all other PE activities, the reported information regarded the time spent
per week being physically active or exercising (0.5 h/day in one jumping article, two times
per week in two walking articles, and 4.5 h/week in one gym exercising article).
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Table 2. Subject population and measurement system characteristics.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Abt et al. [44] Running

12 competitive runners
M and F
24.5 ± 4.1
174 ± 9
65.2 ± 9.8
Running for at least 3 yrs;
min. of 48 km/wk; min. pace of 10.7
km/h; no injuries in the last 3 months

3D accelerometer
2: tibia and forehead
21 g
±25 G
1200 Hz
Silicon Designs, Inc., Issaquah, WA,
USA (Model 2422-010)

Ameli et al. [19] Stair climbing

20 subjects
10 M; 10 F
M: 27.3 ± 2.3; F: 24.4 ± 3.7
/
BMI (kg/m2) M: 22.5 ± 2.8; F: 21.6 ±
2.8
Not overweight; age 20–30; no
stationary occupation; no sign of pain
during motion

3D IMU
9: left foot, right foot, left tibia, right
tibia, left thigh, right thigh, sacrum,
sternum, head
/
/
60 Hz
Xsens Technologies BV, Enschede,
The Netherlands

Arias-Torres et al. [45] Walking

9 subjects
Sex NS
21.2 ± 3.2
167 ± 7
67.5 ± 11.5
Subject eligibility NS

3D accelerometer (embedded in
smartphone)
1: sacrum
/
/
100 Hz
Bosch Sensortech BMA220

Bergmann et al. [46] Stair climbing

21 subjects
16 M; 5F
32 (range 23–58)
177 ± 8
75 ± 9
Subject eligibility NS

3D IMU
7: left foot, right foot, left tibia, right
tibia, left thigh, right thigh, sacrum
/
/
100 Hz
Xsens Technologies BV, Enschede,
The Netherlands (Model MTx)

Brahms et al. [47] Running

16 elite (E) distance runners + 16
recreational (R) runners
Sex NS
E 21.2 ± 3.0; R 26.8 ± 4.8
E 175.6 ± 8.7; R 174.5 ± 7.4
E 63.4 ± 9.5; R 71.6 ± 10.5
E: trained 4 days/wk in prev 2 years;
competed within preceding year
R: trained up to 3 h/wk
Both: no history of lower extremity
surgery; no running-related injury in
previous year

3D IMU
1: right foot
/
160 m/s2

100 Hz
Xsens Technologies BV, Enschede,
The Netherlands (Model MTw)
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Butler et al. [48] Running

12 high arch (HA) + 12 low arch (LA)
recreational runners
Sex NS
HA 20.9 ± 3.0; LA 21.8 ± 3.2
HA 170 ± 7; LA 173 ± 11
HA 68.4 ± 5.8; LA 70.0 ± 7.3
Running min of 10 miles/wk; age
between 18–40; no lower extremity or
cardiovascular conditions

1D accelerometer
1: tibia
2.83 g (including aluminum case)
/
1080 Hz
PCB Piezotronics Inc., Depew, NY,
USA

Clansey et al. [23] Running

21 distance runners
M
36.2 ± 12.5
180 ± 8
75.4 ± 11.5
No musculoskeletal injury; training
average of 72 ± 34 km/wk

2D accelerometer
2: forehead and distal tibia
/
16 g
Noraxon, Scottsdale, AZ, USA

Clermont et al. [49] Running

27 runners
12 M; 15 F
M: 50.4 ± 13.0; F: 40.9 ± 10.3
M: 174.9 ± 10.3; F: 160.5 ± 4.3
M:79.0 ± 12.0; F: 58.2 ± 7.8
Registered officially for a marathon
race; age > 18; no lower extremity or
cardiovascular conditions, no use of
foot orthoses

3D IMU
1: sacrum
/
/
100 Hz
Lumo Bodytech Inc., Mountain View,
CA, USA (Lumo Run)

Coventry et al. [50] Drop jumping

8 subjects
M
23.8 ± 2.4
184 ± 7
81.6 ± 6.8
No history of lower extremity injuries
in prev. 6 months; physically active
approx. 30 min/day

1D accelerometer
2: distal anteromedial tibia and
forehead
1.7 g
/
1000 Hz
PCB Piezotronics Inc., Depew, NY,
USA (Model 353B17)

Derrick et al. [51] Running

10 recreational runners
Sex NS
25.8 ± 7.0
Height NS
70.8 ± 10.1
Injury-free and physically active

1D accelerometer
2: distal anteromedial right tibia and
forehead
1.8 g
/
1000 Hz
PCB Piezotronics Inc., Depew, NY,
USA (Model 353B17)

Encarnacion-Martinez
et al. [52] Running

17 recreational runners
M
28.7 ± 8.3
178 ± 7
72.2 ± 8.2
Running min of 2/wk and more than
20 km/wk in prev year; no injuries in
prev 6 months

3D accelerometer
2: distal anteromedial tibia (DL) and
forehead
2.5 g
±16 G
300 Hz
Blautic, Valencia, Spain
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Garcia Perez et al. [53] Running

20 recreational runners
11 M; 9 F
34 ± 8
172 ± 8
63.6 ± 8.0
Subject eligibility NS, training for 4.2
± 1.0 days/wk and 49.8 ± 17.8
km/wk

1D accelerometer
2: proximal anteromedial right tibia
and forehead
55 g
/
Freescale Semiconductor, Munich,
Germany (MMA7261QT)

Hajifar et al. [17] Walking

24 subjects (Lab study 2)
12 M; 12 F
22.7 ± 3.9
170.3 ± 11.1
68.3 ± 11.7
No recent history of MSD or lower
body injury; exercising 2–3 days/wk

3D IMU (embedded in smartphone)
1: tibia
/
±160 m/s2

100 Hz
InvenSense Inc., San Jose, CA, USA
(MPU-6500)

Hardin et al. [54] Running

24 recreational runners (8 soft
midsole (SM), 8 medium midsole
(MM), 8 hard midsole (HM))
M
Age NS
SM: 176 ± 3; MM: 172 ± 4; HM:
177 ± 5
SM: 71.6 ± 6.8; MM: 68.4 ± 8.2; HM:
75.5 ± 7.0
No lower extremity injury; previous
treadmill-running experience

1D accelerometer
1: distal anteromedial right tibia
1.7 g (3.8 g considering aluminum
bracket)
/
1000 Hz
PCB Piezotronics Inc., Depew, NY,
USA (Model 353B17)

Hoenig et al. [55] Running

30 runners (15 recreational (R) 15
competitive (C))
R: 25.3 ± 7.6; C: 28.7 ± 4.3
\
BMI (kg/m2) R: 23.7 ± 2.8; C:
22.4 ± 1.8
No injury or pain impairing
movement in prev 3 months; no
history of gait disorder; no use of
insoles to correct orthopedic
disorders

3D IMU
3: right foot, sacrum, sternum
/
/
100 Hz
Xsens Technologies BV, Enschede,
The Netherlands (Model MTw)

Jiang et al. [56] Gym exercises

14 subjects
12 M; 2F
27.4 ± 4.2
176 ± 7
74.1 ± 12.1
Subject eligibility NS; exercising
4.5 ± 3.4 h/wk

3D IMU
9: left foot, right foot, left tibia, right
tibia, left thigh, right thig, sacrum,
sternum, head
/
/
240 Hz
Xsens Technologies BV, Enschede,
The Netherlands
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Karvekar et al. [57] Walking

24 subjects (Lab Study 2)
12 M; 12 F
22.7 ± 3.9
170.3 ± 11.1
68.3 ± 11.7
No recent history of MSD or lower
body injury; exercising 2–3 days/wk

3D IMU (embedded in smartphone)
1: tibia
/
±160 m/s2

100 Hz
InvenSense Inc., San Jose, CA, USA
(MPU-6500)

Lucas Cuevas
et al. [58] Running

38 recreational runners
20 M; 20 F
29.8 ± 5.3
170.3 ± 11.4
65.4 ± 10.1
No injuries in prev year; no surgery
in prev 3 years; no prev use of insoles;
training routine min of 20 km/wk

3D accelerometer
2: proximal anteromedial tibia and
forehead
2.5 g
/
500 Hz
Sportmetrics, Spain

McGinnis et al. [59] Vertical jumping

21 subjects
15 M; 6 F
M: 19.7 ± 1.1; F: 20.2 ± 1.0
M: 178.7 ± 6.9; F: 172.4 ± 4.9
M:78.0 ± 9.6; F: 68.0 ± 8.1
Experience exercising under fatigue
condition similar to the study
protocol

3D IMU
1: sacrum
/
/
300 Hz
Yost Engineering, Portsmouth, OH,
USA (YEI 3-Space)

Meardon et al. [60] Running

9 recreational runners
Sex NS
25.9 ± 8.5
170.2 ± 10.9
62.6 ± 8.3
No history of overuse injury; training
volume of 30.3 ± 9.7 km/wk

1D accelerometer
1: distal anteromedial tibia
/
±50 G
1000 Hz
Analog Devices, Wilmington,
Massachusetts, USA (ADXL250)

Mercer et al. [61] Running

10 recreational runners
M
24 ± 6
184 ± 10
78.4 ± 9.6
Physically active; injury-free;
experienced running on treadmill

1D accelerometer
2: right tibia and forehead
6.7 g
±50 G
1000 Hz
Kistler, Amherst, NY, USA (8628B50)

Meyer et al. [62] Running

12 recreational runners
8 M; 4 F
36 ± 10
178 ± 7
72 ± 6
Older than 18; training min of 2 times
per week; no running-related injury
in prev 6 months

3D IMU
2: left and right foot
/
±16 G
512 Hz
Physilog 5, Gait Up, SA, CH
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Mizrahia [63],
Mizrahib [64],
Mizrahic [65],
Mizrahid [66] et al.

