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Abstract: Building contour extraction from high-resolution remote sensing images is a basic task for
the reasonable planning of regional construction. Recently, building segmentation methods based
on the U-Net network have become popular as they largely improve the segmentation accuracy by
applying ‘skip connection’ to combine high-level and low-level feature information more effectively.
Meanwhile, researchers have demonstrated that introducing an attention mechanism into U-Net
can enhance local feature expression and improve the performance of building extraction in remote
sensing images. In this paper, we intend to explore the effectiveness of the primeval attention gate
module and propose the novel Attention Gate Module (AG) based on adjusting the position of
‘Resampler’ in an attention gate to Sigmoid function for a building extraction task, and a novel Atten-
tion Gates U network (AGs-Unet) is further proposed based on AG, which can automatically learn
different forms of building structures in high-resolution remote sensing images and realize efficient
extraction of building contour. AGs-Unet integrates attention gates with a single U-Net network, in
which a series of attention gate modules are added into the ‘skip connection’ for suppressing the
irrelevant and noisy feature responses in the input image to highlight the dominant features of the
buildings in the image. AGs-Unet improves the feature selection of the attention map to enhance
the ability of feature learning, as well as paying attention to the feature information of small-scale
buildings. We conducted the experiments on the WHU building dataset and the INRIA Aerial Image
Labeling dataset, in which the proposed AGs-Unet model is compared with several classic models
(such as FCN8s, SegNet, U-Net, and DANet) and two state-of-the-art models (such as PISANet, and
ARC-Net). The extraction accuracy of each model is evaluated by using three evaluation indexes,
namely, overall accuracy, precision, and intersection over union. Experimental results show that
the proposed AGs-Unet model can improve the quality of building extraction from high-resolution
remote sensing images effectively in terms of prediction performance and result accuracy.

Keywords: AGs-Unet model; deep learning; high resolution remote sensing image; building extraction;
WHU dataset

1. Introduction

Rapidly developing remote sensing technology provides massive data for urban plan-
ning, mapping, and disaster management. As real estate resources in urban and rural areas,
buildings are of great significance in both urban dynamic monitoring and suburban construc-
tion inspection [1–4] and a precise and immediate extraction of buildings becomes critical [5,6].

With the continuous improvement in the spatial resolution of optical remote sensing
images, building detection from high-resolution images has attracted increasing attention.
The data volume of early remote sensing images is small, and the extraction of buildings
in images mainly relies on artificial recognition, visual interpretation and vector feature
extraction [7,8]. In recent years, as the remote sensing image data gradually show the charac-
teristics of being massive, multi-scale and multi-sourced [8–10], the cost of building contour
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extraction is high and the quality cannot be measured by a unified standard with manually
interpreting the image. Therefore, various methods for building extraction from remote
sensing images are proposed by related researchers in feature extraction based on prior
knowledge such as shadow, edge, roof color, shape design, etc. [11,12]. Some methods, in-
cluding template matching [13], mathematical morphology [14,15], active contours [16,17],
graph theory [18,19], random forests [15] and support vector machines [20,21], are based
on building roof detection. Prior knowledge, including the complexity and diversity of
building shape, roof surface, imaging conditions and spatial environment, has been used to
easily confine the building shape areas. Although previous methods for building extraction
from high-resolution remote sensing images have made some progress, these methods
based on artificial design features generally have shortcomings, such as low extraction
accuracy, complex processing, and insufficient feature utilization. These methods also need
various rules to manually predefine features, thereby leaving the extraction of buildings
from large-scale remote sensing images still difficult.

At present, the methods for extracting buildings from high-resolution remote sensing
images mainly uses deep learning developed in computer vison. Compared to the above
mentioned traditional methods of building detection and semantic segmentation, deep
learning methods have advantages in automatically extracting high-dimensional features
of image maps. The convolution neural network (CNN) [22] has developed rapidly and is
widely used in fields such as natural image classification, target detection, and semantic
segmentation. Compared with the traditional method of extracting target features based on
artificial design, the CNN model can automatically extract and fully explore the character-
istics of the input image and has strong feature representation ability. At present, common
CNN models mainly include AlexNet [23], VGGNet [24], GoogLeNet [25], and ResNet [26],
however, these CNN models cannot directly produce accurate building contours. Therefore,
it is necessary for segmented maps to preprocess the image in certain circumstances, and
the full convolution networks (FCNs) provide a deep learning framework for end-to-end
image semantic segmentation by transforming the full connection layer of the CNN into
the convolution layer, which greatly improve the training and prediction efficiency of
the model.

