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Abstract: In recent years, red, green, blue, and white (RGBW) color filter arrays (CFAs) have been
developed to solve the problem of low-light conditions. In this paper, we propose a new color
demosaicing algorithm for RGBW CFAs using a Laplacian pyramid. Because the white channel has a
high correlation to the red, green, and blue channels, the white channel is interpolated first using
each color difference channel. After we estimate the white channel, the red, green, and blue channels
are interpolated using the Laplacian pyramid decomposition of the estimated white channel. Our
proposed method using Laplacian pyramid restoration works with Canon-RGBW CFAs and any other
periodic CFAs. The experimental results demonstrated that the proposed method shows superior
performance compared with other conventional methods in terms of the color peak signal-to-noise
ratio, structural similarity index measure, and average execution time.

Keywords: color demosaicing; color interpolation; Laplacian pyramid; RGBW color filter array (CFA);
white-dominant RGBW

1. Introduction

Most image acquisition devices use a color filter array (CFA) to acquire color images.
Color filter array is structured to obtain color information from a single sensor, which is
sampled with each pixel. Each pixel records the value of only one color from the absorbed
light. Most commercial cameras use a CFA called the Bayer pattern [1], shown in Figure 1a.
The image acquired from the CFA is called the mosaic image, and it requires restoring
the missing pixels for each color channel to create a full color image. This is called color
demosaicing or color interpolation. It is an essential part of image signal processing.

Since the launch of commercial cameras, numerous color demosaicing algorithms
have been developed. Interpolation-based methods such as bilateral and bicubic interpola-
tion appeared in the very early stages of the development. Interpolation-based methods
result in unwanted artifacts such as the zipper effect, false color, and blurring. To address
these problems, advanced interpolation methods based on high correlation between color
channels have emerged. These interpolation methods use the color difference model [2,3].
In addition to the color difference model, several methods for color demosaicing have
been developed, such as those based on regularization [4], frequency analysis [5,6], com-
pressive sensing [7,8], and residual interpolation [9,10] using guided filtering [11]. With
the recent advances in computer science and equipment, methods have been proposed
for interpolating the missing color channels with graphics processing units (GPUs) using
convolutional neural networks (CNNs) [12,13]. Most complex demosaicing methods restore
the image details, but with high computational costs. Thus, they cannot be applied to
industrial products. Therefore, it is important to develop both real-time processing and
restoration details.

Autonomous driving technology has developed along with the use of various image
acquisition devices. The acquired images help make important judgments in autonomous
driving, such as distance measurement, driving speed, and the direction of the vehicle.
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The image acquisition device used for autonomous driving may be a LiDAR or a general
camera. LiDAR accurately measures distance. However, due to the high price and low
resolution of LiDAR, several commercial cameras are used in autonomous vehicles.

(a) (b) (c) (d)

Figure 1. (a) Bayer pattern CFA [1], (b) Kodak-RGBW CFA [14], (c) Sony-RGBW CFA [15], (d) Canon-
RGBW CFA [16].

Despite advances in color demosaicing algorithms, the problem of low-light conditions
remains. Because autonomous driving also accounts for a large part of night driving, images
in low-light conditions are important. In low-light conditions, noise is noticeable because
the signal’s power is reduced. To solve this problem, several methods have been developed.
One of the methods includes increasing the sensor’s size. However, the size of the sensor
of commercial cameras cannot be increased sufficiently due to spatial constraints. Another
method requires the camera user to increase the exposure time; however, if the exposure
time is increased, motion blurring artifacts may occur. Changing the pattern of the CFA to
improve image quality in low-light conditions is another method. Numerous CFA patterns
containing a white channel that receives the full range of visible light have been designed,
such as the Kodak-RGBW CFA, shown in Figure 1b [14], the Sony-RGBW CFA, shown in
Figure 1c [15], and the Canon-RGBW CFA, shown in Figure 1d [16]. These patterns solve
the problem of image quality in low-light conditions because the spectral sensitivity of
white is higher than that of red, green, and blue. The greater the number of white pixels in
the CFA, the more resistant the CFA is to noise in low-light conditions.

The contributions of this paper are summarized as follows. We propose an optimized
color demosaicing algorithm for the Canon-RGBW CFA. Moreover, white channel inter-
polation based on the gradient of color difference models is proposed. We then propose
color channel demosaicing using a Laplacian pyramid based on the structural similarity of
the subsampled color channels. We compare the existing state-of-the-art (SOTA) methods
to our proposed method with real data, Kodak, and the McMaster datasets [17] using
noise-free and high noisy images. Our method achieved higher image quality than the
SOTA methods based on metrics such as PSNR and SSIM. Our method is also applicable to
other periodic CFAs.

