
Citation: Srikanth, S.; Babu, M.;

Masnavi, H.; Kumar Singh, A.;

Kruusamäe, K.; Krishna, K.M. Fast

Adaptation of Manipulator

Trajectories to Task Perturbation by

Differentiating through the Optimal

Solution. Sensors 2022, 22, 2995.

https://doi.org/10.3390/s22082995

Academic Editor: Gregor Klancar

Received: 1 March 2022

Accepted: 6 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fast Adaptation of Manipulator Trajectories to Task Perturbation
by Differentiating through the Optimal Solution
Shashank Srikanth 1, Mithun Babu 1, Houman Masnavi 2, Arun Kumar Singh 2,*, Karl Kruusamäe 2

and Krishnan Madhava Krishna 1

1 Robotics Research Center, KCIS, IIIT Hyderabad, Hyderabad 500032, India; s.shashank2401@gmail.com (S.S.);
mithunbabu1141995@gmail.com (M.B.); mkrishna@iiit.ac.in (K.M.K.)

2 Institute of Technology, University of Tartu, 50090 Tartu, Estonia; houman.masnavi@ut.ee (H.M.);
karl.kruusamae@ut.ee (K.K.)

* Correspondence: arun.singh@ut.ee

Abstract: Joint space trajectory optimization under end-effector task constraints leads to a challenging
non-convex problem. Thus, a real-time adaptation of prior computed trajectories to perturbation
in task constraints often becomes intractable. Existing works use the so-called warm-starting of
trajectory optimization to improve computational performance. We present a fundamentally different
approach that relies on deriving analytical gradients of the optimal solution with respect to the task
constraint parameters. This gradient map characterizes the direction in which the prior computed
joint trajectories need to be deformed to comply with the new task constraints. Subsequently, we
develop an iterative line-search algorithm for computing the scale of deformation. Our algorithm
provides near real-time adaptation of joint trajectories for a diverse class of task perturbations, such as
(i) changes in initial and final joint configurations of end-effector orientation-constrained trajectories
and (ii) changes in end-effector goal or way-points under end-effector orientation constraints. We
relate each of these examples to real-world applications ranging from learning from demonstration
to obstacle avoidance. We also show that our algorithm produces trajectories with quality similar
to what one would obtain by solving the trajectory optimization from scratch with warm-start
initialization. Most importantly, however, our algorithm achieves a worst-case speed-up of 160x over
the latter approach.

Keywords: manipulation; task perturbation; optimization; control

1. Introduction

A change in task-specification is often unavoidable in real-world manipulation prob-
lems. For example, consider a scenario where a manipulator is handing over an object
to a human. The robot’s estimate of the goal position can change as it executes its prior
computed trajectories. Consequently, it needs to quickly adapt its joint motions to reach the
new goal position. In this paper, we model motion planning as a parametric optimization
problem wherein the task specifications are encoded in the parameters. In this context,
adaptation to a new task requires re-computing the optimal joint trajectories for the new
set of parameters. This is a computationally challenging process as the underlying cost
functions in typical manipulation tasks are highly non-linear and non-convex [1]. Existing
works leverage the so-called warm-starting technique where prior computed trajectories
are used as initialization for the optimization solvers [2]. However, our extensive experi-
mentation with off-the-shelf optimization solvers such as Scipy-SLSQP [3] show it is not
sufficient for real-time adaptation of joint trajectories to task perturbations.

1.1. Main Idea
The proposed work explores an alternate approach based on differentiating the optimal

solution with respect to the problem parameters, hereafter referred to as the Argmin differenti-

Sensors 2022, 22, 2995. https://doi.org/10.3390/s22082995 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1720-1509
https://doi.org/10.3390/s22082995
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082995?type=check_update&version=2

Sensors 2022, 22, 2995 2 of 14

ation [4]. To understand this further, consider the following constrained optimization problem
over variable ξ (e.g., joint angles) and parameter vector p (e.g., end-effector position).

ξ∗(p) = arg min f (ξ, p) (1)

gi(ξ, p) ≤ 0, ∀i = 1, 2, . . . n (2)

hj(ξ, p) = 0, ∀j = 1, 2, . . . m (3)

The optimal solution ξ∗ satisfies the following Karush–Kuhn Tucker (KKT) conditions.