Running

14 recreational runners
M
24.2 ± 3.7
175.5 ± 5.9
73.2 ± 8.3
No history of injury

1D accelerometer
2: proximal tibia and sacrum
4.2 g
/
1667 Hz
Kistler PiezoBeam, Kistler,
Switzerland (8634B50)

Moran et al. [18] Drop jumping

15 physically active subjects
M
21.4 ± 1.5
178 ± 15
80.1 ± 5.84
No history of lower extremity injury;
competency requirements in
drop-jumping: no horizontal travel
between take-off and landing, no
excessive pause between loading and
propulsion, short duration landing
phase, and toe-first landing pattern

1D accelerometer
1: proximal right tibia
17 g
±50 G
1000 Hz
Analog Devices, Ireland (ADXL250)

Morio et al. [67] Running

8 recreational runners
M
26 ± 2
178 ± 6
74 ± 11
Free of lower limb injury

3D accelerometer
1: distal tibia
/
±50 G
100 Hz
Endevco, Depew, NY, USA (Isotron)

Provota [68],
Provotb [69] et al. Running

10 recreational runners
5 M; 5 F
38.0 ± 11.6
173 ± 10
66.3 ± 12.6
Training frequency of 2 sessions/wk,
recent competition record for 10 km
(<45 min) or half-marathon
(<100 min)

3D IMU
3: right foot, medial right tibia,
sacrum
22 g
±24 G (foot and tibia) ±8 G (sacrum)
1344 Hz
IMU Hikob Fox, Villeurbanne, France

Reenaldaa et al. [22] Running

3 experienced runners
M
38.7 ± 8.2
182 ± 2.4
73 ± 3.7
No injuries prev year; expected
marathon finish time of 3 h

3D IMU
8: left foot, right foot, left medial tibia,
right medial tibia, left upper leg, right
upper leg, sacrum, sternum
27 g
±160 m/s2

60 Hz
Xsens Technologies BV, Enschede,
The Netherlands (Model MTw)
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Reenaldab et al. [27] Running

10 experienced runners
M
31 ± 5
183 ± 3
76 ± 9
No injuries prev 6 months; training
load min of 40 km/wk

3D IMU
8: left foot, right foot, left medial tibia,
right medial tibia, left upper leg, right
upper leg, sacrum, sternum
30 g
±18 G
100 Hz
Xsens Technologies BV, Enschede,
The Netherlands (Model MTx)

Ruder et al. [26] Running

222 marathon runners
119 M; 103 F
44.1 ± 10.8
/
/
Not injured; age > 18 years

3D accelerometer
1: distal tibia
12 g
±16 G
1000 Hz
IMeasureU BlueThunder, Auckland,
New Zealand

Sandrey et al. [70] Vertical jumping

30 active subjects
15 M; 15 F
21.5 ± 5.04
173.5 ± 12.7
72.65 ± 16.4
No history of lower extremity injury

3D accelerometer
1: proximal tibia
/
±50 G
1000 Hz
BIOPAC Systems Inc., Goleta, United
States (TSD109C)

Schuttea et al. [71] Running

20 runners
12 M; 8 F
21.05 ± 2.14
177 ± 8
66.12 ± 6.19
No injuries in prev 6 months; training
volume of 48.28 ± 36.18 km/wk

3D accelerometer
1: sacrum
48 g
±16 G
400 Hz
Gulf Coast Data Concepts, MS, USA
(X16-2)

Schutteb et al. [25] Running

16 recreational runners
10 M; 6 F
20.13 ± 0.72
174.75 ± 7.34
63.06 ± 9.45
No history of injuries, training load of
26.44 ± 6.26 km/wk

3D accelerometer
2: distal right tibia and sacrum
33 g
±50 G
1024 Hz
Gulf Coast Data Concepts, MS, USA
(X50-2)

Strohrmann et al. [72] Running

21 runners (different skills levels)
/
/
/
/
Training loads: beginners 0–5 km/wk;
intermediate 5–25 km/wk; advanced
25–45 km/wk; expert > 45 km/wk

3D IMU
1: sacrum
22 g
±6 G
100 Hz
ETHOS
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Table 2. Cont.

Subject Population Measurement System

Authors [ref] Cyclical PE Activity

Type and N◦ of Subjects
Sex
Age (years)
Height (cm)
Mass (kg)
Subject Eligibility and Training
Level

Accelerometer(s) Characteristics
and n◦ of Axes
N◦ of Accelerometers and
Placement
Weight
Operating Range
Sampling Frequency
Manufacturer (Model)

Verbitsky et al. [73] Running

22 subjects
M
30.8 ± 5.1
173.9 ± 7.3
70.4 ± 9.2
Training min of 2 times per week; no
history of injury

1D accelerometer
1: tibia
2.3 g
/
1667 Hz
PCB (A303)

Zhang et al. [74] Walking

17 subjects
9 M; 8 F
29 ± 11
174 ± 10
73 ± 12
Non-sedentary, independent and free
of MSDs; no use of medication; no
balance or vision disorders

3D IMU
2: right tibia and sternum
/
/
120 Hz
MMA7261QT

M: male, F: female, E: elite, C: competitive, R: recreational, NS: not specified, HA: high arch, LA: low arch,
SM: soft midsole, MM: medium midsole, HM: hard midsole, DL: dominant leg, BMI: body mass index, MSD:
musculoskeletal disorder.

3.1.2. Measurement System and Sensor Placement

The measurement systems used to identify biomechanical parameters were simple
accelerometers (20 articles) or accelerometers embedded in IMUs (19 articles). In three
cases, the accelerometers or IMUs were embedded in a smartphone.

The accelerometers were fixed to a single body segment in 16 articles (10 tibia,
5 sacrum only, and 1 foot) and to multiple body segments in 23 articles. In particu-
lar, the tibia was chosen as a sensor location in 78% of the running articles and 79% of
all articles, while the percentage of the sacrum placement was consistent at 46%. The
foot and thigh were chosen as sensor locations for only 26% and 13%, respectively, out
of all articles. A summary of the sensor placement for all articles and each activity
can be found in Table 3.

Table 3. Accelerometer placement: absolute number and percentage.

Running Jumping Walking SCT Gym
Exercises Total

Tibia 22 (78%) 3 (75%) 3 (75%) 2 (100%) 1 (100%) 31 (79%)
Thigh 2 (7%) 0 0 2 (100%) 1 (100%) 5 (13%)

Sacrum 13 (46%) 1 (25%) 1 (25%) 2 (100%) 1 (100%) 18 (46%)
Foot 7 (25%) 0 0 2 (100%) 1 (100%) 10 (26%)
Total 28 4 4 2 1

The accelerometers were attached on both limbs in only six articles. Placement of the
accelerometer was reported also for the forehead (10 articles) and sternum (6 articles), since
they are needed for computing shock attenuation. Measurement systems characteristics
and placement are reported in detail in Table 2.
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3.1.3. Fatiguing Protocol

Fatiguing protocols varied across the articles. A comprehensive summary of the
measured activities and related fatiguing protocols across all the articles can be found in
Figure 2. A total of 30/39 articles (77%) reported a fatiguing protocol consisting of the same
activity as the main measured activity. All six articles that reported walking and SCT as the
main measured activity used a different activity as a fatiguing protocol.
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Figure 2. Summary of fatiguing protocols and measured activities. Circles on the left side represent 
the number of articles that measured each PE activity, while circles on the right side represent the 
number of articles for each PE activity chosen as a fatiguing protocol. Horizontal arrows represent 
the articles that used the same fatiguing protocol PE activity as the measured activity, while 
diagonal arrows represent the articles that chose a different PE activity. 