2. Related Work
2.1. Frequency Analysis of CFAs

In this study, it was necessary to select an appropriate CFA that contains white for
good performance in normal-light and low-light conditions. If the ratio of white is very high
in a CFA, it is robust against extreme low-light conditions, but there is a problem with color
bleeding. Therefore, we needed a CFA with an appropriate ratio of white. Hao et al. [18]
proposed analyzing various CFAs through a combination of luminance and chrominance
in the frequency domain. Through Hao’s method [18], we explain the reason for selecting
the Canon-RGBW CFA. The paper [18] proposed several principles for a good CFA. One
is to design the distance between luminance and chrominance to be as long as possible in
the frequency domain. The second is to design many repeated chrominances. The former
principle is for accurate luminance estimation, and the latter is for accurate color estimation.
The two conditions have a trade-off relationship with one other.
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Figure 2a shows the frequency analysis of the McMaster16 dataset for the Bayer pattern
CFA, and Figure 2b shows the frequency analysis of the McMaster16 dataset for the Canon-
RGBW CFA. L stands for luminance, and C1, C2, and C3 stand for different chrominances
in Figure 2. In the case of Figure 2a, the distance between the luminance and chrominance is
long, but there are few repeated chrominances. However, Figure 2b shows a short distance
between the luminance and chrominance, but many repeated chrominances exist. The
distance between the luminance and chrominance is short in the frequency domain, but the
higher percentage of white in the spatial domain of Canon-RGBW CFA allows for a more
accurate estimation of the white channel. Because the white channel has characteristics
similar to luminance, the disadvantage can be offset. Furthermore, the Canon-RGBW CFA
has a simple sampling period for color channels, such as that corresponding to an integer
multiple of the Bayer pattern CFA. It is an appropriate array to utilize with the Laplacian
pyramid [19].

L C2C2

C2 C1C1

C2 C1C1

(a)

L

C1 C3 C1C3C1

C1 C2C1C2

C1 C3 C1C3C1

C2 C1 C2C1C2

C2 C1 C2C1C2

(b)

Figure 2. (a) Frequency analysis of Bayer pattern CFA, (b) Frequency analysis of Canon-RGBW CFA.

2.2. Traditional Methods of Color Demosaicing

Most conventional color demosaicing methods have been developed using color
difference or residual domain. Both methods are performed in two steps for the Bayer
pattern CFA. The first step is interpolating the green channel with the maximum color
information. Then, other colors are interpolated using the interpolated green channel.

The color difference domain is based on the idea that red and blue colors are highly
correlated with the green color. We proceed with demosaicing using the difference between
green and another color. Interpolation is required for each color channel because all values
are not present. For example, green pixels are half, and the red and blue colors each occupy
a quarter of the image size in the Bayer pattern CFA. To interpolate each color channel with
no pixel values, either the Hamilton and Adams’ [20] interpolation formula or a bilinear
filter is used. The color difference domain is calculated using previously interpolated color
channels, as follows:

∆̃G−R =G̃− R̃,

∆̃G−B =G̃− B̃,
(1)

where G̃ and R̃ are fully interpolated color channels and ∆̃ is the color difference. The
color difference ∆̃ is estimated using bilinear or edge directional interpolation. Pei et al.
proposed a method for generating color difference domains using bilinear interpolation [21]
and Pekkucuksen et al. proposed a method for generating color difference domains by
discriminating four directions [22]. The estimated color differences are added to the original
pixel values to estimate the final green channel:

G =

{
∆̃G−R + RCFA at red pixels,
∆̃G−B + BCFA at blue pixels,

(2)
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Kiku et al. developed the gradient-based-threshold-free (GBTF) method and proposed
a residual domain [9]. After estimating the green channel using the GBTF method, it was
used as a guide image. They obtained temporary red and blue channels using guided
images, as follows:

Rtent =GF(G, RCFA),

Btent =GF(G, BCFA),
(3)

where tent means tentative, GF(inputA, inputB) means guided filtering, inputA means the
guide image, and inputB means the filtering input image. They defined the difference
between the original CFA and the tentative color image as the residual image.

R̃resi =RCFA − Rtent at red pixels,

B̃resi =BCFA − Btent at blue pixels.
(4)

Because R̃resi and B̃resi are masked images, we need to interpolate them to generate
fully residual images R̂resi and B̂resi. The estimated color images R and B are calculated by
the summation of residual and tentative images, as follows:

R =R̂resi + Rtent,

B =B̂resi + Btent.
(5)

The demosaiced output generated using the residual domain is better than that gener-
ated using the color difference domain. However, the computational cost is high.