∇ f (ξ∗, p) + ∑
i

λi∇gi(ξ
∗, p) + ∑

j
µj∇hj(ξ

∗, p) = 0 (4a)

gi(ξ
∗, p) ≤ 0, ∀i (4b)

hj(ξ
∗, p) = 0 (4c)

λi ≥ 0, λigi(ξ
∗, p) = 0, ∀i. (4d)

The gradients in (4a) are taken with respect to ξ. The variables λi, µj are called
the Lagrange multipliers. Now, consider a scenario where the optimal solution ξ∗ for
the parameter p needs to be adapted for the perturbed set p = p + ∆p. As mentioned
earlier, one possible approach is to resolve the optimization with ξ∗ as the warm-start
initialization. Alternately, for ∆p with a small magnitude, an analytical perturbation model
can be constructed. To be precise, we can compute the first-order differential of the r.h.s.
of (4a)–(4d) to obtain analytical gradients in the following form [5–7].

(∇pξ∗,∇pλi,∇pµ∗i) = F(ξ∗, p, λi, µj) (5)

Multiplying the gradients with ∆p gives us an analytical expression for the new
solution and Lagrange multipliers corresponding to the perturbed parameter set [7].

1.2. Contribution

Algorithmic Contribution: A critical bottleneck in using the gradient map of the
form (5) to compute perturbed solutions is that the mapping between ∆p and λi is highly
discontinuous. In other words, even a small ∆p can lead to large changes in the so-called
active-set of the inequality constraints. Thus it becomes necessary to develop additional
active-set prediction mechanisms [7]. In this paper, we bypass this complication by instead
focusing on the parametric optimization with only bound constraints on the variable set.
Argmin differentiation of such problems has a simpler structure, which we leverage to
develop a line-search based algorithm to incrementally adopt joint trajectories to larger
changes in the parameter/tasks. To give some example of “large perturbation”, our
algorithm can adapt the joint trajectories of Franka–Panda arm to a perturbation of up to
30 cm in the goal position. This is almost 30% of the workspace of the Franka arm.

Application Contribution: For the first time, we apply the Argmin differentiation con-
cept to the problem of joint trajectory optimization for the manipulators under end-effector
task constraints. We consider a diverse class of cost functions to handle (i) perturbations in
joint configurations or (ii) end-effector way-points in orientation-constrained end-effector
trajectories. We present an extensive benchmarking of our algorithm’s performance as a
function of the perturbation magnitude. We also show that our algorithm outperforms the
warm-start trajectory optimization approach in computation time by several orders of mag-
nitude while achieving similar quality as that measured by task residuals and smoothness
of the resulting trajectory.

1.3. Related Works

The concept of Argmin differentiation has been around for a few decades, although
often under the name of sensitivity analysis [8,9]. However, of late it has seen a resurgence,
especially in the context of end-to-end learning of control policies [10,11]. Our proposed
work is more closely related to those that use Argmin differentiation for motion planning
or feedback control. In this context, a natural application of Argmin differentiation is

Sensors 2022, 22, 2995 3 of 14

in bi-level trajectory optimization where the gradients of the optimal solution from the
lower level are propagated to optimize the cost function at the higher level. This technique
has been applied to both manipulation and navigation problems in existing works [6,12].
Alternately, Argmin differentiation can also be used for the correction of prior-computed
trajectories [7,13].

To the best of our knowledge, we are not aware of any work that uses Argmin differ-
entiation for the adaptation of task-constrained manipulator joint trajectories. The closest
to our approach is [5] that uses it to accelerate the inverse kinematics problem. Along
similar lines, [7] considers a very specific example of perturbation in the end-effector goal
position. In contrast to these two cited works, we consider a much more diverse class of
task constraints. Furthermore, our formulation also has important distinctions with [7] at
the algorithmic level. Authors in [7] use the log-barrier function for including inequality
constraints as penalties in the cost function. In contrast, we note that in the context of the
task-constrained trajectory optimization considered in this paper, the joint angle limits are
the most critical. The velocity and acceleration constraints can always be satisfied through
time-scaling based pre-processing [14]. Thus, by choosing a way-point parametrization for
the joint trajectories, we formulate the underlying optimization with just box constraints
on the joint angles. This, in turn, allows us to treat this constraint through simple projec-
tion (Line 4 in Algorithm 1) without disturbing the structure of the cost function and the
resulting Jacobian and Hessian matrices obtained by Argmin differentiation.