  

Figure 2. Summary of fatiguing protocols and measured activities. Circles on the left side represent
the number of articles that measured each PE activity, while circles on the right side represent the
number of articles for each PE activity chosen as a fatiguing protocol. Horizontal arrows represent
the articles that used the same fatiguing protocol PE activity as the measured activity, while diagonal
arrows represent the articles that chose a different PE activity.

All articles reported the intensity of the fatiguing protocol by means of duration,
length, speed, or number of repetitions for each PE activity. For running activities, the
average reported duration of the fatiguing protocol was 28.8 min (range of 13.6–48.5 min)
with a speed of 3.61 m/s (range of 2.75–4.39 m/s), while the average reported distance
was 9.5 km (range of 3.2–35.0 km). Two running protocols lasted only between 5 and
10 min but consisted of running on a graded treadmill with a slope of 3–7.5%. The squat
frequency consisted of 8–22 repetitions per minute. Gym exercises varied between 3 and
52 sets of 5 repetitions of squats, high knee jacks, and toe touches. The sledge ergometer
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durations were between 9 and 10 min. The frequency of the triceps surae protocol was
23 heel raises per minute. The fatiguing protocol characteristics are reported in detail for
all articles in Table 4.

Table 4. Study protocol, data analysis, outcome(s) of interest, and quality assessment score.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Abt et al. [44] Running

Treadmill
Speed NS (based on
heart rate at
VO2-max-based
ventilatory
threshold)
17.8 ± 5.7 min
Heart rate at
ventilatory threshold
Run until exhaustion

2: start and end of
FP
5 s
/

PTA
Acceleration
reduction
SA head–tibia

DB 11

Ameli et al. [19]

Stair climbing test:
climbing up or
down 10 steps over
90 s as fast as
possible

1: Treadmill (1 rep)
2.78 m/s, 3.06 m/s,
and 3.33 m/s
180 s
2: L-drill (3 reps)
As fast as possible
30 s
3: Crunch + jumps (3
reps)
As fast as possible
30 s
4: Sit to stand up +
pushups (3 reps)
As fast as possible
30 s

RPE (1–10)
Stopping criteria NS

2: before and after
FP
Subject-dependent:
range of 0.00–11.50
laps
/

Decrease in kinetic
energy (KE)
Decrease in twitch
factor (TFA)
Correlation
between fatigue
score (based on KE
and TF) and RPE
(Pearson’s r)

DBL 8

Arias-Torres
et al. [45]

Walking:
200 m
self-selected walk
speed

Athletics track
Speed NS (fastest
sprint possible)
/
/
5.0% decrement of
sprint time

2: before and after
FP
100 m
LP BW filter 5 Hz

Accuracy of the
model
Cohen’s Kappa
Best feature subset

DBL 8
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Bergmann
et al. [46]

Stair climbing:
ascending and
descending a
staircase 6 times

Recumbent
ergometer
reaching 80
revolutions per
minute and back to 0
in the span of 12 s
for 11 times
10 min
RPE (1–10)
Feeling
uncomfortable

5: 2x before fatigue
protocol,
1x after fatigue
protocol
(ergometer),
2x after fatigue
protocol (stair
climbing)
/
/

ROM (ankle, knee,
thigh, trunk) DB 8

Brahms et al. [47] Running

200 m indoor track
Speed: E: 4.5 ± 0.4;
R: 3.5 ± 0.5
Duration: E: 19.8 ±
3.4; R: 26.2 ± 6.3
RPE E: 15.8 ± 1.1; R:
16.4 ± 1.4
Inability to maintain
speed

3: beginning,
middle and end of
fatiguing run
1/3 of whole run
(0–33% B; 34–66%
M; 67–100% EN)
LP BW filter 60 Hz
(acc data)
LP BW filter 15 Hz
(stride and contact
time)

PFA
Stride time
Stride length
Contact time

DB 10

Butler et al. [48] Running

Treadmill
Self-selected training
pace
LA: 47 ± 24; HA:
52 ± 25
RPE and HR
HR > 85% HR max;
RPE > 16

2: beginning and
end
/
/

PTA
PTP (peak-to-peak
tibial acceleration)

DB 11

Clansey
et al. [23]

Running:
15 m overground
trials x6 at 4.5 m/s

Treadmill
LT speed at 3.5 mM
blood lactate
concentration
20 min (×2)
RPE (6–20)
Stopping criteria NS

3: Pre, mid, and
post 2 fatiguing
runs
/
Tibial accelerations
downsampled to
60 Hz

PTA
Step length DB 10

Clermont
et al. [49]

Running
Marathon
(4:26:23 ± 00:36:05
h:m:s)

Overground
/
14 km (km 0 until
km 14)
/
Stopping criteria NS

15: km 4–14, then
from km 14 until
end,
10 km (normal
running segment),
2 km (14 fatigue
segments)
/

σ (biomechanical
index) based on:
step frequency,
change in forward
velocity, vertical
oscillation, pelvic
rotation, pelvic
drop, contact time

DB 9
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Coventry
et al. [50]

Single-legged drop
jumping
(80% of maximum
jump height)

Indoor
Each cycle: DJ, CMJ,
and 5 single-legged
squats
~25 s
RPE (1–10)
Until unable to
perform exercise

2: first and last
cycle
1 cycle
LP BW 15 Hz

PTA
SA head–tibia (%
and TF)
Peak angular
velocity

DB 10

Derrick et al. [51] Running

Treadmill running
3.4 ± 0.4 m/s
~3200 m *
~15.7 min *
/
Until exhaustion

3: start, middle,
end
/
16 s

PTA
SA head–tibia (%
and TF)
Stride length

DB 9

Encarnacion-
Martinez
et al. [52]

Treadmill running:
10 s ×3 at 3.89 m/s

Treadmill running
85% max aerobic
speed
30 min
RPE (6–20)
Min of 17/20 RPE

2: pre and post
30 s
/

PTA (max and
total)
SA head–tibia (%
and TF)

DB 11

Garcia Perez
et al. [53]

Running (treadmill
and track, 400 m at
4 m/s)

Track running
85% of max effort 5
min run (3.81 ±
0.4 m/s)
30 min
6858 ± 720 m *
/
Stopping criteria NS

2: pre and post
3 strides
/

PTA
SA head–tibia (%)
Tibial impact rate DB 8

Hajifar et al. [17] Walking for 8 m

Cycles of 16 squats
8 squats/min
2 min
RPE
RPE ≥ 17

Multiple: pre and
post squats
8 m
/

MAE of predictive
model DBL 10

Hardin et al. [54] Running downhill

Treadmill running
(downhill −12%)
30 min
3.4 m/s
6120 m *
Creatine kinase
variations
Stopping criteria NS

6: every 5 min
10 strides
/

PTA
Stride frequency DB 9
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Hoenig et al. [55] Running

Athletics track
As fast as possible
5000 m
VO2 max, lactate,
and RPE after a
previous 5 km run
Stopping criteria NS

3: 500 m, 2500 m
and 4500 m
150 strides
/

LDS (quantified by
largest Lyapunov
exponent) sacrum,
thorax, and foot

DB 10

Jiang et al. [56]

Gym exercises:
squats, high knee
jacks, and toe
touches

Sets of squats, high
knee jacks, and toe
touches
5 repetitions
3–52 sets
RPE
Until exhaustion

All exercise
repetitions
Each repetition
LP BW 20 Hz

RMSE and
Pearson’s r
between model
and RPE

DBL 10

Karvekar
et al. [57]

Walking for
8 meters

Cycles of 16 squats
8 squats/min
2 min
RPE
RPE ≥ 17

5: normal walking
and 4 different
RPE levels
Sliding window of
70–80 data points
LP BW 3 Hz

Accuracy and
confusion matrix
of model
PTA

DBL 10

Lucas Cuevas
et al. [58] Running

Treadmill running
Based on lactate
threshold of 4.04 ±
0.36 m/s
15 min
3636 ± 324 m *
Blood lactate
concentration and
RPE
Stopping criteria NS

3: before,
immediately after,
and 2 min after
1 min
8th order LP
Chebyshev type II
120 Hz (stop band
ripple 40 Hz)

PTA
SA head–tibia
Stride frequency
Stride length

DB 11

McGinnis
et al. [59]

Vertical jumping: 4
maximal effort
CMJs

4 maximal effort
CMJs, obstacle
course, and 4
maximal effort CMJs
/
RPE, HR, and
performance decline
HR = HR max after
consecutive bouts,
RPE = 10, or jump
height decline to 70%
of max effort

2: fatigue and
non-fatigue
4 CMJs
/

Vertical
displacement
sacrum
Max vertical
velocity sacrum
Max vertical
acceleration
sacrum