2.3. Laplacian Pyramid

A Laplacian pyramid consists of downsampled images and high-frequency compo-
nents of the image. We call the high-frequency components of the image detailed images.
Because only one downsampled image and detailed image of each level are needed to
restore the original, a Laplacian pyramid is commonly used for image compression and
detail enhancement [23]. The detailed image is the differences between the blurred image
and its previous downsampled image at each level. For example, the blurred image W∗0
is the upsampled image of W1, and the image W1 is the downsampled image of W0. The
detailed image L0 is the difference between W0 and the blurred image W∗0 . Figure 3 shows
the flowchart of a Laplacian pyramid decomposition with depth level l = 2.

The downsampled image of the next level is computed in the order of subsampling
after Gaussian blurring:

Wl+1(i, j) =∑
x

∑
y

g(x, y)Wl(2i− x + m, 2j− y + n) (m, n) ∈ [0, 1]2 (6)

where l is the index of the depth level, g(x, y) is a Gaussian kernel that creates blur, and
(m, n) is the location value that indicates where the image is subsampled. When we create
a detailed image Ll , we first perform upsampling on the downsampled image from the
previous level as below:

W
′
l (2i + m, 2j + n) = Wl+1(i, j). (7)

We need two steps to upsample the downsampled image. The first step is to create
an image that doubles the downsampled image. At this time, the value is filled at the
subsampled position (m,n) and the remainder is filled with 0. This step is regarded as zero
padding. The second step is to create a final upsampled image through low-pass filtering
of the zero-padded image. Therefore, ref. (7) means zero padding to double the image size.
After zero padding, it is necessary to filter for complete upsampling, as shown below:

W∗l (i, j) = ∑
x

∑
y

h(x, y)W
′
l (i− x, j− y), (8)
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where h(x, y) is the interpolation filter, such as the bilinear filter. The detailed image of the
lth level is the differences between Wl and the blurred image W∗l ,

LWl (i, j) = Wl(i, j)−W∗l (i, j). (9)

+-
𝑊𝑊0

𝐿𝐿𝑊𝑊0

𝑊𝑊1

𝐿𝐿𝑊𝑊1

𝑊𝑊2

𝑊𝑊1
∗

𝑊𝑊0
∗

+-

Downsampling

Blur Sub-
sampling+

Upsampling

Zero-
padding Filtering+

Downsampling

Blur Sub-
sampling+

Upsampling

Zero-
padding Filtering+

Figure 3. Outline of Laplacian pyramid decomposition with depth level l = 2.

As we can see in Figure 4, the subsampled color channels of the Canon-RGBW CFA
have a structure similar to the Laplacian pyramid in Figure 3. If we sub-sample the Canon-
RGBW CFA twice to create each color channel, we observe that it is structurally similar to a
Laplacian pyramid decomposition with depth level l = 2. The only difference is that here
there is no Gaussian filtering in downsampling. This means that g(x, y) is a Dirac delta
function in (6). If we can estimate the detailed images of each color channel, such as the
detailed images LW0 , LW1 in Figure 3, we can restore the full resolution color image. This is
similar to reconstruction in the Laplacian pyramid.

UpsamplingUpsampling

Downsampling

Subsampling

Downsampling

Subsampling

<Reconstruction>

<Decomposition>

Figure 4. Structural similarity of subsampled Canon-RGBW CFA and Laplacian pyramid.

3. Proposed Algorithm

This section describes our proposed algorithm, which comprises two steps. First, we
interpolate the white channel using the color difference model. Second, we interpolate the
red, green, and blue channels using Laplacian pyramid reconstruction.

3.1. White Channel Interpolation

Most demosaicing methods designed for the Bayer pattern CFA begin by interpolating
the green channel, whereas our algorithm starts by interpolating the white channel. This is
because the white channel has high sensitivity, is noise-resistant, and performs good in low-
light conditions. Moreover, the white channel has a higher spatial resolution than the other
channels. The Canon-RGBW CFA consists of three times as many white pixels as pixels for
the other colors, as depicted in Figure 1d. Therefore, the white channel is advantageous
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for edge direction determination. Third, the white channel is highly correlated with the
red, green, and blue color channels. This is an important key to restoring the missing color
pixel values.