Algorithm 1 Line-Search Based Joint Trajectory Adaptation to Task Perturbation

1: Initialize kξ∗ as the solution for the prior parameter kp, the Hessian k∇2
ξ f (kξ, p), the

gradient ∇ξ,pi f (kξ, p), and k∆p = p− kp
2: while η > 0 do

max η (6a)

f (kξ∗(p + η∆p), p + ∆p) ≤ f (kξ∗, p + ∆p) (6b)

3:

k+1ξ∗ = kξ∗ + η∇pξ∗∆kp (7)

4:

k+1ξ∗ = Project(ξlb, ξub) (8)

5: Update k+1p = ForwardRoll(k+1ξ∗)
6: Update k+1∆p = p− k+1p.
7: Update Hessian ∇2

ξ f (k+1ξ, k+1p).

8: Update Jacobian ∇ξ,p f (k+1ξ, k+1p)
9: end while

2. Proposed Approach
2.1. Symbols and Notations

We will use lower case normal font letters to represent scalars, while bold font variants
will represent vectors. Matrices are represented by upper case bold fonts. The subscript
t will be used to denote the time stamp of variables and vectors. The superscript T will
represent the transposing of a matrix.

2.2. Argmin Differentiation for Unconstrained Parametric Optimization
We consider the optimal joint trajectories to be the solution of the following bound-

constrained optimization with parameter p.

ξ∗(p) = arg min
ξ

f (ξ, p) (9a)

ξlb ≤ ξ ≤ ξub (9b)

Sensors 2022, 22, 2995 4 of 14

We are interested in computing the Jacobian of ξ∗(p) with respect to p. If we ignore
the bound-constraints for now, we can follow the approach presented in [4] to obtain them
in the following form.

∇pξ = −(∇2
ξ f (ξ, p))−1[∇ξ,p1 f (ξ, p), . . . ∇ξ,pn f (ξ, p)

]
(10)

Using (10), we can derive a local model for the optimal solution corresponding to a
perturbation ∆p as

ξ∗(p) = ξ∗(p) +∇pξ∗

∆p︷ ︸︸ ︷
(p− p), (11)

Intuitively, (11) signifies a step of length ∆p along the gradient direction. However,
for (11) to be valid, the step-length needs to be small. In other words, the perturbed
parameter p needs to be in the vicinity of p. Although it is difficult to mathematically
characterize the notion of “small”, in the following, we attempt a practical definition based
on the notion of optimal cost.

Definition 1. A valid |∆p| is one that satisfies the following relationship

f (ξ∗(p = p + ∆p), p + ∆p) ≤ f (ξ∗, p + ∆p) (12)

The underlying intuition in (12) is that the perturbed solution should lead to a lower
cost for the parameter p + ∆p as compared to ξ∗ for the same perturbed parameter.

2.3. Line Search and Incremental Adaption

Algorithm 1 couples the concept from the definition (11) with a basic line-search to
incrementally adapt (11) to a large ∆p. The algorithm begins by initializing the optimal
solution kξ and the parameter kp with prior values for iteration k = 0. These variables are
then used to initialize the Hessian and Jacobian matrices. The core computations takes
place in line 2, wherein we compute the least amount of scaling that needs to be done
to step length k∆p = kp− p to guarantee a reduction in the cost. At line 3, we update
the optimal solution based on step-length ηk∆p obtained in line 2, followed by a simple
projection at line 4 to satisfy the minimum and maximum bounds. At line 5, we perform
the called forward roll-out of the solution to update the parameter set. For example, if the
parameter p models position of the end-effector at the final time instant of a trajectory, then
line 5 computes how close the k+1ξ∗ takes the end-effector to the perturbed goal position p.
On lines 7 and 8, we update the Hessian and the Jacobian matrices based on the updated
parameter set and optimal solution.

3. Task Constrained Joint Trajectory Optimization

This section formulates various examples of the task-constrained trajectory optimization
problem and uses the previous section’s results for optimal adaptation of joint trajectories un-
der task perturbation. To formulate the underlying costs, we adopt the way-point parametriza-
tion and represent the joint angles at time t as qt. Furthermore, we will use (xe(qt), oe(qt)) to
describe the end-effector position and orientation in terms of Euler angles, respectively.

3.1. Orientation Constrained Interpolation between Joint Configurations

The task here is to compute an interpolation trajectory between a given initial q0 and a
final joint configuration qm while maintaining a specified orientation od for the end-effector
at all times. We model it through the following cost function.