DB 9
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Meardon
et al. [60] Running

Indoor athletic track
3.49 ± 0.14 m/s
5.7 ± 0.9 km
~27.2 min *
Percentage of HR
max
Running until
exhaustion

3: beginning,
middle, and end
0–33%, 34–67%,
and 67–100% of
each run
4th-order BP BW
0.9–50 Hz

Stride time (mean
and long-range
correlation)

DB 10

Mercer et al. [61]
Running
(treadmill)
3.8 m/s, 8–10 min

Treadmill running
Maximal effort
graded exercise test
(grade or speed
increase every
minute): 1.34 m/s
(3%), 1.56 m/s
(7.5%), 1.79 m/s
(7.5%), 2.23 m/s
(7.5%), and 2.45 m/s
3–5 min
1 min
VO2, HR, and RPE
Running until
exhaustion

2: before and after
20 s
/

PTA
SA head–tibia
PSD tibia
Stride length

DB 8

Meyer et al. [62]

Running (5–10 km
and 25–30 km,
which correspond
to the same section
in the marathon)

Marathon running
42.1 km
5–10 km: 3.29 ± 0.35
m/s; 25–30 km: 3.16
± 0.42 m/s
/
Stopping criteria NS

2: 5–10 km and
25–30 km
4012 ± 1250
LP BW 50 Hz

FSA
Contact time
Stride length

DB 10

Mizrahia [63],
Mizrahib [64],
Mizrahic [65],
Mizrahid [66]
et al.

Running

Treadmill running
Speed at 5%
exceeding AT 3.53 ±
0.19 m/s
30 min
6354 ± 342 m *
Running until end of
protocol
Decline in PETCO2

7: every 5 min
from start to end
20 s
8th-order LP BW
40 Hz

PTA
PSA
SA sacrum–tibia

DB 8,9,10,9
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Moran et al. [18]

Drop jumping:
5 maximal effort
drop jumps
/
/
15 s

Treadmill running
9.66 km/h (starting
at 3% grade and
increasing 1.5%
every minute)
8.3 ± 2.4 min
Less than 2 min
RPE
RPE ≥ 17

2: before and after
5 jumps
/

PTA DB 10

Morio et al. [67]

Running: run 11 ±
0.2 km/h for 3 min,
treadmill, barefoot
and shod
(randomized)

Sledge ergometer
exercise (25 bilateral
rebounds)
266 ± 74 rebounds
9 ± 2.5 min
Perceived muscle
soreness
Not reaching preset
rebound of 80% on
10 consecutive
rebounds

Running: 2 (pre
and post)
3 min
/

PTA DB 8

Provota et al. [68] Running

Treadmill running
3.75 m/s
38.5 ± 12.5 min
8662 ± 2812 m *
RPE
Unable to maintain
speed

Whole run
38.5 ± 12.5 min
/

Time to exhaustion
model (RMSE and
Pearson’s r)

DBL 11

Provotb
et al. [69] Running

Treadmill running
3.75 m/s
/
RPE
Running until
exhaustion

10: every 5% of
exhaustion level
30 strides
/

CMD DB 7

Reenaldaa
et al. [22] Running

Marathon running
3.61–4.08 m/s
42.2 km
/
Stopping criteria NS

4: 8 km, 18 km,
27 km, and 36 km
100 strides
/

PSA
Stride length
Step frequency

DB 8

Reenaldab
et al. [27] Running

Athletic track
4.39 ± 0.39 m/s
20 min
5268 ± 468 m *
/
Lactate threshold
speed
Stopping criteria NS

2: 3 min and
18 min
20 strides
/

PTA
PSA
SA sacrum–tibia

DB 8
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Ruder et al. [26] Running

Marathon running
Speed at 10 km: 3.41
± 0.m/s; at 40 km:
2.92 ± 0.52 m/s
42.2 km
/
Stopping criteria NS

2: 5–10 km and
35–40 km
5 km
/

PTA DB 8

Sandrey
et al. [70]

Vertical jumping:
3 maximal single
leg vertical jumps

Triceps surae
fatiguing protocol
23 heel raises per
minute
/
/
Pace no longer
maintained or height
not reached for 3
sequential heel raises

2: before and after
3 jumps PTA DB 11

Schuttea
et al. [71]

Running (speed
3.33 m/s)

Treadmill running
Speed based on
3.2 km run at
maximal effort
3.33 m/s
20.54 ± 6.90 min
4102 ± 1379 m *
RPE
Feeling unable to
continue or RPE
≥ 17

2: beginning and
end
20 steps
LP BW 15 HZ

PSA
Step frequency
RMS of sacral
acceleration

DB 10

Schutteb
et al. [25] Running

Athletic track
(outdoor)
Speed based on 3.2
km run at maximal
effort
3.92 m/s *
13.63 ± 1.86 min
3200 m
RPE
Stopping criteria NS

8: every 400 m
2229 ± 260 steps
LP BW 50 Hz

PTA
PSA
SA sacrum–tibia
Frequency domain:
SA active phase
magnitude and
impact phase
magnitude, signal
power magnitude
Contact time
Step frequency

DB 10
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Table 4. Cont.

Measurement
Protocol Fatigue Protocol Data Analysis Outcome Quality

Assessment Score

Authors [ref]

Activity (Setting)
Speed (m/s)
Duration (m)
Rest Time (s)

Activity (Setting)
Speed (m/s) or
Number of
Repetitions
Duration (min) or
Length (m)
Fatigue Reference
(mean RPE)
Stopping Criteria

Measurement
Points
Amount of Data
Per Point
Filtering

Fatigue-Related
Outcome(s)

DB: Adapted from
Downs and Black
Checklist [42]
DBL: Adapted
from Downs and
Black [42] and
Luo et al. [43]
Checklists

Strohrmann
et al. [72] Running

Treadmill running
Speed based on 85%
1 min run at max
speed
2.5–4.94 m/s
45 min
/
Stopping criteria NS

2: beginning and
end
/
/

COM
displacement DB 6

Verbitsky
et al. [73] Running

Treadmill running
Speed at anaerobic
threshold
(NF 2.75 ± 0.48 m/s;
F 2.76 ± 0.29 m/s)
30 min
PETCO2
Decline in PETCO2

7: every 5 min
20 s
/

PTA
PSA DB 8

Zhang et al. [74]
Walking in lab
environment at
self-preferred pace

Squatting
22 reps/min
52 ± 7 min
MVE
60% of baseline MVE

2: before and after
6–7 gait cycles
/

Accuracy,
sensitivity, and
specificity of
model

DBL 10

* Indirectly estimated value based on data reported by the article; FP: fatiguing protocol; LP: low-pass; BW:
Butterworth; E: elite; R: recreational; PFA: peak foot acceleration; PTA: peak tibial acceleration; PTP: peak-to-peak
tibial acceleration; PSA: peak sacral acceleration; SA: shock attenuation; KE: kinetic energy; ROM: range of motion;
TFA: twitch factor; TF: transfer function; LDS: local dynamic stability; PSD: power spectral density; FSA: foot
strike angle; AT: anaerobic test; PETCO2: end-tidal carbon dioxide pressure; LT: lactate threshold; CMD: coefficient
of multiple determination; MAE: mean absolute error; NS: not specified.

The stopping criteria of the fatiguing protocols varied per PE activity. Out of 30 articles
that reported a running fatiguing protocol, nine articles based the stopping criteria on the
length of the run; nine articles based it on a threshold for RPE, HR, or end-tidal carbon
dioxide pressure (PETCO2); five articles let participants run until exhaustion; and three
articles based their stopping criteria on a decrease in performance, while four articles did
not report clear stopping criteria. A decrease in performance was also used as stopping
criterium for the two articles reporting a jumping fatiguing protocol and three articles
reporting squatting, recumbent ergometer, and triceps surae fatiguing protocols. The only
protocol based on gym exercises used a stopping criterion of subject exhaustion, while the
remaining two articles reporting squatting fatiguing protocols used an RPE threshold as
the stopping criterion. Finally, one recumbent ergometer fatiguing protocol was reported
to be stopped when subjects felt uncomfortable.

3.1.4. Fatigue Reference

The fatigue reference metrics across all the articles are reported in Table 5. A total
of 19 out of 39 articles (49%) reported RPE as a fatigue reference. The RPEs consisted
solely of Borg’s RPE [9] (either on a 6–20 or 1–10 scale) for all fatiguing protocols, except
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for the recumbent ergometer, which also included perceived muscle soreness as a fatigue
reference. The HR parameters consisted of changes in HR, absolute HR values, and
relative changes compared to the HR max and accounted for 15% of all articles. The
ventilatory parameters consisted of changes in PETCO2 and VO2 max, accounting for
18% of articles. Other physiological parameters included changes in creatine kinase and
blood lactate concentration. A total of 5 out of 39 articles combined multiple fatigue
references in their protocols.