At present, FCNs have been used in building extraction from aviation and satellite
images [27–29]. For example, Ji et al. [30] proposed a Siamese U-Net model with two
branches and shared weights. The model input includes the original image and its down-
sampling feature map. Through the training of multi-source data sets, including aerial
images, satellite images, raster, and vector labels, the extraction effect of large buildings
improved significantly. To extract buildings with high precision, Guo et al. [31] proposed
a multi-loss neural network based on attention. The model can use a single attention
module to improve the sensitivity of building objects in remote sensing images and reduce
the influence of irrelevant background regions. The multi-loss method composed of base
and offset losses can reduce the test loss value and further enhance the effect of semantic
segmentation of the model. To improve the robustness of the building extraction model
of remote sensing images, Zhou et al. [28] constructed the pyramid self-attention network
model of the “end-to-end” neural network. The local features of the building are obtained by
the backbone network. The color, texture, and advanced semantic features of the building
were extracted by the pyramid self-attention module, which improved the accuracy and
integrity of the single building extraction. Although the deep learning model has achieved
the end-to-end extraction of building contours, the accuracy and stability of this task need
to be improved further so that it can be effectively applied to actual production and life.

In the segmentation module, two main problems need to be solved at the present
stage. On one hand, the high-dimensional features have less sensitivity to the response of
background information and ground truth, which results in the loss of spatial information
in the target region. On the other hand, boundary ambiguity is aroused by the convolu-
tional segmentation method of considering the intersection ratio (IoU) only. For semantic
segmentation, top-down architectures such as the FCN8s [32], SegNet [33], U-Net [34], and



Sensors 2022, 22, 2932 3 of 21

DANet models [35] have been proposed to further improve the performance and efficiency.
Generally, the development of these models is driven by the spatial information input to the
high-dimensional processor after several aggregations of the convolutional layers, which
will lead to poor edge precision of segmentation results and a blurring of the boundary.
This network structure does not perform well in the semantic segmentation of buildings,
mainly due to the loss of the spatial information of local and regions as well as the poor,
stride-convolved, and high-dimensional features. Therefore, some methods are proposed to
compensate for local information [36,37] and improve the selection of the number of feature
channels. Among them, PISANet model [28] obtains the global features and comprehensive
features of the buildings through the pyramid self-attention module, which makes full use
of the spatial information in the image; ARC-Net model [27] reduces the computational
cost and shrinks the model size by residual blocks with asymmetric convolution, which
improves the extraction effect based on reducing the model parameters.

In order to solve the above problems, a lightweight spatial attention module, Attention
Gate (AG), has been proposed [38] and applied to building extraction task by fine-tuning the
structure of the AG module. In this work, we further consider the applicable efficiency of
the AG module in the building extraction task of remote sensing images, and appropriately
adjust the position of ‘resample’ in the AG module. Above all, we aim to explore the
effectiveness of a recent AG for building features extraction in remote sensing images,
and a novel Attention Gates U network (AGs-Unet) model is further presented. AGs-Unet
integrates four attention gates with a primeval and single U-Net architecture, in which a
series of AG units are integrated to the ‘skip connection’ for highlighting salient feature
information. AGs-Unet makes use of four AGs, which cannot only catch the large-scale
features, but also pay more attention, to a certain extent, to small buildings as well. The
integration of AG modules shows effectiveness in different and complex environments
on the task of building extraction. In this experiment, we also compare AGs-Unet with
the traditional FCN8s [32], SegNet [33], U-Net [34], DANet model [35], the state-of-the-art
PISANet [28], and ARC-Net [27] models to carry out the experimental comparison of
remote sensing image building automatic extraction task on both the WHU Dataset and the
INRIA Aerial Image Labeling Dataset in terms of prediction accuracy, parameter number,
and training time.

2. Materials and Methods

High-resolution remote sensing images have the characteristics of numerous ground
objects, complex ground background, and complex data information. Many different targets
have certain similarities, which blur the boundary of the target area and produce “noise”
by fully studying the basic deep learning model in the field of high-resolution remote
sensing image processing. This study proposes a grid-based AGs module, which consists
of four AG modules. AGs were originally used in machine translation [39,40], image
interpretation [41], and other fields to improve the effect of text processing by providing
different weights to various local texts. AGs that act on image analysis are a channel
selection mechanism [31,42] that simulates the relationship between channels through
computational efficiency to enhance the feature extraction ability of the whole network to
extract target features and construct an attention map more effectively [43]. Inspired by
convolutional block attention modules (CBAM) [44] and squeeze-and-excitation networks
(SENet) [45], this paper develops the AGs for dense buildings in high-resolution remote
sensing images and explores the impacts of AG on areas with different percentages of
buildings. Meanwhile, we construct a grid-based AGs module to enhance the sensitivity of
the grid-based AGs to small- and medium-sized buildings in the feature map.

2.1. AGs-Unet Model Framework

The AGs-Unet model, which is the attention control model constructed by adding AGs
modules to a standard U-Net architecture, is shown in Figure 1. The deep learning model
based on U-Net architecture has good computational performance and can efficiently utilize
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GPU memory, which is widely used in the field of image segmentation. The attention
gate control mechanism is beneficial for highlighting the effective features of the target
and suppressing redundant invalid information in the image multi-scale feature extraction
task. Therefore, the AGs-Unet model constructed in this paper sets the advantages of the
U-shaped structure and attention control mechanism. The model proposed in this paper
can capture the wide-area information of the context at the low-dimensional scale and
extract the global coarse-scale features of the image. It can also extract the abstract fine-level
features of the image in high-dimensional scale and highlight the location and boundary of
the building in the feature map through the attention valve. Among them is the gridding,
multi-scale extraction of feature maps through the ‘jump connection’ access to the decoder
part, with both coarse and fine levels of dense building prediction fusion.