∑
t

fs(qt−k:t) +

∥∥∥∥ qt1
− q0

qtm
− qm

∥∥∥∥2

2
+ ∑

t
‖oe(qt)− od‖2

2 (13)

Sensors 2022, 22, 2995 5 of 14

The first term the cost function models smoothness in terms of joint angles from t− k
to t [15]. For example, for k = 1, the smoothness is defined as the first-order finite difference
of the joint positions at subsequent time instants. Similarly, k = 2, 3, will model higher order
smoothness through second and third-order finite differences respectively. We consider
all three finite-differences in our smoothness cost term. The second term ensures that the
interpolation trajectory is close to the given initial and final points. The final term in the
cost function maintains the required orientation of the end-effector.

We can shape (13) in the form of (9a) by defining ξ = (qt1
, qt2

, . . . qtm
). The bounds will

correspond to the maximum and minimum limits on the joint angles at each time instant.
We define the parameter set as p = (q0, qm). That is, we are interested in computing the
adaptation when either or both of q0 and qm gets perturbed.

Applications

Adaptation of ξ∗ of (13) for different q0, qm has applications in learning from demon-
stration setting where the human just provides the information about the initial and/or final
joint configuration, and the manipulator then computes a smooth interpolation trajectory
between the boundary configurations by adapting a prior computed trajectory.

Figure 1 presents an example of adaptation discussed above. The prior computed
trajectory is shown in blue. This is then adapted to two different final joint configurations.
The trajectory computed through Algorithm 1 is shown in green, while that obtained by
resolving the optimization problem (with warm-starting) is shown in red.

3.2. Orientation-Constrained Trajectories through Way-Points
The task in this example is to make the end-effector move though given way-points

while maintaining the orientation at od. Let xdt represent the desired way-point of the end-
effector at time t. Thus, we can formulate the following cost function for the current task.

∑
t

fs(qt−k:t) + ∑
t
‖oe(qt)− od‖2

2 + ∑
t
‖xe(qt)− xdt‖

2
2 (14)

The first two terms in the cost function are the same as the previous example. The
changes appear in the final term which minimizes the l2 norm of the distance of the
end-effector with the desired way-point. The defintion of ξ remains the same as before.
However, the parameter set is now defined as p = (xd1 , xd2 , . . . xdm).

Application

Collision Avoidance As shown in Figure 2, a key application of the adaptation prob-
lem discussed above is in collision avoidance. A reactive planner such as [16] can provide
new via-points for the manipulator to avoid collision. Our Algorithm 1 can then use the
cost function (14) to adapt the prior trajectory shown in blue to that shown in green. For
comparison, the trajectory obtained with resolve of the trajectory optimization is shown in red.

Sensors 2022, 22, 2995 6 of 14

Figure 1. Prior trajectory shown in blue is used to adapt the joint motions to move towards two different
final joint configurations while maintaining the horizontal orientation of the end-effector at all times.

Figure 2. Collision avoidance by perturbing the mid-point of the prior computed end-effector trajectory.

Human–Robot Handover: Algorithm 1 with cost function (14) also finds application
in human–robot handover tasks. An example is shown in Figure 3, where the manipulator
adapts the prior trajectory (blue) to a new estimate of the handover position. As before,
the trajectory obtained with Algorithm 1 is shown in green, while the one shown in red
corresponds to a re-solve of the trajectory optimization with warm-start initialization.

Sensors 2022, 22, 2995 7 of 14

Figure 3. Perturbation in the final position of the end-effector.

4. Benchmarking
4.1. Implementation Details

The objective of this section is to compare the trajectories computed by Algorithm 1
with that obtained by re-solving the trajectory optimization for the perturbed parame-
ters with warm-start initialization. We consider the same three benchmarks presented
in Figures 1–3 implemented on a 7dof Franka Panda Arm, but for a diverse range of per-
turbations magnitude. For each benchmark, we created a data set of 180 trajectories by
generating random perturbations in the task parameters. For the benchmark of Figure 1,
the parameters are the joint angles, but in the following we use the forward kinematics to
derive equivalent representation for the parameters in terms of end-effector position values.

Each joint trajectory is parameterized by a 50-dimensional vector of way-points. Thus, the
underlying task constrained trajectory optimization involves a total of 350 variables. We use Scipy-
SLSQP [3] to obtain the prior trajectory and also to re-solve the trajectory optimization for the
perturbed parameters. We did our implementation in Python using Jax-Numpy [17] to compute
the necessary Jacobian and Hessian matrices. We also used the just-in-time compilation ability
of JAX to create an on-the-fly compiled version of our codes. The line-search in Algorithm 1
(line 2) was done through a parallelized search over a set of discretized η values. The entire
implementation was done on a 32 GB RAM i7-8750 desktop with RTX 2080 GPU (8GB). To foster
further research in this field and ensure reproducibility, we open-source our implementation for
review at https://rebrand.ly/argmin-planner (First released on 15 September 2020).