We utilize a gradient-based-threshold-free (GBTF) algorithm [22] for the Canon-RGBW
CFA. The GBTF algorithm is designed for the Bayer pattern CFA. Therefore, we modify the
GBTF algorithm to apply to the Canon-RGBW CFA. First, we perform the interpolation for
the white and color pixel values in the vertical and horizontal directions. The directional
estimates for the missing white and color pixel values are calculated as follows:

W̃H(i, j) =

{
W(i, j− 1 : j + 1).fT

1 at color pixels
W(i, j) at white pixels,

C̃H(i, j) = C(i, j− 3 : j + 3).fT
2

W̃V(i, j) =

{
W(i− 1 : i + 1, j).f1 at color pixels
W(i, j) at white pixels,

C̃V(i, j) = f2.C(i− 3 : i + 3, j),

f1 = [
1
2

0
1
2
],

f2 = [
1
4

1
2

3
4

1
3
4

1
2

1
4
],

(10)

where W and C denote the white channel and the color channel, e.g., red, green, and blue
channels, and H and V denote horizontal and vertical directions. Equation (10) can also
be viewed as a bilinear filter for directional interpolation. The next step is to calculate the
horizontal and vertical color differences:

∆̃H
W,C(i, j) = W̃H(i, j)− C̃H(i, j)

∆̃V
W,C(i, j) = W̃V(i, j)− C̃V(i, j).

(11)

The absolute gradients of the color difference are defined as follows:

DH
W,C(i, j) =

∣∣∣∆̃H
W,C(i, j− 1)− ∆̃H

W,C(i, j + 1)
∣∣∣

DV
W,C(i, j) =

∣∣∣∆̃V
W,C(i− 1, j)− ∆̃V

W,C(i + 1, j)
∣∣∣. (12)

We use the absolute gradients of color difference in (12) for the edge weight calculation.
For white channel interpolation, we estimate the directional color difference in (11), and
then we combine them accordingly:

∆̂W,C(i, j) =[wH .∆̃H
W,C(i, j− 4 : j + 4).fT

3

+ wV .f3.∆̃V
W,C(i− 4 : i + 4, j)]/wC

f3 =[
1
4

0 0 0
1
2

0 0 0
1
4
].

(13)

For a local window size of 9× 9, the weights for the vertical and horizontal directions
are calculated as follows:

wH = 1/

(
i+4

∑
k=i−4

j+4

∑
l=j−4

DH
W,C(k, l)

)2

wV = 1/

(
i+4

∑
k=i−4

j+4

∑
l=j−4

DV
W,C(k, l)

)2

wC = wH + wV .

(14)
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Equation (13) describes the directional adaptive low-pass filtering of the differences
between color channels, because the color difference model assumes that the differences
between color channels vary slowly. Finally, it is possible to refine the estimated value of a
pixel by updating the initial color difference estimates using its four neighbor weights. The
final color difference can be given as follows:

∆̃W,C(i, j) = [wN .∆̂W,C(i− 4, j) + wS.∆̂W,C(i + 4, j)

+ wW .∆̂W,C(i, j− 4) + wE.∆̂W,C(i, j + 4)]/wT .
(15)

wN = 1/

(
i

∑
k=i−4

j+4

∑
l=j−4

DV
W,C(k, l)

)2

wS = 1/

(
i+4

∑
k=i

j+4

∑
l=j−4

DV
W,C(k, l)

)2

wW = 1/

(
i+4

∑
k=i−4

j

∑
l=j−4

DH
W,C(k, l)

)2

wE = 1/

(
i+4

∑
k=i−4

j+4

∑
l=j

DH
W,C(k, l)

)2

wT = wN + wS + wW + wE.

(16)

The weights (wN , wS, wW , wE) are calculated in (16). The vertical direction weights
(wN , wS) use a local window size of 9× 5 and the horizontal direction weights (wW , wE)
use 5× 9 window.

After calculating the final color difference in (15), we add it to the target color pixel
value. The final interpolated white channel is interpreted as:

W(i, j) = C(i, j) + ∆̃W,C(i, j) at each color pixels. (17)

3.2. Red, Green, and Blue Channels Interpolation

The color difference model is based on the high correlation between each color channel.
In general, a high correlation between two variables does not mean that they are the same.
However, the smoothness in the color difference domain implies that the high-frequency
components from different color channels are correlated and are similar to each other. The
approximate equality of high-frequency components between different color channels is
well-known in demosaicing [3,24].

The color channel is reconstructed based on Laplacian pyramid reconstruction. We
demonstrate that our proposed method is better than conventional methods. Figure 5
shows examples of (a) an RGB image, (b) a color difference image of G0 − R0, (c) a color
difference image of W0 − R0, (d) a Laplacian difference image of LW0 − LR0 , and (e) the
pixel values of the red line’s location in Figure 5a in each of Figure 5b–d. The Laplacian
difference in Figure 5d varies more slowly than the color difference in Figure 5b,c. The pixel
values of the orange line are smaller than those of the red and blue lines in Figure 5e. The
smaller the pixel values in the color difference image, the higher the correlation between
each color image. This means that the Laplacian difference model is more advantageous
than the color difference model for color interpolation.