Table 5. Fatigue reference across fatiguing protocols: number of articles and percentages.

Running Jumping Gym
Exercises Squats Recumbent

Ergometer
Triceps
Surae Total

RPE 12 (40%) 2 (100%) 1 (100%) 2 (66%) 2 (100%) 0 19 (49%)
HR
parameters 5 (17%) 1 (50%) 0 0 0 0 6 (15%)

Ventilatory
parameters 7 (23%) 0 0 0 0 0 7 (18%)

Other
physiological
parameters

3 (10%) 0 0 1 (33%) 0 0 4 (10%)

Total 30 2 1 3 2 1

3.1.5. Outcomes of Interest

A total of 32 articles evaluated changes due to fatigue in lower limb biomechanics
(Type I), and 7 articles used machine learning approaches to identify, classify, or predict
fatigue stages (Type II). Performance metrics were chosen by all seven Type II articles and
are presented in Section 3.4.

For Type I articles, peak tibial acceleration (PTA) was the most common reported
outcome, chosen in 13 running articles and 3 jumping articles. Shock attenuation was
reported in 11 articles: seven times between head and tibia (six running, one jumping) and
two times between sacrum and tibia (running). Peak sacral acceleration (PSA) was reported
in five articles (four running, one jumping) and peak foot acceleration (PFA) in one running
article. Other acceleration-based variables that were reported in running articles were tibial
acceleration reduction, tibial impact rate, and peak-to-peak tibial acceleration.

Stride spatiotemporal parameters were chosen both in running and jumping articles.
Stride length was the most common variable (six articles), followed by step frequency,
stride frequency, stride time, and contact time (each reported in two articles). Step length
and foot strike angle (FSA) were also reported in one article each.

Other variables were also chosen in different activities. In running, some articles
focused on frequency domain parameters (i.e., local dynamic stability, power spectral
density, and signal power magnitude). Center of mass (COM) displacement was chosen in
one running article, while one jumping article reported vertical displacement of the sacrum.
Other reported outcomes in jumping articles were touchdown angle, peak tibial angular
velocity, and maximal vertical velocity and acceleration of the sacrum. In SCTs, the ranges
of motion of the ankle, knee, thigh, and trunk were reported.

3.2. Quality Assessment

Quality assessment scores for each article are shown in Table 4. All 39 articles that
were evaluated after full-text screening exceeded the threshold of 5/11. The overall quality
assessment score was 9.3 ± 1.3 (9.2 ± 1.3 for Type I and 9.6 ± 1.1 for Type II articles). A
complete assessment of all the quality assessment items for each article can be found in the
Supplementary Materials (Tables S2 and S3).
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3.3. Overview of Biomechanical Changes Due to Fatigue
3.3.1. Running

The changes due to fatigue in biomechanical parameters for running activities can be
found in Table 6. Increasing PTA with fatigue was found in 11/13 articles. In 2/13 articles,
PTA increased or decreased with fatigue depending on different conditions (i.e., running
environment and shoe characteristics). A total of 6/13 articles found significant increases of
PTA with fatigue, while 1/13 articles found a significant decrease of PTA. PSA was found
to increase with fatigue in 4/4 articles, although only 2/4 articles found the increase to be
significant. PFA was found to increase with fatigue by 1/1 article, although the increase
was significant only for recreational runners. Shock attenuation between the head and
tibia increased in 3/6 articles, while in 2/6 articles, it was found to increase depending
on different conditions (i.e., shoe characteristics) or mathematical calculations (transfer
function vs. ratio). A total of 2/6 articles found a significant increase in head-to-tibia shock
attenuation with fatigue, while 1/6 articles found a significant decrease. Furthermore,
2/2 articles found an increase in sacrum-to-tibia shock attenuation with fatigue, one of
them being significant. Significant changes in stride and step spatiotemporal parameters
were found in 5/16 articles (1/6 found significant increase in stride length; 1/2 in stride
frequency; 0/2 in stride time; 1/2 in step frequency; 1/2 in contact time; 0/1 in step length;
1/1 found significant decrease in FSA).

Significant changes in fatigue reference between the fatigued and non-fatigued states
were found in all five articles that reported them. A significant increase in RPE with fatigue
was found in one article; a significant increase in oxygen consumption was found in one
article; a significant increase in heart rate was found in one article; and a significant decrease
of end-tidal carbon dioxide pressure was found in two articles. The average RPE in the
fatigued state was reported by four articles and was equal to 15.7 ± 1.4 (6–20 Borg Scale).

3.3.2. Walking

All four walking articles were categorized as Type II articles and are reported in
Section 3.4.

3.3.3. Stair-Climbing Test

A total of 1/2 SCT articles investigated changes in biomechanical parameters. An
increase in ankle, knee, thigh, and trunk range of motion (ROM) was found with fatigue
during descent, the trunk ROM being the only one showing a significant difference. Non-
significant increases were found with fatigue in knee, thigh, and trunk ROM during ascent,
while a non-significant decrease with fatigue was found in ankle ROM.

3.3.4. Jumping Exercises

Changes due to fatigue in biomechanical parameters for jumping activities can be
found in Table 7. A total of 3/3 jumping articles found an increase in PTA with fatigue.
A significant increase in PTA with fatigue was found in one article only in shorter jumps
(30 cm), while it was non-significant in higher jumps (50 cm). Another article found a
significant increase in PTA with fatigue in landing, but a non-significant increase during
take-off. A total of 1/1 article found a significant increase in PSA with fatigue. A total of
0/1 articles found a significant increase or decrease in head-to-tibia shock attenuation with
fatigue in jumping.
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Table 6. Overview of biomechanical changes due to fatigue in running.

Authors [Ref]
Magnitude Change Fatigue Reference Change in

Fatigue
ReferenceNF F NF F

Peak tibial acceleration (g)

Abt et al. [44] 7.5 ± 1.1 7.7 ± 1.3 0.2 (p = 0.19) / / /

Butler et al. [48] MC 5.4
CT 4.5

MC 5.9
CT 4.6

MC 0.5
CT 0.1 / / /

Clansey et al. [23] 11.30 ± 2.15 11.79 ± 1.77 0.49 (p = 0.226) RPE 11.8 ± 1.3 RPE 14.4 ± 1.5 2.6 * (p < 0.05)

Derrick et al. [51] 6.11 ± 0.96 7.38 ± 1.05 1.27 * (p < 0.05) / / /

Garcia Perez
et al. [53]

OG 24.6 ± 10.8
TM 15.3 ± 6.8

OG 22.2 ± 10.3
TM 17.2 ± 9.5

OG −2.4
TM 1.9 / / /

Hardin 1

et al. [54]
10.6 ± 3.12 12.7 ± 3.95 2.1 * (p = 0.00) / / /

Lucas Cuevas
et al. [58]

CS 7.89
PS 8.13
CMS 7.69

CS 7.75
PS 8.59
CMS 7.96

CS −0.14
PS 0.46
CMS 0.27

/ RPE 14.34 /

Mercer et al. [61] 5.0 ± 1.6 5.3 ± 1.4 0.3 VO2 41.1 ± 2.7
HR 160 ± 10

47.9 ± 5.0
178 ± 10

6.8 * (p < 0.05)
18 * (p < 0.05)

Mizrahib,c et al.
[64,65] 6.9 ± 2.9 11.1 ± 4.2 4.2 * (p = 0.03) PETC02 43.9 37.2 −6.7 * (p = 0.045)

Morio et al. [67] 12.8 ± 3.9 18.9 ± 5.1 6.1 * (p = 0.005) / / /

Reenaldab
et al. [27] 4.96 ± 1.57 5.33 ± 2.15 0.37 * (p < 0.05) / / /

Ruder et al. [26] 11.94 ± 3.70 10.19 ± 3.40 −1.75 * (p < 0.01) / / /

Verbitsky
et al. [73] 9.80 15.68 5.88 * (p < 0.5) PETC02 44.1 40.3 −3.8 * (p < 0.5)

Peak sacral acceleration (g)

Mizrahia
et al. [63] 2.41 3.50 1.09 * (p < 0.05) PETC02 43.9 37.2 −6.7 * (p = 0.045)

Reenaldaa
et al. [22] 3.63 4.14 0.51 * (p < 0.05) / / /

Reenaldab
et al. [27] 2.51 ± 0.72 2.54 ± 0.62 0.03 (p = 0.338) / / /

Schuttea et al. [71] 1.39 ± 0.22 1.48 ± 0.21 0.09 (p = 0.007) / / /

Peak foot acceleration (g)