4.2. Quantitative Results

Orientation Metric: For this analysis, we compared the pitch and roll angles at each time
instant along trajectories obtained with Algorithm 1 and the resolving approach. Specifically,
we computed the maximum of the absolute difference (or L∞ norm) of the two orientation
trajectories. The yaw orientation in all these benchmarks was a free variable and is thus not
included in the analysis. The results are summarized in Figures 4–6. The histogram plot in
these figures are generated for the medium perturbation ranges (note the figure legends). For
the Figure 1 benchmark related to cost function (13), Figure 4 shows that all the trajectories
obtained by Algorithm 1 have L∞ norm of the orientation difference less than 0.1 rad. For the
benchmark of Figure 2, which we recall involves perturbing the via-point of the end-effector
trajectory, the histograms of Figure 5 show similar trends. All the trajectories computed by
Algorithm 1 managed a similar orientation difference. For the benchmark of Figure 3 pertaining

https://rebrand.ly/argmin-planner

Sensors 2022, 22, 2995 8 of 14

to the perturbation of the final position, 69.41% of the trajectories obtained by Algorithm 1
managed to maintain a orientation difference of 0.1 rad with the resolving approach.

0.00 0.02 0.04 0.06
L∞ of Pitch Difference (rad)

0

20

40

60

80

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

L ∞
 o

f P
itc

h
D

iff
er

en
ce

 (r
ad

) Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(a) (b)

0.00 0.02 0.04 0.06 0.08
L∞ of Roll Difference (rad)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L ∞
 o

f R
ol

l D
iff

er
en

ce
 (r

ad
) Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(c) (d)

0.000 0.001 0.002 0.003
Smoothness Cost Difference

0

20

40

60

80

100

120

140

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0e+00

5e-04

1e-03

2e-03

2e-03

Sm
oo

th
ne

ss
 C

os
t D

iff
er

en
ce Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(e) (f)

0.50 0.75 1.00 1.25 1.50 1.75
Residual Ratio of Final Config. (L∞)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.86

0.89

0.92

0.95

0.98

1.01

1.04

1.07

1.10

1.13

R
es

id
ua

l R
at

io
 o

f F
in

al
 C

on
fig

. (
L ∞

)

Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(g) (h)

Figure 4. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 1
that involves perturbing the final joint configuration (recall cost function (13)). Note that the pertur-
bation in the final joint is converted to position values by forward kinematics. The (a,c,e,g) column
shows the histogram of orientation, smoothness and task residual ratio metrics for the medium range
perturbation. The (b,d,f,h) column quantifies the metrics for different perturbation ranges.

Sensors 2022, 22, 2995 9 of 14

0.000 0.005 0.010 0.015 0.020
L∞ of Pitch Difference (rad)

0

5

10

15

20

25

30

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

0.025

L ∞
 o

f P
itc

h
D

iff
er

en
ce

 (r
ad

) Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(a) (b)

0.00 0.01 0.02 0.03
L∞ of Roll Difference (rad)

0

5

10

15

20

25

30

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

0.025

L ∞
 o

f R
ol

l D
iff

er
en

ce
 (r

ad
) Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(c) (d)

0.000 0.025 0.050 0.075 0.100 0.125
Smoothness Cost Difference

0

20

40

60

80

100

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.00

0.02

0.04

0.06

0.08

0.10

Sm
oo

th
ne

ss
 C

os
t D

iff
er

en
ce Small: 0.0 - 0.1m

Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(e) (f)

0 2 4 6 8
Residual Ratio of Via-Point. (L∞)

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.9

1.1

1.3

1.5

1.7

1.9

2.1

R
es

id
ua

l R
at

io
 o

f V
ia

-P
oi

nt
. (
L ∞

)

Small: 0.0 - 0.1m
Medium: 0.1 - 0.2m
Large: 0.2 - 0.3m
X-Large: 0.3 - 0.4m

(g) (h)

Figure 5. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 2
that involves perturbing the via-point of the end-effector trajectory (recall cost function (14)). The
(a,c,e,g) and (b,d,f,h) columns show similar benchmarking as those of Figure 4.