The white image W and the color image C consist of low-frequency components W low

and Clow and the high-frequency components Whigh and Chigh, as follows:

W = W low + Whigh

C = Clow + Chigh.
(18)
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Figure 5. Examples of (a) RGB image, (b) G0 − R0, (c) W0 − R0, (d) LW0 − LR0 , (e) pixel values of the
red line location of (a) in (b–d).

Because W∗0 is upsampled after the image W0 in Figure 3 is downsampled, it can be
considered a low-frequency component. Thus, W low in (18) can be regarded as W∗0 . The
detailed image in a Laplacian pyramid means that it is a high-frequency component of the
original image. Therefore, Whigh in (18) can be regarded as the detailed image LW0 . We
define the low- and high-frequency components for each depth level l as follows:

W1ow
l =W∗l , Whigh

l = LWl

Clow
l =C∗l , Chigh

l = LCl .
(19)

We obtain the low-frequency components W low and Clow by upsampling the down-
sampled image in the Laplacian pyramid. We define upsampling in a Laplacian pyramid
as a bilinear method for lower computations. Thus we need to perform the Laplacian
pyramid decomposition for the estimated white channel. If we interpolate the red channel,
we choose the values m = 0 and n = 1 for the Canon-RGBW CFA, as follows:

W2(i, j) =W1(2i + m, 2j + n) (m, n) ∈ [0, 1]2.
(20)

After choosing the value of (m, n), we upsample the image W2 to calculate the detailed
image LW1 . We compute the detailed image LW0 in the same way as before. To do our
proposed color channel interpolation, we need the detailed images LC0 and LC1 for each
color channel. Figure 6 shows the outline of the proposed interpolation for the color
channels. The aforementioned assumption is that the high-frequency components shared
between the color channels can be approximated as the same. Therefore, we can assume
that the high-frequency components of the color channel LC0 and LC1 are approximately
the same as those of the white channel LW0 and LW1 .

After acquiring a detailed image with W, the image goes through the process of restora-
tion to a full-resolution image. We summarize the proposed color channel interpolation
based on a Laplacian pyramid in Algorithm 1.

𝐶𝐶0∗

𝐿𝐿𝐶𝐶0

+
+Upsampling

(bilinear)

𝐶𝐶1∗

𝐿𝐿𝐶𝐶1

𝐶𝐶1

+
+ Upsampling

(bilinear)

Determine (m,n) 
according to Eq. (15)

𝑊𝑊0

Make
Laplacian Pyramid

𝐶𝐶2 𝑅𝑅

𝐶𝐶0

𝑅𝑅

Figure 6. The proposed method for color channel interpolation using Laplacian pyramid reconstruction.
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Algorithm 1: Color Interpolation using the Laplacian Pyramid
Input: The estimated image W0,

The subsampled CFA Cl
Output: The reconstructed color image C0, C ∈ R, G, B

1 Decide (m, n) according to (20) (m, n) =


(0, 1), at C = R
{(0, 0), (1, 1)}, at C = G
(1, 0), at C = B

2 Make Laplacian pyramid about W with (m, n) and depth level l
3 while l > 0 do
4 LCl−1 ≈ LWl−1

5 Upsampling Cl
6 Cl−1 = C∗l−1 + LCl−1

7 l = l − 1

8 return C0

4. Experiment Results

For the experimental evaluation of our proposed algorithm, we compared the qualities
of the real captured image based on the Canon-RGBW CFA and the Bayer pattern CFA.
Experimental results show that the RGBW CFA is more robust to noise than the Bayer
pattern CFA in low-light conditions. Furthermore, spatial information could be obtained
from the RGBW CFA results but not Bayer pattern CFA results. To obtain the full-resolution
images of the red, green, blue, and white channels, we used a filter wheel camera. The
filter wheel camera can be rotated in the clockwise or counterclockwise direction for filter
selection, and it has four filters: red, green, blue, and white. We took the full resolution
images of the red, green, blue, and white channels of the same scene using the four
different filters. The exposure time was set to 1/60 s under 5 lux illumination. Using the
full-resolution images of the four channels, we performed sampling to fit the Bayer and
Canon-RGBW CFA patterns. The image acquired at 5 lux illumination was very dark,
as shown in Figure 7a. We performed linear stretching, which is the simplest method to
increase pixel values (Figure 7b). We multiplied pixels that acquired raw data by a large
number (in this case, 25) and then performed white balancing, as shown in Figure 7c. We
performed the simplest white balancing method, which is the gray world method [25].

(a) (b) (c)

Figure 7. Images and its histograms: (a) The acquired image without post processing, (b) Linear
stretching of (a), (c) The result with linear stretching and white balancing.