Figure 1. Model framework of AGs-Unet, consisting of three parts: encoder part (blue, block 1–4),
the converter (navy blue and pink, block 5 and ‘skip connection’), and decoder (blocks 6–9).

Figure 1 shows that AGs-Unet is a U-shaped symmetric deep learning model that
directly outputs the building extraction results from one end of the image input to the
other end. It fully shows that the deep learning method has the advantages of speed,
convenience, economics, and end-to-end without intermediate processing. The specific
structure of AGs-Unet can be divided into three parts:

(1) The encoder, which is composed of four convolution blocks, can extract features at
different levels using global and local context information (xi represents the feature of
layer i). Each convolution block consists of two convolutional (Conv) layers, two batch
normalization (BN) layers, and two rectified linear unit (ReLU) activation function
layers. The Maxpooling layer in the model can extract the maximum value of the local
area in the feature map and construct it into a new feature map, which helps reduce
the number of parameters in the model and prevent overfitting;

(2) The converter is composed of the fifth convolution block and AGs in four ‘skip
connection’ processes. The fifth convolution block includes Conv, Maxpool, and BN,
which abstracts the feature map from the encoder to the highest level. The number of
channels of the feature map is superimposed to 1248, the size is reduced to 16 × 16,
and the abstract feature map of the highest dimension is extracted. The AGs stringing
in the ‘jump connection’ filter out the feature points in the low-dimensional feature
map that are beneficial in extracting the building and in filtering and suppressing
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irrelevant features and nodes. Four AG extract effective features from all aspects and
dimensions in four different grid dimension levels from low to high. The converter
connects the feature map that corresponds to the encoder and decoder and solves the
problem of the disappearance of the reverse propagation gradient to some extent;

(3) The decoder; the number of channels of the corresponding feature map is adjusted
by convolution operation, and the size of the fused feature map is expanded by up-
sampling and gradually fused with the multi-level feature map and restored to the
size of the original input map, since the underlying high-dimensional feature map
began to integrate into the feature map of the corresponding size in the encoder.

Visibly, the encoder contains the same number of convolution blocks as the decoder.
AGs-Unet samples the features introduced by the converter step-by-step through up-
sampling and obtains the feature map with the same size as the input image. Finally, the
channel number of the model is adjusted by 1 × 1 convolution, and the final building
segmentation results in the remote sensing image obtained by a Sigmoid activation function.
The specific parameters of AGs-Unet are shown in Table 1.

Table 1. Detailed blocks of the proposed AGs-Unet outlined in Figure 1.

Block Type Filter Channel Size Output Size

256 × 256 × 3

1
Conv1 (3, 3) 3→ 64 256 × 256 × 64

Maxpool1 (2, 2) 64→ 64 128 × 128 × 64

2
Conv2 (3, 3) 64→ 128 128 × 128 × 128

Maxpool2 (2, 2) 128→ 128 64 × 64 × 128

3
Conv3 (3, 3) 128→ 256 64 × 64 × 256

Maxpool3 (2, 2) 256→ 256 32 × 32 × 256

4
Conv4 (3, 3) 256→ 512 32 × 32 × 512

Maxpool4 (2, 2) 512→ 512 16 × 16 × 512

5 Conv5 (3, 3) 512→ 1024 16 × 16 × 1024

6
Up_conv4 Conv-(2, 2) 1024→ 512 32 × 32 × 512

AGs4 512→ 512 32× 32 × 512
Up4 Up-(3, 3) 512→ 512 32 × 32 × 512

7
Up_conv3 Conv-(2, 2) 512→ 256 64 × 64 × 256

AGs3 256→ 256 64 × 64 × 256
Up3 Up-(3, 3) 256→ 256 64 × 64 × 256

8
Up_conv2 Conv-(2, 2) 256→ 128 128 × 128 × 128

AGs2 512→ 512 128 × 128 × 128
Up2 Up-(3, 3) 512→ 512 128 × 128 × 128

9
Up_conv1 Conv-(2, 2) 128→ 64 256 × 256 × 64

AGs 1 64→ 64 256 × 256 × 64
Up1 Up-(3, 3) 64→ 64 256 × 256 × 64

10
Conv_1 × 1 (1, 1) 64→ 1 256 × 256 × 1

Sigmoid 256 × 256 × 1
Conv: convolution; Maxpool: the maximum pooling; Up: up-sampling, AGs: attention gates; Up_conv: up-
sampling and convolution.