Task residuals ratio metric: For this analysis, we compare the task residual between
trajectories obtained from Algorithm 1 and the resolving approach. For example, for the
benchmark of Figure 1, we want the manipulator final configuration to be close to the specified
value (recall cost (13)) while maintaining the desired orientation at each time instant. Thus, we

Sensors 2022, 22, 2995 10 of 14

compute the L∞ residual of qt − qm for Algorithm 1 and compare it with that obtained from
the resolving approach. Now, as previously, and to be consistent with the other benchmarks, we
convert the residual of the joint angles to position values through forward kinematics. Similar
analysis follow for the other benchmarks as well. For the ease of exposition, we divide the task
residual of Algorithm 1 by that obtained with the resolving approach. A ratio greater than 1
implies that the former led to a higher task residual than the latter and vice-versa. Similarly, a
ratio closer to 1 implies that both the approaches performed equally well.

The results are again summarized in Figures 4–6. From Figure 4, we notice that 97.05%
of trajectories have a residual ratio less than 1.2. For the experiment involving via-point
perturbation in Figure 5, the performance drops to 62.50% for the same value of residual
ratio. Meanwhile, as shown in Figure 6, around 82.94% of the trajectories have a residual
ratio less than 1.2 in the case of the final position perturbation benchmark of Figure 3.

Velocity Smoothness Metric: For this analysis, we computed the difference in the
velocity smoothness cost (L2 norm of first-order finite difference) between the trajectories
obtained with Algorithm 1 and the resolving approach. The results are again summarized
in Figures 4–6. For all the benchmarks, in around 65% of the examples, the difference was
less than 0.05. This is 35% of the average smoothness cost observed across all the trajectories
from both the approaches.

Scaling with Perturbation Magnitude: The line plots in Figures 4–6 represent the first
quartile, median and the third quartile of the three metrics discussed above for different
perturbation ranges.

For the benchmark of Figure 1, trajectories from Algorithm 1 maintains an orientation
difference of less than 0.1 rad, with the trajectories of the resolving approach for perturba-
tions as large as 40 cm. The difference in smoothness cost for the same range is also small,
with the median value being in the order of 10−3. The median task residuals achieved by
Algorithm 1 is only 2% higher than that obtained by the resolving approach. For the bench-
mark of Figure 2, the performance remains same on the orientation metric, but the median
difference in smoothness cost and task residual ration increases to 0.04 and 9% for the
largest perturbation range. The benchmark of Figure 6 follows a similar trend in orientation
and smoothness metric, but performs significantly worse in task residuals. For the largest
perturbation range, Algorithm 1 leads to 50% higher median task residuals. However,
importantly, for perturbation up to 30 cm, the task residual ratio is close to 1, suggesting
that Algorithm 1 performed as well as the resolving approach for these perturbations.

Computation Time: Table 1 contrasts the average timing of our Algorithm 1 with the
approach of resolving the trajectory optimization with warm-start initialization. As can be
seen, our Argmin differentiation based approach provides a worst-case speed up of 160x
on the benchmark of Figure 3. For the rest of the benchmarks, this number varies between
500 to 1000. We believe that this massive gain in computation time offsets whatever little
performance degradation in terms of orientation, smoothness, and task residual metric that
Algorithm 1 incurs compared to re-solving the problem using warm-start. Note that the
high computation time of the re-solving approach is expected, given that we are solving
a difficult non-convex function over a long horizon of 50 steps resulting in 350 decision
variables. Even highly optimized planners like [1] show similar timings on closely related
benchmarks [18].

Sensors 2022, 22, 2995 11 of 14

0.00 0.02 0.04 0.06
L∞ of Pitch Difference (rad)

0

10

20

30

40

50

60

70

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

L ∞
 N

or
m

 o
f P

itc
h

D
iff

er
en

ce
 (r

ad
)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(a) (b)

0.000 0.025 0.050 0.075 0.100
L∞ of Roll Difference (rad)

0

10

20

30

40

50

60

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

−0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

L ∞
 N

or
m

 o
f R

ol
l D

iff
er

en
ce

 (r
ad

)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(c) (d)

0.000 0.005 0.010 0.015 0.020
Smoothness Cost Difference

0

20

40

60

80

100

120

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.000

0.005

0.010

0.015

0.020

Sm
oo

th
ne

ss
 C

os
t D

iff
er

en
ce Small: 0.0 - 0.1

Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(e) (f)

0 1 2 3
Residual Ratio of Final Pos. (L∞)

0

10

20

30

40

50

N
o.

 o
f T

ra
je

ct
or

ie
s

Small Medium Large XLarge
Perturbation Ranges

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
es

id
ua

l R
at

io
 o

f F
in

al
 P

os
. (
L ∞

)

Small: 0.0 - 0.1
Medium: 0.1 - 0.2
Large: 0.2 - 0.3
X-Large: 0.3 - 0.4

(g) (h)

Figure 6. Performance of Algorithm 1 for different perturbation ranges on the benchmark of Figure 6
that involves perturbing the final end-effector position. (recall cost function (14)). The (a,c,e,g) and
(b,d,f,h) columns show similar benchmarking as those of Figure 4.