Figure 8 shows the results of applying the same RI method of the Bayer pattern CFA
and the Canon-RGBW CFA pattern and those of applying the proposed method in low-
light conditions. Figure 8a,b show that the Canon-RGBW CFA is more robust to noise
than the Bayer pattern CFA, according to the results of applying the same RI method to
the two CFAs. This means that the CFA containing a white channel is more robust to
noise than the Bayer pattern CFA. Figure 8b,c show the results of applying the RI and
proposed methods with the same Canon-RGBW CFA. It can be observed that the result
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of the proposed method exhibits more high frequency information compared to that of
the RI method. Furthermore, we compared the results of applying the same denoising
method [26], BM3D(Block-matching and 3D filtering), to Figure 8a–c. The BM3D result of
the Canon-RGBW CFA contained more image details than that of the Bayer pattern CFA,
as shown in Figure 8d,e, and the objects which applied the proposed method are better
identified, as shown in Figure 8e,f.
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(b)
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B

(d)
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(f)

(g) (h) (i) (j) (k) (l)

Figure 8. Experimental results with 5 lux low-light condition: (a) The demosaiced image using
the Bayer pattern CFA with RI [10], (b) The demosaiced image using the Canon-RGBW CFA with
modified RI [10], (c) The demosaiced image using the Canon-RGBW CFA with proposed method,
(d–f) The results applying BM3D on (a–c). (g–l) use the same methods as (a–f).

The qualitative evaluation of the Kodak dataset without noise and with high noise
is shown in Figure 9. In the noise-free dataset, CM1 shows good results in terms of color
fidelity. However, it can be seen that there is a slight color error in the vertical direction of
the fence and in the red letters on the signs. CM2 and CM3 have a color bleed artifact. The
difference maps for CM2 and CM3 are brighter than that of the original. This is a typical
color loss phenomenon that is called color bleeding. CM2 and CM3 show partially incorrect
color estimation, as we can see yellow pixels in the each difference map. CM4 has aliasing
in the fence. CM5 shows good results. However, the red letters on the signs also show color
bleeding. The proposed method based on the Laplacian pyramid shows results similar to
CM5, but the color bleeding is reduced. In other words, the proposed algorithm produces
the best visual result. Figure 9h is the image generated by adding Gaussian noise with
a standard deviation of σn = 0.03 to the original image. In the high-noise condition, the
noisy dataset shows a similar tendency to the noise free condition. Most of the methods
show good results, even in high-noise environments that could be considered low-light
conditions. However, CM1 looks somewhat more resistant to noise than the proposed
method. CM2 and CM3 still show color bleeding. CM4 obtains the worst results. CM5 is
similar to the proposed method. However, it shows more color bleeding in the red letters
on the signs. Figure 10 shows the difference between original image and the results of
Figure 9 at the red line in Figure 9a. The red, green, and blue lines in Figure 10 are the
difference pixel values of the red, green, and blue channel.
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(a)
PSNR : 37.87

(b)
PSNR : 34.12

(c)
PSNR : 34.35

(d)
PSNR : 33.47

(e)
PSNR : 38.07

(f)
PSNR : 38.40

(g)

(h)
PSNR : 32.83

(i)
PSNR : 32.88

(j)
PSNR : 31.96

(k)
PSNR : 30.28

(l)
PSNR : 32.87

(m)
PSNR : 32.97

(n)

Figure 9. Visual comparison of the color demosaiced image from the noise-free and noisy datasets
with σn = 0.03. The upper parts of each row show the enlarged images, and the lower parts of
each row show the difference maps. The first row shows the results of color demoisaicing without
noise, and the second row shows noise with σn = 0.03: (a) Ground truth, (b) CM1 [10], (c) CM2 [27],
(d) CM3 [28], (e) CM4 [13,21], (f) CM5 [13], (g) PM. (h–n) use the same methods as (a–g).
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Figure 10. (a–n) The difference between original and each method in Figure 9a–n at the red line
location in Figure 9a.

In addition to experiments on real captured images, we used the Kodak and McMaster
dataset [17] for demosaicing comparison. The Kodak dataset consists of 24 color images
of size 768× 512 and the McMaster dataset consists of 18 color images of size 500× 500.
Because the Kodak and McMaster datasets have no original white pixel values, we assume
that the values of the white pixels are a summation of the red, green, and blue pixel values
at the same location; that is, W = (R + G + B). We conducted experiments on two types
of degradation. The synthetic dataset was created without noise and with Gaussian noise
having a standard deviation of σn = 0.03. An image in low-light conditions has low signal
power. Its signal-to-noise ratio (SNR) value is small. This means that it is equivalent to
an image under normal-light conditions with added noise. It can be assumed that as the
standard deviation of the noise increases, the light in the environment decreases. We chose
Gaussian noise with a standard deviation of σn = 0.03 because the average SNR values
of the Kodak and McMaster datasets are 15.9dB and 17.6dB. It can be assumed to be a
low-light condition.