2.2. Grid-Based AGs Module under U-Net Architecture
2.2.1. Attention Mechanism

The attention mechanism from human intuition, which aims to select more critical
information for current tasks, has been widely used in various sequential learning tasks.
The core steps of attention mechanism include the following: first, the importance scores of
each candidate vector are calculated, and then the scores are normalized to weights. Finally,
these weights are applied to the candidate vector to generate attention results. Many atten-
tion mechanism models are applied to deep convolutional neural networks to optimize the
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feature extraction process. For example, the CBAM [44] infers the attention weight from
the input feature map along the two dimensions of space and channel. Subsequently, this
weight was multiplied with the input feature map to realize the adaptive adjustment of
features. DANet [35] extracts the attention weights of both sides of the input feature map
by parallel processing the location attention module that can enhance the global feature
fusion and the channel attention module that are conducive to strengthening the correlation
of local semantic features. SENet [45] shows the correlation between learning channel char-
acteristics through global average pooling operation. The global context network [46] uses
a self-attention mechanism to model the relationship between query pairs and integrates
non-local and SENet modules to complete global context modeling.

Therefore, a lot of work has been performed to extend self-attention to computer
vision for image target recognition and semantic segmentation, which inspired us to apply
an attention mechanism to remote sensing image processing to extract buildings from
high-resolution remote sensing images.

2.2.2. AG Module

The attention coefficient α ∈ [0, 1] is designed in AG to identify prominent image
regions and suppress irrelevant feature responses to retain and activate neurons that are
only related to buildings to the greatest extent. The multiplication of the input feature
map and α in the encoder at the pixel level is the output of AG: x̂l

i= xl
i · αl

i . Usually, the
calculation of the attention value of a single scalar needs to use the value of each pixel
vector xl

i , and where xl
i ∈ RFl , and Fl represents the number of feature maps in the layer l.

The activation function ReLU in the model is expressed as: σ1(xl
i,)= max (0, xl

i), where i
represents the spatial dimension.

This study only extracts buildings from remote sensing images, which are seman-
tic segmentation of a single category. Therefore, this model only designs the attention
coefficient. As shown in Figure 2, the valve control gate vector gi ∈ RFg acts on each
pixel i to determine the focusing region. The control gate vector contains context informa-
tion to remove low-level feature responses. This study draws on the additional attention
mechanism [31] proposed in machine translation to obtain the control coefficient, and the
additional attention mechanisms is expressed by Formulas (1) and (2).

ql
aun(x l

i , gi; Θatt) = ψT(σ1(W
T
x xl

i+WT
g gi+bg))+bψ , (1)

αl
i= σ2(ql

aun(xl
i , gi; Θatt)) , (2)

where σ2(x i) =
1

1+exp(−x i)
represents the Sigmoid activation function. The feature of AG is

that a set of parameters Θatt contains: linear transformation Wx ∈ RFl×Fint , Wg ∈ RFg×Fint ,
ψ ∈ RFint×1 and bias parameter bψ ∈ RFint , bg ∈ RFint , and Fint represents the input layer.
The linear transformation changes the number of channels of the input tensor through
1 × 1 × 1 channel convolution.

The AG mechanism is detailed as follows, the weight is multiplied by the feature
in the attention layer, and the weight is multiplied by the control vector in the valve
control layer. ReLU is used to activate the result of the addition of the two multiplication
results and the bias. Then, the number of channels is adjusted by linear transformation,
and sigmoid is used for activation. The attention coefficient is adjusted in the Resampler.
Finally, the original input attention layer feature is multiplied by the activated result, and
the result with the same size of the attention layer feature is outputted. In the task of
image classification [47], the Softmax activation function is used to normalize the attention
coefficient. The disadvantage is that multiple uses of Softmax will result in the activation
sparsity at the output end, which results in the disappearance of the gradient. Therefore,
this paper only uses one sigmoid activation function in the AGs of the model, so that
the AGs parameters have better training convergence. In the proposed grid attention
method, the control signal is not a global single vector of all image pixels, but a grid signal
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suitable for image spatial information. As shown in Figure 1, the control signals of each
jump connection aggregate information from multiple dimensions, which increase the grid
resolution of the query signal and achieve better performance.

Figure 2. Structure of a AG module. The below shows the original AG module, and above is the part
of the AG module changed position of the ‘Resampler’.

The realization of AGs model includes three parts, namely, Wg of the training gate
control coefficient, Wx of the training attention coefficient, and Ps of connecting the two
parts to adjust the number of output channels. The structure blocks and parameters of
AGs are shown in Table 2. AGs module is helpful in eliminating the necessity of a building
location module in multi-level CNNs, reducing the number of parameters and training
time of the model, and improving the operation efficiency of the model.

Table 2. Parameters of AG.

Conv Block Layers Filter Channel Size

Wg Conv + BN (1, 1) Fg → Fint
Wx Conv + BN (1, 1) Fl → Fint

Activation Relu Wg + Wx -
Ps Conv + BN (1, 1) Fint → 1

Pout BN Fint × Ps 1→ Fint

In this paper, grid-based AGs module is added to the standard U-Net architecture
to extract the coarse-scale features of multi-dimensional wide-area obtained by jump
connection and eliminate the ambiguity of irrelevant information and noise response.
Executing the grid-based AGs in the connection operation can more effectively activate
the relevant useful nodes in the neural network. In addition, the grid-based AGs module
purposefully filtered neurons without activation in forward and backward propagation.
The gradient that started from the background region is continuously weighted downward
in the reverse propagation, and the shallow model parameters can be updated continuously
based on the spatial region related to the building extraction task.