Sensors 2022, 22, 2995 12 of 14

Table 1. Computation times comparison between Algorithm 1 and resolving trajectory optimization
approach on three benchmarks.

SciPy-SLSQP Our Algorithm 1

Benchmarks Wall Time
(s)

Wall Time w/o
Jacobian and

Function Evaluation
Overhead (s)

Wall Time
(s)

Final Configuration Perturbation (Figure 1) 43.91 41.09 0.039
Via Point Perturbation (Figure 2) 53.05 34.74 0.09
Final Position Perturbation (Figure 3) 35.91 29.09 0.18

5. Conclusions and Future Work

We presented a fast, near real-time algorithm for adapting joint trajectories to task per-
turbation as high as 40 cm in the end-effector position, almost half the radius of the Franka
Panda arm’s horizontal workspace used in our experiments. By consistently producing
trajectories similar to those obtained by resolving the trajectory optimization problem but
in a small fraction of a time, our Algorithm 1 opens up exciting possibilities for reactive
motion control of manipulators in applications like human–robot handover.

Our algorithm is easily extendable to other kind of manipulators. The only requirement
is that we should know the forward kinematics of the manipulator. This would allow us
to get the algebraic expressions for functions oe(q) and xe(q) in cost function (13) and (14),
respectively. In our implementation, we derived the forward kinematics and oe(q) and
xe(q) through the DH representation of the manipulator. The DH table is available for many
commercial manipulators, e.g., UR5e besides the Franka Panda Arm used in our simulation.

Our algorithm does not depend on any specific sensing modality. For example, in
collision avoidance applications, we assume that obstacle information is used by some
higher level planners that provides intermediate collision-free points to the manipulator,
which then uses the ArgMin differentiation to replan its prior trajectories.

There are several ways to improve our algorithm. First, the joint bounds can also be
included as penalties in the cost function itself, in addition to being handled by projection
(Line 11 in Algorithm 1). This would ensure that the gradient and Hessian of the optimal
cost is aware of the joint limit bounds. Second, we can consider a low dimensional polyno-
mial representation of the trajectories. For example, the joint trajectories can be represented
by a 10th order Bernstein polynomial with the coefficients acting as the variables of the
optimization problem. This would drastically reduce the computation cost of obtaining the
Hessian of the optimal cost as compared to current way-point paramaterization of the joint
trajectory that requires around 50 variables to represent one joint trajectory.

In future works, we will extend our formulation to problems with dynamic constraints,
such as torque bounds. We conjecture that by coupling the way-point parametrization
with a multiple-shooting like approach, we can retain the constraints as simple box-bounds
on the decision variables and consequently retain the computational structure of the
Algorithm 1. We are also currently evaluating our algorithm’s performance on applications
such as autonomous driving.

Author Contributions: Conceptualization, S.S., M.B., A.K.S. and K.M.K.; Methodology, S.S., M.B.,
A.K.S. and K.M.K.; Software, S.S., M.B. and H.M.; Validation, S.S., M.B. and H.M.; formal analysis, S.S.
and M.B.; investigation, S.S., M.B. and A.K.S.; resources, S.S., M.B. and A.K.S.; data curation, S.S., M.B.
and H.M.; writing—original draft preparation, A.K.S., S.S., M.B., K.K. and K.M.K.; writing—review
and editing, S.S., M.B., K.K. and K.M.K.; visualization, S.S., M.B. and H.M.; supervision, A.K.S. and
K.M.K.; project administration, A.K.S. and K.M.K.; funding acquisition, A.K.S. and K.K. All authors
have read and agreed to the published version of the manuscript.

Funding: The work was supported in part by thw European Social Fund via the “ICT programme”
measure, by grant PSG753 from the Estonian Research Council, by AI & Robotics Estonia (AIRE),

Sensors 2022, 22, 2995 13 of 14

the Estonian candidate for European Digital Innovation Hub, funded by the Ministry of Economic
Affairs and Communications in Estonia.