We used two metrics to measure the performance of the proposed method. One was
the color peak signal-to-noise ratio (CPSNR) and the other was the structural similarity
index (SSIM) [29]. CPSNR is measured using the mean square error of the original image
and the estimated image, and SSIM evaluates the similarity of structures and features
between the two images as perceived by the human visual system.
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The proposed method for performance evaluation was compared with five existing
methods. All the conventional methods were implemented using the Canon-RGBW CFA.
The first conventional method (CM1) was the RI method [10], which did not use the
color difference model but the residual model. The second (CM2) was Oh’s method [27],
which contained the colorization-based method. The third (CM3) was Kim’s method [28],
which uses rank minimization with a colorization constraint. The fourth (CM4) and fifth
(CM5) were demosaicnet [13], based on deep learning. Because there is no learning-based
method for the Canon-RGBW CFA, we used a hybrid method combined with the existing
color demosaicing method. We implemented deep learning with the Bayer pattern CFA,
such as the red, green, and blue pixel locations in the Canon-RGBW CFA. Thereafter, we
applied handcrafted methods. In other words, demosaicnet was applied to a Bayer pattern-
like image that was subsampled once using the Canon-RGBW CFA. CM4 was combined
with demosaicnet [13] and the color difference model [21], and CM5 was combined with
demosaicnet [13] and the proposed method based on a Laplacian pyramid.

The quantitative evaluation of the noise-free Kodak dataset in terms of CPSNR and
SSIM is presented in Table 1. In Tables 1–3, the table colored in vivid sky blue indicates the
highest score and the table colored in light sky blue indicates the second highest score. A
high CPSNR value means that the original and estimated images are quite similar and a
high SSIM value also means that the estimated image is structurally similar to the original
image. It can be observed that the proposed method shows improved performance. Of all
the methods, including the residual, colorization, rank minimization, and hybrid methods,
the proposed method achieved most of the highest CPSNR and SSIM values on the Kodak
dataset. We also achieved the best results for the average CPSNR and SSIM. We summarize
the average CPSNR and SSIM values for the Kodak and McMaster dataset without noise
and containing added noise with σn = 0.03 in Table 2. For the most part, it can be observed
that the proposed method and the hybrid method that combines deep learning with the
proposed Laplacian pyramid show good performance.

To evaluate the time complexity of the conventional methods and the proposed
method, we estimated their average execution time on the Kodak dataset. The codes
of conventional methods are available online. All the codes were written in Matlab files
except the demosaicnet and tested on MATLAB R2021a. The demosaicnet model was built
in PyTorch 1.8.1 and tested on Ubuntu 16.04 environment (Python3.8, CUDA11.2). We used
a desktop computer equipped with an Intel Core i7-11700k 3.6GHz CPU, 32 GB memory,
and an Nvidia RTX-3090 GPU. The results are listed in Table 3. Because CM4 and CM5
are deep learning-based hybrid methods, the average execution time is the total time that
the CPU and GPU operate. Our proposed method consumes much less time than the
conventional methods.

Table 1. Comparison of CPSNR(DB) and SSIM (Noise free) on the Kodak dataset.

Kodak Dataset

CPSNR SSIM

No. CM1 CM2 CM3 CM4 CM5 PM CM1 CM2 CM3 CM4 CM5 PM
1 34.53 32.21 32.23 32.11 36.72 35.40 0.9792 0.9629 0.9634 0.9719 0.9879 0.9890
2 36.71 33.74 35.54 35.95 37.36 37.30 0.9890 0.9855 0.9921 0.9933 0.9946 0.9933
3 37.66 32.26 36.50 38.53 40.40 39.26 0.9911 0.9774 0.9885 0.9913 0.9949 0.9975
4 36.71 33.56 34.79 36.99 38.44 36.98 0.9897 0.9828 0.9891 0.9917 0.9938 0.9961
5 32.34 30.08 32.03 30.78 32.48 32.81 0.9742 0.9572 0.9726 0.9685 0.9781 0.9831
6 35.81 33.01 32.75 32.94 36.97 37.11 0.9841 0.9688 0.9691 0.9763 0.9897 0.9924
7 37.43 34.16 36.42 36.67 38.31 38.18 0.9885 0.9810 0.9893 0.9890 0.9923 0.9958
8 32.74 31.81 32.47 29.05 33.50 34.22 0.9787 0.9661 0.9736 0.9632 0.9827 0.9878
9 39.23 35.80 38.06 37.15 40.38 39.79 0.9855 0.9710 0.9770 0.9774 0.9874 0.9921

10 38.23 36.46 37.83 35.87 37.45 39.43 0.9844 0.9705 0.9785 0.9773 0.9857 0.9905
11 36.18 33.01 33.70 33.40 36.05 36.72 0.9830 0.9637 0.9720 0.9740 0.9848 0.9913
12 39.61 36.43 37.65 37.68 40.31 40.83 0.9906 0.9826 0.9858 0.9880 0.9932 0.9983
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Table 1. Cont.