2.2.3. U-Net Architecture with AGs Module

Due to the complexity of multiple ground objects in high-resolution remote sensing
images, reducing the number of false positive and false negative pixels in the image for
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the small target segmentation task of building extraction with large shape changes is still
difficult. To improve accuracy, some of the current segmentation frameworks [48] rely
on determining the building location boundary first and dividing the task into separate
positioning and subsequent segmentation. This paper proves that the location and segmen-
tation of building targets can be achieved by integrating AGs into a standard CNN model
without training multiple models and additional model parameters. Different from the
localization model in multi-stage CNN, AGs suppress the feature response in irrelevant
background regions in multiple dimensions and do not need to prune the region of interest
among networks. Therefore, this study integrates AGs into the U-Net structure to further
improve the accuracy of building contour extraction in remote sensing images.

Ronneberger et al. [34] proposed a U-Net architecture with symmetric encoding and
decoding that fully combines the CNN and the up-sampling part. The number of up-
sampling parts and down-sampling parts are equal, and the model is combined by the
jump connection between the convolution layer and the deconvolution layer. The jump
connection in the U-Net network combines the good characteristics of contraction and
expansion path. In multidimensional AGs, αl

i corresponds to a vector at each grid scale.
In each AG sub-module, complementary information is extracted and fused to define the
output of jump connection. To reduce the number of training parameters and computa-
tional complexity in AG, this study performs linear transformation (1 × 1 × 1 convolution)
without spatial information support, maps the input features to the resolution of the valve
control signal through down-sampling, and then decodes the feature map by the corre-
sponding linear transformation, and maps it to the low-dimensional space to complete the
attention control operation.

3. Experimental Datasets and Evaluation
3.1. Dataset
3.1.1. The WHU Dataset

The WHU building dataset [30] is composed of aerial and satellite datasets, and the
aerial image dataset is used in this study. The aerial image data are obtained from the
New Zealand Land Information Service website, which covers 450 square kilometers of
land on the ground. The ground resolution of the image is 0.3 m, and approximately
22,000 independent buildings in the Christchurch area are selected. The dataset provides
shapefile format and rasterized data of buildings. The aerial image dataset includes
8189 high-resolution remote sensing images with 512 × 512 pixels. In this study, the PIL
module in Python is used to expand the original data into 11,642 images by random rotation,
and the samples are divided into three parts, including a training set (8679 images, around
70%), a validation set (1927 images, around 20%), and a test set (1036 images, around 10%).
Figure 3 shows an original image and its corresponding label, where black represents the
background, and red represents the building.

Figure 3. Image and label selected from WHU dataset: (a,b) show the image and label of the original
images in the dataset, respectively; and (c,d) show the image and label after random rotation, respectively.

3.1.2. The INRIA Aerial Image Labeling Dataset

The second dataset used in this research is the INRIA Aerial Image Labeling Dataset [49].
The INRIA dataset covers the world, including Austin, Chicago, Kitsap, Western Tyrol,
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Vienna, Bellingham, and San Francisco. The spatial resolution of each image is 0.3 m with
a size of 5000 × 5000 pixels and surface coverage of 1500 × 1500 m2. Following previous
investigations [11,28], we selected the first five images of each city for validation and the
rest for training. Only two semantic classes were considered as the ground truth; buildings,
and non-buildings. An example of an input image and its corresponding label are presented
in Figure 4.

Figure 4. Image and label selected from the INRIA dataset: (a,c) show the image and (b,d) show the
corresponding label in the dataset, white and black pixels mark building and non-building, respectively.

3.2. Evaluation Criterion
3.2.1. Evaluation Metrics

In this study, the effectiveness and accuracy of each model are verified by experiments.
Overall Accuracy (OA) in Formula (3), Precision (Precision) in Formula (4) and Intersection
over Union (IoU) in Formula (5) are defined as the indicators of model performance evaluation.

Overall Accuracy (OA) =
TP + TN

TP + TN + FP + FN
, (3)

Precision =
TP

TP + FP
, (4)

IoU =
TP

TP + FP + FN
, (5)

where TP is the true positive case, FP is the false positive case, FN is the false negative case,
and TN is the true negative case. OA: the ratio of the number of pixels correctly classified to the
total number of test pixels; Precision: the percentage of the number of pixels correctly classified
as positive in all predicted positive pixels; IoU: the accuracy of the segmentation level.

3.2.2. Model Complexity

In this study, the model complexity is evaluated by the number of parameters and
computation of the statistical model [50,51]. Model parameters refer to the total number
of parameters required to define the model, that is, the storage space needed to store the
model. The amount of computation required by the model is the amount of occupancy
calculation required for a given level of data to pass through the network, that is, the
amount of computation required when using the model. The parameter values calculate
the sum of the weights and the number of offset weights, and Formula (6) is used to
calculate the number of parameters on the convolution layer.