Data Availability Statement: Codes to reproduce the results are available at https://rebrand.ly/
argmin-planner (accessed on 1 August 2020).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Berenson, D.; Srinivasa, S.S.; Ferguson, D.; Kuffner, J.J. Manipulation planning on constraint manifolds. In Proceedings of the

2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 625–632.
2. Lembono, T.S.; Paolillo, A.; Pignat, E.; Calinon, S. Memory of motion for warm-starting trajectory optimization. IEEE Robot.

Autom. Lett. 2020, 5, 2594–2601. [CrossRef]
3. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

4. Gould, S.; Fernando, B.; Cherian, A.; Anderson, P.; Cruz, R.S.; Guo, E. On differentiating parameterized argmin and argmax
problems with application to bi-level optimization. arXiv 2016, arXiv:1607.05447.

5. Hauser, K. Learning the problem-optimum map: Analysis and application to global optimization in robotics. IEEE Trans. Robot.
2016, 33, 141–152. [CrossRef]

6. Tang, G.; Sun, W.; Hauser, K. Time-Optimal Trajectory Generation for Dynamic Vehicles: A Bilevel Optimization Approach.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 7644–7650.

7. Reiter, A.; Gattringer, H.; Müller, A. Real-time computation of inexact minimum-energy trajectories using parametric sensitivities.
In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Torino, Italy, 21–23 June 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 174–182.

8. Geffken, S.; Büskens, C. Feasibility refinement in sequential quadratic programming using parametric sensitivity analysis. Optim.
Methods Softw. 2017, 32, 754–769. [CrossRef]

9. Pirnay, H.; López-Negrete, R.; Biegler, L.T. Optimal sensitivity based on IPOPT. Math. Program. Comput. 2012, 4, 307–331.
[CrossRef]

10. Amos, B.; Jimenez, I.; Sacks, J.; Boots, B.; Kolter, J.Z. Differentiable MPC for end-to-end planning and control. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; pp. 8289–8300.

11. Agrawal, A.; Barratt, S.; Boyd, S.; Stellato, B. Learning convex optimization control policies. In Proceedings of the 2nd Conference
on Learning for Dynamics and Control, PMLR, Berkeley, CA, USA, 11–12 June 2020; pp. 361–373.

12. Landry, B.; Lorenzetti, J.; Manchester, Z.; Pavone, M. Bilevel Optimization for Planning through Contact: A Semidirect Method.
arXiv 2019, arXiv:1906.04292.

13. Kalantari, H.; Mojiri, M.; Dubljevic, S.; Zamani, N. Fast l1 model predictive control based on sensitivity analysis strategy. IET
Control. Theory Appl. 2020, 14, 708–716. [CrossRef]

14. Pham, Q.C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot.
2014, 30, 1533–1540. [CrossRef]

15. Toussaint, M. A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Pro-
cess smoothing, optimal control, and probabilistic inference. In Geometric and Numerical Foundations of Movements; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 361–392.

16. Flacco, F.; Kröger, T.; De Luca, A.; Khatib, O. A depth space approach to human-robot collision avoidance. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation, Guangzhou, China, 11–14 December 2012; pp. 338–345.

17. Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Wanderman-Milne, S. JAX: Composable Transforma-
tions of Python+NumPy Programs. 2018. Available online: http://github.com/google/jax (accessed on 1 August 2020).

18. Qureshi, A.H.; Dong, J.; Baig, A.; Yip, M.C. Constrained Motion Planning Networks X. arXiv 2020, arXiv:2010.08707.

https://rebrand.ly/argmin-planner
https://rebrand.ly/argmin-planner
http://doi.org/10.1109/LRA.2020.2972893
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://dx.doi.org/10.1109/TRO.2016.2623345
http://dx.doi.org/10.1080/10556788.2016.1200045
http://dx.doi.org/10.1007/s12532-012-0043-2
http://dx.doi.org/10.1049/iet-cta.2019.0556
http://dx.doi.org/10.1109/TRO.2014.2351113
http://github.com/google/jax

	Introduction
	Main Idea
	Contribution
	Related Works

	Proposed Approach
	Symbols and Notations
	Argmin Differentiation for Unconstrained Parametric Optimization
	Line Search and Incremental Adaption

	Task Constrained Joint Trajectory Optimization
	Orientation Constrained Interpolation between Joint Configurations
	Orientation-Constrained Trajectories through Way-Points

	Benchmarking
	Implementation Details
	Quantitative Results

	Conclusions and Future Work
	References