Brahms et al. [47] E 20.1 ± 2.04
R 16.1 ± 3.87

E 20.8 ± 1.93
R 16.4 ± 3.57

E 0.7
R 0.3 * (p < 0.05) /

E RPE 15.8, HR =
90.9 (%max)
E RPE 16.4, HR =
92.3 (%max)

/

Shock attenuation (head–tibia)

Abt et al. [44] −14.2 ± 3.7 dB −13.7 ± 3.1 dB 0.5 dB (p = 0.18) / / /

Derrick et al. [51] −13.6 ± 2.6 dB
74.5 ± 5.4%

−14.2 ± 2.7 dB
77.5 ± 4.1%

−0.6 dB
3.0% * (p < 0.05) / / /

Encarnacion-
Martinez
et al. [52]

−54.73 ± 15.81
dB

−59.25 ± 16.12
dB −4.52 dB * (p <

0.05) / RPE 17.6 ± 0.5 /

Garcia Perez
et al. [53]

OG 82.1 ± 9.7%
TM 75.5 ± 20.8%

OG 82.4 ± 8.7%
TM 77.9 ± 13.9%

OG 0.3%
TM 2.4% / / /

Lucas Cuevas
et al. [58]

CS 66.43%
PS 67.37%
CMS 65.78%

CS 66.82%
PS 70.55%
CMS 64.85%

CS 0.39%
PS 3.18%
CMS −0.93%

/ RPE 14.34 /

Mercer et al. [61] −11.3 ± 2.7 dB −9.8 ± 2.6 dB 2.5 dB * (p < 0.05) VO2 41.1 ± 2.7
HR 160 ± 10

47.9 ± 5.0
178 ± 10

6.8 * (p < 0.05)
18 * (p < 0.05)
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Table 6. Cont.

Authors [Ref]
Magnitude Change Fatigue Reference Change in

Fatigue
ReferenceNF F NF F

Meyer et al. [62] 2.31 ± 0.18 2.23 ± 0.20 −0.08 / / /

Reenaldaa
et al. [22] 2.56 ± 0.05 2.46 ± 0.10 0.10 * (p < 0.05) / / /

Stride frequency

Hardin 1

et al. [54]
81.6 strides/min 82.8 strides/min 1.2 * strides/min

(p = 0.01) / / /

Lucas Cuevas
et al. [58]

CS 1.41 strides/s
PS 1.42 strides/s
CMS 1.41
strides/s

CS 1.42 strides/s
PS 1.42 strides/s
CMS 1.37
strides/s

CS 0.01 strides/s
PS 0.0 strides/s
CMS −0.04
strides/s

/ RPE 14.34 /

Stride time (msec)

Brahms et al. [47] E 698 ± 46
R 710 ± 40

E 696 ± 46
R 710 ± 39

E −2
R 0 /

E RPE 15.8, HR =
90.9 (%max)
E RPE 16.4, HR =
92.3 (%max)

/

Meardon
et al. [60] 700 ± 12 700 ± 12 0 / / /

Step length (m)

Clansey et al. [23] 1.70 ± 0.05 1.69 ± 0.06 −0.1 (p = 0.698) RPE 11.8 ± 1.3 RPE 14.4 ± 1.5 2.6 * (p < 0.05)

Step frequency (steps/min)

Reenaldaa
et al. [22] 176.56 ± 3.18 177.68 ± 4.97 1.12 * (p < 0.05) / / /

Schuttea et al. [71] 162.44 ± 7.54 162.88 ± 8.15 0.44 (p = 0.74)

Contact time (msec)

Brahms et al. [47] E 147 ± 8
R 171 ± 16

E 148 ± 8
R 172 ± 16

E 1
R 1 /

E RPE 15.8, HR =
90.9 (%max)
E RPE 16.4, HR =
92.3 (%max)

/

Meyer et al. [62] 214 ± 28 228 ± 37 14 * (p < 0.05) / / /

Foot strike angle (deg)

Meyer et al. [62] 12.35 ± 1.88 10.36 ± 1.65 −1.99 * (p < 0.05) / / /

1 Downhill running. * indicates significant difference. NF: non-fatigued condition, F: fatigued condition, MC:
motion control shoe, CT: cushioning shoe, CS: control shoe, PS: pre-fabricated shoe, CMS: custom-made shoe, OG:
overground, TM: treadmill, E: Elite, R: Recreational, RPE: rate of perceived exertion (scale 6–20), VO2: oxygen
consumption (ml·kg−1·min−1), HR: heart rate (beat·min−1), PETCO2: end-tidal carbon dioxide pressure (Torr).

3.4. Overview of Fatigue Classification Performances

The model characteristics and classification performance for Type II articles can be
found in Table 8. A total of 3/4 articles that investigated fatigue in walking used machine
learning models, obtaining an accuracy ranging between 78% and 96%. A support vector
machine (SVM) model was chosen in all three articles, in one case being the best-performing
model compared to multiple different machine learning models. A total of 1/4 articles
used multivariate forecast models to predict fatigue states. The best-performing model was
an autoregressive integrated moving average (ARIMA) model with a mean absolute error
(MAE) of 0.73 with respect to measured RPE values.

In SCTs, 1/1 article developed a model based on changes in body postures and
kinetic energy to output a fatigue score. Correlation of the fatigue score with the RPE was
quantified by Pearson’s r, being equal to 0.95 for males and equal to 0.70 for females.

In gym exercises, 1/1 article used machine learning models to estimate RPE values.
Correlation between model outputs and the RPE was quantified by means of Pearson’s
r, showing different results for different gym exercises: r = 0.89 for squats, r = 0.93 for
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jumping jacks, and r = 0.94 for corkscrew exercises. The machine learning models used
were convolutional neural networks (CNN) and random forest (RF).

Table 7. Overview of biomechanical changes due to fatigue in jumping articles.

Article
Magnitude Change in

Magnitude

Fatigue Reference Change in
Fatigue

ReferenceNF F NF F

Peak tibial acceleration (g)

Coventry et al.
[50] 13.4 ± 4.7 12.2 ± 1.7 1.2 (p = 0.420) RPE = 6.56 ± 0.98 19.72 ± 0.84 13.16 * (p < 0.001)

Moran et al. [18] 15.8 (30 cm jump)
22.6 (50 cm jump)

19.6 (30 cm jump)
23.8 (50 cm jump)

3.8 * (p < 0.05)
1.2 / / /

Sandrey et al. [70]

5.19 ± 1.61
(take-off)

5.82 ± 1.70
(landing)

5.34 ± 1.58
(take-off)

6.65 ± 1.96
(landing)

0.15 (take-off, p =
0.19)

0.83 * (landing, p
< 0.01)

/ / /

Peak sacral acceleration (g)

McGinnis et al.
[59] / / 0.15 * (p = 0.03) / / /

Shock attenuation (head–tibia)

Coventry et al.
[50]

−12.7 ± 3.7 dB
70.1 ± 4.6%

−14.7 ± 3.7 dB
70.8 ± 7.8%

−1.0 dB (0.416)
0.7% (p = 0.839) RPE = 6.56 ± 0.98 19.72 ± 0.84 13.16 * (p < 0.001)

* indicates significant difference. NF: non-fatigued condition, F: fatigued condition, RPE: rate of perceived exertion
(scale 6–20).

Table 8. Fatigue classification and prediction performance across all PE activities.

Authors [Ref]
Activity and
Fatigue
Protocol

N◦ of Subjects Measurement
Points

Algorithms or
Model Used

Validation
Type

Fatigue
Reference Outcomes

Ameli
et al. [19]

SCT
(Running +
gym exercises
FP)

20 2: before and
after FP

Gaussian
mixture model
for changes in
body posture
and kinetic
energy

/ RPE
Pearson’s r: 0.95
(males) and 0.7
(females)

Arias-Torres
et al. [45]

Walking
(Running FP) 9 2: before and

after FP

LDA, CART,
SVM, KNN, RF,
NB

k-fold CV
(k = 10)

Decrease in
performance

Accuracy: 0.78
SVM
Feature
importance
analysis

Hajfar
et al. [17]

Walking
(Squatting FP) 24

Multiple: pre
and post
squats

Multivariate
forecasting
models (Naïve,
AR, VAR,
ARIMA,
VECM)

/ RPE MAE < 1.24
ARIMA

Jiang et al. [56]

Gym exercises
(Sets of squats,
high knee
jacks, and toe
touches)

14 1 per repetition CNN and RF / RPE

Pearson’s r: 89%,
93%, and 94%
correlation for
squat, jacks, and
corkscrew
exercises,
respectively
Feature
importance
analysis
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Table 8. Cont.