(K h × Kw × Cin) × Cout× Cout , (6)

where Kh represents the length of the convolution kernel, Kw represents the width of the
convolution kernel, Cin represents the number of input channels, and Cout represents the
number of output channels.

Given that neural networks have quite a lot multiplication and addition operations,
the computation of the model is measured by the Multiply Accumulate Operations (MAC)
of Formula (7).

nump × sizeout, (7)
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where nump represents the number of parameters in this layer, and sizeout represents the
size of the output feature diagram.

The formula of a 3 × 3 convolution kernel on the feature graph is Formula (8), which
includes nine multiplications and additions, denoted as 9Mac.

y = w [0] × x [0] + w [1] × x [1] + w [2] × x [2] + . . . + w [8] × x [8], (8)

4. Experiment
4.1. Experimental Settings

The experiment is based on Pytorch deep learning framework and uses an open
resource python module, such as TorchVision, Skimage, and Matplotlib modules, to process
images. The computer hardware is equipped with a display card NVIDIA GeForce GTX
3070 Ti, with 8 GB memory, and CUDA 11.0 is used to accelerate the calculation. Due to
the limitation of GPU memory, all images after data enhancement are randomly cut to
256 × 256 pixels for model training and cross validation of each epoch.

In the process of experiment super parameter setting, this study carried out many
comparative experiments to select the optimal model parameters. Model training uses
the Adam optimizer [52] with an initial learning rate of 0.0001. To avoid overfitting, L2
regularization is introduced into all convolutions, and the weight attenuation [53] is set to
0.0001. To adapt to the computer GPU memory constraints, these models’ training inputted
eight images per batch and trained for 200 epochs on the WHU dataset, while these models
trained for 150 epochs on the INRIA dataset. Among them, the changes in training accuracy
and loss value of AGs-Unet in both datasets are shown in Figure 5a,b. During the training,
the model accuracy gradually converges to above 0.95 in the fluctuation. While accuracy
increases, the loss value gradually decreases and tends to be stable. If not specified, other
comparison models are trained in the same hardware and software environment as above.

Figure 5. Variation in training accuracy and loss value of AGs-Unet in: (a) WHU dataset; and
(b) INRIA dataset.

4.2. Experimental Result

In this study, four groups of test data, each group with 40 images, are selected in
terms of the proportion of buildings in the whole image to verify the training results of
the optimal model and to validate the difference of the extraction accuracy of buildings
with different degrees of aggregation. Two representative images from each group are
selected for qualitative evaluation, the quantitative accuracy evaluation is also conducted
by averaging the OA and IoU of all images from each group. The images with different
proportions of buildings in the whole image from 0–25% are selected as group 1, from
25–50% as group 2, from 50–75% as group 3, and from 75–100% as group 4.

4.2.1. Results of Qualitative Analysis

In this study, U-Net and AGs-Unet models are used to analyze each group of the test
set to validate the effect of the AG module, as shown in Figure 6. In the first group of test
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data, in which the proportion of buildings is small, (a) several scattered small buildings in U-
Net and AGs-Unet cannot be clearly identified, and for several relatively large buildings in
(a), the AGs-Unet model gets more accurate results than U-Net in building edges extraction.
In (b), for a small number of clustered building joints, AGs-Unet predicts clear contours,
while U-Net incorrectly identifies the gaps between buildings as buildings. Comparing (a)
and (b), it can be seen that the AGs-Unet model can aggregate more valid information by
AGs; they avoid invalid features like building gaps; and have better prediction results than
the U-Net model with a smaller proportion of buildings.

Figure 6. Cont.
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Figure 6. Experimental visualization results of each group. Each team selected two representative
images to test the model trained by U-Net and AGs-Unet, where green represented buildings correctly
extracted, blue represented buildings missing, red represented buildings incorrectly extracted, and
black represented background.

In the test data of the groups 2 and 3, with a middle proportion of buildings, the
distribution of buildings in group (c) is biased toward the local area at the bottom right
of the image, and the local AGs-Unet at the regional boundary is more accurate than
the building contour predicted by U-Net. Both models below the group (d) misjudge a
relatively regular square as a building, however, AGs-Unet has a clearer prediction of the
outline of the square, and it is not difficult to find that the target here also has difficulty
in judging a building by visual interpretation. In group (e), the proportion of buildings is
larger and scattered around the region. AGs-Unet has fewer misclassifications on the edges
of the buildings compared to U-Net in the subtle areas. In group (f), AGs-Unet misjudged
the square in the middle of the building as a building and failed to identify the target
correctly and clearly. In the comparison between groups 2 and 3, when the proportion of
buildings in the region is in the middle, the model proposed in this study can basically
extract the building outlines. However, there are still difficulties in identifying the plazas
with the 25–75% proportions of multiple buildings.