Kodak Dataset

CPSNR SSIM

No. CM1 CM2 CM3 CM4 CM5 PM CM1 CM2 CM3 CM4 CM5 PM
13 31.41 29.10 28.62 27.81 29.91 31.94 0.9742 0.9485 0.9473 0.9576 0.9744 0.9835
14 31.81 29.08 32.04 32.01 33.33 32.23 0.9773 0.9561 0.9677 0.9715 0.9821 0.9848
15 35.67 33.81 35.43 36.10 37.51 36.95 0.9834 0.9733 0.9826 0.9842 0.9886 0.9928
16 39.87 37.02 37.20 36.44 41.07 40.43 0.9870 0.9744 0.9767 0.9754 0.9902 0.9937
17 38.56 35.81 36.00 35.53 37.33 38.82 0.9869 0.9745 0.9771 0.9780 0.9862 0.9928
18 33.54 30.74 31.20 31.75 33.50 34.18 0.9756 0.9551 0.9616 0.9678 0.9773 0.9832
19 37.87 34.12 34.35 33.47 38.07 38.40 0.9869 0.9724 0.9747 0.9794 0.9878 0.9932
20 36.74 34.70 36.27 35.48 37.39 38.61 0.9760 0.9761 0.9801 0.9813 0.9866 0.9915
21 35.54 33.22 33.50 33.59 36.85 36.52 0.9846 0.9682 0.9742 0.9782 0.9877 0.9914
22 34.58 32.69 33.44 33.81 35.53 35.65 0.9807 0.9636 0.9706 0.9767 0.9829 0.9884
23 37.67 28.23 36.92 38.56 39.94 38.65 0.9909 0.9759 0.9899 0.9918 0.9935 0.9982
24 32.00 30.84 30.79 29.65 30.91 32.98 0.9734 0.9608 0.9653 0.9642 0.9748 0.9837

Avg. 35.94 33.00 34.41 34.22 36.65 36.81 0.9831 0.9695 0.9758 0.9778 0.9866 0.9910

Table 2. Total Average CPSNR(DB) and SSIM of the Kodak and McMaster dataset (Noise-free and
with σ = 0.03).

Noise Free Noise σn = 0.03

No. CM1 CM2 CM3 CM4 CM5 PM CM1 CM2 CM3 CM4 CM5 PM
Kodak CPSNR 35.94 33.00 34.41 34.22 36.65 36.81 32.16 31.88 31.88 30.34 32.18 32.32

SSIM 0.9831 0.9695 0.9758 0.9778 0.9866 0.9910 0.9359 0.9341 0.9385 0.9194 0.9403 0.9391
McM CPSNR 32.51 30.14 33.14 32.71 33.84 33.17 30.16 28.20 31.03 29.53 30.69 31.28

SSIM 0.9703 0.9517 0.9748 0.9711 0.9770 0.9733 0.9303 0.9262 0.9430 0.9215 0.9364 0.9321
Kodak CPSNR 34.47 31.77 33.87 33.57 35.45 35.25 31.30 30.30 31.52 30.00 31.54 31.87
+McM SSIM 0.9776 0.9619 0.9754 0.9749 0.9825 0.9834 0.9335 0.9307 0.9404 0.9203 0.9386 0.9361

Table 3. Average execution time (s) per image.

CM1 CM2 CM3 CM4 CM5 PM
Time(s) 0.8392 5.5317 110.01 1.3872 1.4478 0.6994

5. Conclusions

In this paper, we proposed a color demosaicing method for the Canon-RGBW CFA
using a Laplacian pyramid. First, we interpolated the white channel utilizing the color
difference model and gradient. Red, green, and blue channels were restored with our
proposed method using Laplacian pyramid decomposition and restoration. Our method
can be utilized with any periodic CFA. The experimental results showed that the proposed
method has superior results compared with the other conventional methods, including
quantitative, visual performance, and computational complexity. As can be seen from the
experimental results, our method still shows color bleeding with the Canon-RGBW CFA.
To alleviate this, we will experiment by adding appropriate regularization.
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