Authors [Ref]
Activity and
Fatigue
Protocol

N◦ of Subjects Measurement
Points

Algorithms or
Model Used

Validation
Type

Fatigue
Reference Outcomes

Karvekar
et al. [57]

Walking
(Squatting FP) 24 5 throughout

FP SVM / RPE

Accuracy and
confusion matrix
of model: 91%
Feature
importance
analysis

Provota
et al. [68] Running 10 Whole run

Time to
exhaustion
model
(multiple linear
regression)

/ RPE

Pearson’s r: 0.792
Feature
importance
analysis

Zhang
et al. [74]

Walking
(Squatting FP) 17

2: before and
after FP SVM k-fold CV

(k = 5)
Decrease in
performance Accuracy: 96%

FP: fatigue protocol, LDA: linear discriminant analysis, CART: classification and regression tree, SVM: support
vector machine, KNN: k-nearest neighbors, RF: random forest, CNN: convolutional neural networks, NB: naïve
Bayes, AR: autoregressive, VAR: vector autoregressive, ARIMA: autoregressive integrated moving average, VECM:
vector error correction model, MAE: mean absolute error, CV: cross-validation.

In running, 1/1 article developed a multiple linear regression time-to-exhaustion
model. Pearson’s r was used to quantify correlation between the model’s output and RPE,
with r being equal to 0.792.

Feature importance analyses were performed in 4/7 Type II articles across all the
activities. In two articles, feature performance was performed before training the final
model in order to improve model performance. In two articles, feature importance of the
model was shown for the final model.

4. Discussion

The main scope of this literature review was to assess whether accelerometers are
suitable sensors to identify physical fatigue in PE. In order to understand the real-life
possibilities of fatigue detection in PE, we aimed to assess the capability of accelerometer-
based parameters to straightforwardly estimate (traditional biomechanics) and assist in
the detecting (machine learning) of physical fatigue. We found that identification of
fatigue in PE using inertial sensors is mainly obtained by a straightforward comparison of
biomechanical variables of interest or by training models that are validated by comparisons
with physiological or subjective fatigue references.

Peak tibial and sacral acceleration were the most commonly sought outcomes. An
increase in peak tibial or sacral acceleration with fatigue was found in 19/21 articles
for running and jumping activities. However, segment acceleration was influenced by
subject characteristics and the type of fatigue protocol (at particular speeds). Reporting
these characteristics would facilitate the normalization of segmental acceleration results
across articles and provide general, rather than individual, insight in its changes due to
fatigue in PE. Other factors that were found to influence segment accelerations are training
experience (elite vs. recreational), shoe type (prefabricated vs. custom-made sole), and
running environment (treadmill vs. overground). This could explain the high variability
across articles on PTA (4.5–24.6 g). Shock attenuation was found to increase with fatigue in
5/9 articles (running and jumping). While a high variability in biomechanical variables
due to subject characteristics, number of subjects, and fatiguing protocols did not allow
general conclusions, accelerometers were able to measure peak accelerations and shock
attenuations at an individual level. Stride spatiotemporal parameters were also measured
by accelerometers at an individual level in running, and significant changes were found in
5/16 articles. The low amount of articles that found a significant change in spatiotemporal
parameters can be explained by the controlled constant speed in the majority of them.
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Identification of physical fatigue using machine learning or other types of algorithms
was performed in only 7 out of 39 articles. The accuracy of the models ranged between
78% and 96%, and Pearson’s correlation with RPE ranged between 0.79 and 0.95. Only two
articles performed cross-validation (k-fold), suggesting that the validity of their results
was specific for their subject population. Four articles provided further interpretation
of their results by means of feature importance analysis, although the choice of features
was either subjective or not specified. Changes in biomechanical variables found in the
literature could provide a more objective choice of features for machine learning classifiers.
While a generalized optimal method for PE activities was not found in this review, machine
learning approaches succeeded in lower limb fatigue identification for each specific activity
and were found to be less influenced by fatigue protocol characteristics than traditional
biomechanics approaches.

Currently, a gold standard for the comprehensive measurement of physical fatigue
in PE is missing. A total of 19/39 articles used Borg’s RPE as a fatigue reference or tried
to predict and detect RPE levels. Borg’s RPE is a very practical scale to estimate fatigue,
but it relates only to the mental components of fatigue. A total of 13/39 articles used
cardiovascular or ventilatory parameters as fatigue references. They have the advantage of
being objective metrics, but they are individual, often difficult to measure outside of a lab,
and mostly related to the cardiovascular components of fatigue. Accelerometers have the
potential to become extremely popular devices in the identification of physical fatigue in
prolonged tasks out of a lab, but research protocols in the field of fatigue identification in
human movement and PE are still too different from each other to draw general conclusions.
Therefore, we provide five recommendations for future research in PE that could also be
generally applied to human movement assessment (e.g., team sports, rehabilitation, and
clinical practice) and may help the validation of accelerometers as a measurement system
for the identification of physical fatigue.

4.1. Recommendations for Future Research in Physical Fatigue Identification Using Accelerometers

1. One of the aims of this review was to assess to what extent the fields of biomechanics
and machine learning are useful to each other in fatigue identification. While a
few articles developed fatigue models and assessed changes in biomechanics or
feature importance [57,68,74], there is still uncertainty in the choice of model and
machine learning biomechanical features. Developing consistent fatiguing protocols
and reporting feature performance would improve biomechanical domain knowledge
in machine learning studies, while automatic feature extraction techniques could also
be used to improve model performance, as advocated by Halilaj et al. [29].

2. Biomechanical parameters of interest for fatigue estimation are influenced by many
variables in PE. In this review, we identified sensor location, fatigue protocol, subject
characteristics, training level, equipment, and environment. For example, accelerome-
ter location on the distal part of the tibia causes an exposure to higher impacts and
higher PTA than the proximal tibia. Accurate method descriptions would allow the
proper comparison of biomechanical parameters and the generalization of results.

3. A subject being either in a fatigued or non-fatigued state is a simplified representation
of more complex fatigue models that occur at the cardiovascular and neuromuscular
levels [75]. An effort should be made in understanding and identifying fatigue
development stages throughout a PE activity.

4. Fatigue detection, identification, or prediction with machine learning techniques
should be generalized over subjects unless the objective is to train a subject-specific
model [29]. Fatigue identification in PE is a large-scale problem and should be tackled
with a subject-general model, since subject-specific models have limited scalability [76].
Leave-one-subject-out cross-validation should be used when trying to detect out-
comes from different subjects, since it significantly helps model performance on new,
unseen subjects [28].
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5. Deep learning algorithms were not found in this review, although deep learning
could be a promising technique to improve fatigue identification performance by
reducing the need for feature engineering [29]. A possible explanation for the lack of
deep learning algorithms could be the limited amount of data to train a deep leaning
model with a good performance. The online sharing of data across research articles
(also advocated by Gurchiek et al. [76]) could help developing a large dataset of
accelerometer-based fatigue measurements in each PE activity.

4.2. Limitations

The main limitation of this study was the bias towards running activities (thirty out
of thirty-nine articles). A possible explanation is the widespread popularity of running
as a PE activity and the fact that its cyclical nature makes it an easy activity to analyze in
research. However, the biomechanical outcomes of running can be applicable to other PE
activities due to their quasi-cyclical nature [77], as well as more complex activities such as
team sports. Team sports were not in the scope of this review, but running (and jumping,
also evaluated in this review) are predominant component in many of them. Furthermore,
extensive research in measuring running biomechanics using IMUs could be used by other
sports that are starting to use a similar approach to monitor athletes in order to not repeat
the same mistakes.

A second limitation in the analysis of accelerometer-based techniques was the as-
sumption of similarity between accelerometer and IMU measurements. Although IMUs
integrate data from gyroscopes and magnetometers, we assumed a neglectable impact on
the measured outcomes of interest in our review. Further research would be needed to
fully understand whether measurements performed with IMUs differ from measurements
performed with simple accelerometers.

A third limitation was the lack of uniformity in fatigue protocols between the articles
of this review. Fatigue protocols with different intensities (e.g., higher vs. lower speed) or
different activities (e.g., running vs. squatting) can impact muscle activation differently.
Single-muscle fatigue assessment was not in the scope of this review, but it has an impact
on the onset of overall physical fatigue. Future studies should investigate the possibility
to identify physical fatigue levels and link them to activity intensity. A standardization of
fatigue protocols could also allow a meta-analysis of changes in biomechanical variables
with fatigue in PE.

5. Conclusions

We aimed to assess whether accelerometer-based techniques could identify lower
limb physical fatigue in PE. We found that changes in biomechanical parameters could be
assessed at an individual level due to fatigue and that machine learning could help detect
fatigue, but the link between machine learning and changes in biomechanics needs to be
further investigated. Therefore, we formulated guidelines for future fatigue identification
research using accelerometers. The aligning of fatigue protocols and online sharing of
data could help validate biomechanical changes due to fatigue in the lower limbs and the
large-scale deployment of accelerometers in physical fatigue assessment during PE.
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Appendix A

Table A1. Keywords used for each database search.