In group 4 of the test data, the proportion of buildings is above 75%, the smaller
dispersed buildings in group 4(a) and larger buildings in group 4(b) both make up the
main part of the area. The results show that both U-Net and AGs-Net predict that the
interiors of medium and small buildings are accurately filled, however, AGs-Unet can
extract the whole contour and internal area more completely for large buildings, while
U-Net predicts that the interior of the buildings are in part a region of local false negatives.
Comparing the experiments of four groups with different proportions of buildings, this
study finds that the model is most ineffective in extracting building contours in the region
with a small proportion of buildings, and the accuracy of model prediction would increase
with the proportion of buildings. However, both models did not further improve the
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visualization performance of building prediction when the proportion increased from
always to the maximum. In regions with different proportions of buildings, the AGs-Unet
model proposed in this study can aggregate the visual information of each dimension
through AGs, fully adapt to remote sensing image regions with different proportions of
buildings, and achieve better prediction results than the U-Net model.

4.2.2. Results of Quantitative Analysis

On the group data, the comparison results of the test accuracy of U-Net and AGs-Unet
models are shown in Table 3. To make the data representative, Accuracy and IoU are the
average values of all the test data of each group. The accuracy of the AGs-Unet model
increased by 6% in group 1, by 0.2% in group 2, by 1.6% in the group 3, and by 0.4% in
group 4. The intuitive changes shown in Figure 7b show that AGs-Unet has the highest
accuracy in extracting small buildings from images with the least proportion of buildings in
the region, however, AGs-Unet has less accuracy than U-Net in extracting large buildings
from images with the largest proportion of buildings in the region. The IoU in the AGs-Unet
model increased by 6% in group 1, by 1.3% in group 2, by 8.1% in group 3, and by 0.2% in
group 4, and its intuitive changes, as shown in Figure 7a, have increased to some extent in
each group.

Table 3. U-Net IoU, U-Net Accuracy, AGs-Unet IoU, and AGs-Unet Accuracy Statistics.

Groups 1 2 3 4

U-Net Accuracy 0.759 0.961 0.921 0.977
AGs-Unet Accuracy 1 0.819 0.963 0.937 0.973

U-Net IoU 0.709 0.827 0.802 0.944
AGs-Unet IoU 0.715 0.840 0.883 0.946

1 The first and second lines represent accuracy, and the third and fourth lines represent IoU. The maximum value
is displayed by blackening.

Figure 7. Comparison of IoU and Accuracy between U-Net and AGs-Unet models. The left figure
(a) shows the comparison results of IoU between U-Net and AGs-Unet models while the right figure
(b) shows the comparison results of Accuracy between U-Net and AGs-Unet models.

5. Discussion
5.1. Model Comparison
5.1.1. Comparison of Prediction Results

In Figure 8, the first two columns show the comparison of building extraction results
of SegNet, FCN8s, DANet, U-Net, PISANet, ARC-Net, and AGs-Unet models on the WHU
dataset, while the third and fourth columns show the results on the INRIA dataset. Overall,
compared to the other six models, AGs-Unet have better smoothness on the edge of the
building on the test data, and the buildings extracted by AGs-Unet have more accurate
edges and fewer internal voids under the action of grid-based AGs modules. In the first
image of the test dataset, the buildings in the upper left corner of the image framed by a
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purple rectangle are selected. The SegNet model with the highest computational resource
occupancy is better at extracting the integrity of buildings than FCN8s and DANet. The
U-Net model extracts the problem of empty holes in buildings. PISANet model extracts
small buildings with poor results in terms of local deficiencies and lack of integrity. The
smoothness and accuracy of the edge line extracted by ARC-Net model in the upper left
corner of small buildings are not high. The AGs-Unet model extracts the smooth, accurate
edge lines, and completes the internal structure of buildings.

Figure 8. Cont.
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Figure 8. Comparison of extraction results of each model building in test dataset. The first two rows
are aerial images and ground truth, respectively. Rows 3–8 are building extraction results of SegNet,
FCN8s, DANet, U-Net, PISANet, ARC-Net, and our proposed AGs-Unet, respectively. The green and
black pixels of the maps represent the predictions of true positive and true negative, respectively.

In the second image of the test set, two details of the convex part of the extension and
the concave part of the subsidence in the whole building selected by the orange frame are
selected. The SegNet model prediction map does not extract the convex local information
of the building, and large holes in the concave local area exist. Both FCN8s and DANet fail
to extract the convex local information of the building, and the FCN8s model’s performance
had less missing for concave local feature area, which showed better prediction effect.
PISANet and ARC-Net fail to clearly extract the two details of building contour lines. The
U-Net model extracts the convex local information of the building. However, a problem
of incomplete target prediction in the concave local area exists. The AGs-Unet model
accurately extracts convex and concave details. According to the overall analysis of the
validation set data, the integrity of buildings extracted by SegNet and FCN8s models is
insufficient, and the edge fluency is not high. The AGs-Unet model extracts relatively
smooth and accurate edge lines and relatively complete internal structure of buildings, so
it has the best experimental effect.