Embase.com
(Last accessed on 31 May 2021)

(‘fatigue’/de OR ‘muscle fatigue’/de OR exhaustion/de OR (fatigue* OR exhaust* OR
exertion* OR tired*):ab,ti) AND (‘gait’/de OR ‘physical activity’/de OR ‘walking’/de
OR ‘lower limb’/exp OR ‘running’/de OR jogging/de OR ‘daily life activity’/exp OR
‘kinetics’/de OR ‘motion’/de OR ‘biomechanics’/de OR treadmill/de OR exercise/de
OR ‘runner’/de OR ‘marathon runner’/de OR ‘motion analysis system’/de OR
‘motor activity’/de OR ‘exercise test’/exp OR (gait OR walking OR running OR
jogging OR (lower NEAR/3 (limb* OR extermit*)) OR knee OR knees OR hip OR hips
OR ankle* OR foot OR feet OR leg OR legs OR thigh* OR work-task* OR (daily
NEAR/3 (life OR living) NEAR/6 activit*) OR ((physical* OR Motor*) NEAR/3
activit*) OR stride OR kinetic* OR motion OR biomechanic* OR treadmill* OR
exercise* OR work OR workplace OR worker* OR stand OR standing):ab,ti) AND
(‘inertial measurement unit’/de OR ‘inertial measurement unit sensor’/de OR
‘accelerometer’/de OR ‘gyroscope’/de OR ‘accelerometry’/de OR (‘acceleration’/de
AND (‘smartphone’/de OR ‘mobile application’/de)) OR (((inertial*) NEAR/3
measur*) OR acceleromet* OR gyroscope* OR imu OR imus OR immu OR immus OR
((inertial OR body OR wearable*) NEXT/1 sens*) OR xsens OR x-sens OR jerk OR
((smartphone* OR app OR mobile-application*) NEAR/3 (accelerat* OR
Measure*))):Ab,ti) NOT ([conference abstract]/lim AND [1800–2018]/py) AND
[English]/lim NOT ([animals]/lim NOT [humans]/lim)

Medline ALL Ovid
(Last accessed on 31 May 2021)

(Fatigue/ OR Muscle Fatigue/ OR (fatigue* OR exhaust* OR exertion* OR
tired*).ab,ti.) AND (Gait/ OR Walking/ OR exp Lower Extremity/ OR Running/ OR
Jogging/ OR Activities of Daily Living / OR Kinetics/ OR Motion/ OR Biomechanical
Phenomena / OR Exercise Test / OR Exercise/ OR Motor Activity/ OR (gait OR
walking OR running OR jogging OR (lower ADJ3 (limb* OR extermit*)) OR knee OR
knees OR hip OR hips OR ankle* OR foot OR feet OR leg OR legs OR thigh* OR
work-task* OR (daily ADJ3 (life OR living) ADJ6 activit*) OR ((physical* OR Motor*)
ADJ3 activit*) OR stride OR kinetic* OR motion OR biomechanic* OR treadmill* OR
exercise* OR work OR workplace OR worker* OR stand OR standing).ab,ti.) AND
(Accelerometry/ OR (Acceleration/ AND (Smartphone/ OR Mobile Applications/))
OR (((inertial*) ADJ3 measur*) OR acceleromet* OR gyroscope* OR imu OR imus OR
immu OR immus OR ((inertial OR body OR wearable*) ADJ sens*) OR xsens OR
x-sens OR jerk OR ((smartphone* OR app OR mobile-application*) ADJ3 (accelerat*
OR Measure*))).ab,ti.) AND english.la. NOT (exp animals/ NOT humans/)
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Table A1. Cont.

CINAHL EBSCOHost
(Last accessed on 31 May 2021)

(MH Fatigue OR MH Muscle Fatigue OR ti(fatigue* OR exhaust* OR exertion* OR
tired*) OR ab(fatigue* OR exhaust* OR exertion* OR tired*)) AND (MH Gait OR MH
Walking OR MH Lower Extremity+ OR MH Running OR MH Jogging OR MH
Activities of Daily Living OR MH Kinetics OR MH Motion OR MH Exercise Test OR
MH Exercise OR MH Motor Activity OR ti(gait OR walking OR running OR jogging
OR (lower N2 (limb* OR extermit*)) OR knee OR knees OR hip OR hips OR ankle* OR
foot OR feet OR leg OR legs OR thigh* OR work-task* OR (daily N2 (life OR living) N5
activit*) OR ((physical* OR Motor*) N2 activit*) OR stride OR kinetic* OR motion OR
biomechanic* OR treadmill* OR exercise* OR work OR workplace OR worker* OR
stand OR standing) OR ab(gait OR walking OR running OR jogging OR (lower N2
(limb* OR extermit*)) OR knee OR knees OR hip OR hips OR ankle* OR foot OR feet
OR leg OR legs OR thigh* OR work-task* OR (daily N2 (life OR living) N5 activit*) OR
((physical* OR Motor*) N2 activit*) OR stride OR kinetic* OR motion OR biomechanic*
OR treadmill* OR exercise* OR work OR workplace OR worker* OR stand OR
standing)) AND (MH Accelerometry OR (MH “Acceleration (Mechanics)” AND (MH
Smartphone OR MH Mobile Applications)) OR TI(((inertial*) N2 measur*) OR
acceleromet* OR gyroscope* OR imu OR imus OR immu OR immus OR ((inertial OR
body OR wearable*) N1 sens*) OR xsens OR x-sens OR jerk OR ((smartphone* OR app
OR mobile-application*) N2 (accelerat* OR Measure*))) OR AB(((inertial*) N2 measur*)
OR acceleromet* OR gyroscope* OR imu OR imus OR immu OR immus OR ((inertial
OR body OR wearable*) N1 sens*) OR xsens OR x-sens OR jerk OR ((smartphone* OR
app OR mobile-application*) N2 (accelerat* OR Measure*)))) AND LA(English) NOT
(MH animals+ NOT MH humans+)

Web of science Core Collection
(Last accessed on 31 May 2021)

TS = (((fatigue* OR exhaust* OR exertion* OR tired*)) AND ((gait OR walking OR
running OR jogging OR (lower NEAR/2 (limb* OR extermit*)) OR knee OR knees OR
hip OR hips OR ankle* OR foot OR feet OR leg OR legs OR thigh* OR work-task* OR
(daily NEAR/2 (life OR living) NEAR/5 activit*) OR ((physical* OR Motor*) NEAR/2
activit*) OR stride OR kinetic* OR motion OR biomechanic* OR treadmill* OR
exercise* OR work OR workplace OR worker* OR stand OR standing)) AND
((((inertial*) NEAR/2 measur*) OR acceleromet* OR gyroscope* OR imu OR imus OR
immu OR immus OR ((inertial OR body OR wearable*) NEAR/1 sens*) OR xsens OR
x-sens OR jerk OR ((smartphone* OR app OR mobile-application*) NEAR/2
(accelerat* OR Measure*))))) AND DT = (article) AND LA = (english)

Table A2. Eligibility criteria (EC) during title and abstract screening phase. Articles were excluded if
the title or abstract suggests that:

EC 1.1 The study population is formed by non-healthy subjects, either at the
time of the study or in rehabilitation

EC 1.2 The study population average age is lower than 18 years or higher
than 70 years

EC 1.3 The activities performed are not a sport, ADL, or working task
involving moving or standing

EC 1.4 The study does not include one of the three following sensors:
accelerometer, gyroscope, or magnetometer, or does not include IMUs

EC 1.5 The study does not include at least a sensor on the lower limbs
EC 1.6 The article is not in English
EC 1.7 The article is a conference paper
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Table A3. Eligibility criteria (EC) during full-text screening phase. Articles were excluded if:

EC 2.1 No primary data were collected
EC 2.2 The study does not focus on individual physical exercise tasks
EC 2.3 The study performed measurements spreading over multiple days

EC 2.4 The study protocol requires subject to perform power-assisted body
movements

EC 2.5 The study does not include kinetic or kinematic parameters for the
lower limbs

EC 2.6

The study lacks a fatigue inducement protocol, in particular:
For protocols involving running: no running-induced fatigue
(minimum of no-stop 3 km running if not stated)
For protocols involving static physical exercise or walking:
protocol-induced fatigue and exhaustion

EC 2.7 The study protocol includes an accelerometer or IMU with a
sampling frequency <60 Hz

EC 2.8 The study is a case study (1 subject only)
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