In the INRIA dataset, DANet, ARC-Net and AGs-Unet models have better integrity
and the AGs-Unet model is relatively more accurate for the building outlines. The module
of double attention in DANet enhances the effect of image feature extraction and makes the
integrity of building extraction results better. Meanwhile, the module of AG in AGs-Unet
also improves the model′s ability to extract building features, suppresses irrelevant feature
information, and facilitates the integrity of building extraction results.

Table 4 shows the quantitative evaluation results of models in the WHU dataset and
INRIA dataset. The proposed AGs-Unet model holds the best scores relative to established
models, except for OA, where DANet performs better in the INRIA dataset. In the WHU
dataset, IoU is emphasized and shows that this model is 8% higher than the SegNet model,
7.9% higher than the FCN8s model, 6.5% higher than the DANet model, 1.2% higher than
the U-Net model, and 0.8% higher than PISANet, and 0.5% higher than ARC-Net. In the
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INRIA dataset, analysis of IoU shows that this model is 26.9% higher than model SegNet,
19.8% higher than model FCN8s, 0.6% higher than model DANet, 1.1% higher than model
U-Net, 3.1% higher than model PISANet, and 0.3% higher than model ARC-Net.

Table 4. Quantitative evaluation results of the three indexes of each model in the WHU dataset and
the INRIA dataset. The best scores are highlighted in bold.

Dataset WHU Dataset INRIA Dataset

Model OA Precision IoU OA Precision IoU

SegNet 0.944 0.856 0.775 0.888 0.791 0.413
FCN8s 0.948 0.870 0.776 0.838 0.703 0.484
DANet 0.952 0.922 0.790 0.929 0.839 0.676
U-Net 0.967 0.931 0.843 0.916 0.862 0.671

PISANet 0.962 0.935 0.853 0.906 0.885 0.651
ARC-Net 0.952 0.855 0.793 0.921 0.835 0.679
AGs-Unet 0.969 0.937 0.855 0.919 0.907 0.682

5.1.2. Model Complexity Comparison

In this paper, experiments are designed according to the method in Section 3.2.2, and
the parameters and computations of each model are counted to evaluate the complexity
of the model. To measure the time cost of training models, we recorded the average time
required for each model to train an epoch on both datasets. As shown in Table 5, the largest
number of parameters is FCN8s 134.27 M, AGs-Unet model parameters of these seven
models at a medium level. The calculation amount and training time consumption of
FCN8s are also the highest, followed by AGs-Unet model. Although the model accuracy
has been significantly improved, the calculation consumption has also increased.

Table 5. Parameters, computation, and training time of each model in WHU dataset and INRIA
dataset. The highest scores are highlighted in bold.

Model Parameters (M) Computation
(G Mac)

WHU Dataset
Training Time

(s)/Epoch

INRIA Dataset
Training Time

(s)/Epoch

SegNet 16.31 23.77 222 69
FCN8s 134.27 62.81 393 74
DANet 49.48 10.93 138 70
U-Net 13.4 23.77 212 66

PISANet 11.03 23.89 294 70
ARC-Net 16.19 16.6 193 69
AGs-Unet 34.88 51.02 316 72

This study counts the number of parameters and the amount of computation consumed
by each structure in the AGs-Unet model from the encoder, the converter, to the decoder.
Figure 9 shows the number of parameters and the amount of computation accumulated
layer-by-layer from the bottom to the top. The fifth structure block in the converter has
14.16 M data volume, which accounts for 40.6% of the total data volume, indicating that the
image feature transfer converter is the region with the largest amount of model data. The
calculation amount of each model is counted in the order of data dimension 3 × 224 × 224.
The calculation amount is mainly consumed in the upper sampling stage. The average
consumption of ‘Up’ is 5.5 G Mac per time, which accounts for 10.9%, and a total of four ‘Up’
accounts for more than 40%. In the model calculation statistics, the average consumption
of each AGs is 0.21 G Mac, accounting for 0.4%.
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Figure 9. Statistics of structural parameters and calculations for AGs-Unet.

5.2. Ablation Experiment

In this section, the model simplification experiment is performed to ensure that each
group is carried out under the same experimental conditions. Considering the number
of AGs in the model, this study constructs three other models with U-Net, AGs-Unet-2,
and this model and conducted three groups of comparative experiments. The AGs-Unet-2
model represents the removement of AGs in the first and third layers based on the AGs-
Unet model, keeping only the two AG modules on the second and fourth layers, hence the
name is AGs-Unet-2. To reduce the consumption of computer GPU resources, these three
groups of experiments train 50 periods on the basis of other unchanged hyperparameters.
The accuracy of the statistical model and IoU are compared with the prediction results of
the optimal model on the test set data.

Figure 10 shows the visualization results of the models in three different scenarios of
the test set. In the first line, the scene is a small building target with discrete distribution.
The U-Net model has obvious missed buildings, while the results of the AGs-Unet-2
model have some finely distributed false detection buildings. This AGs-Unet model has
worse results and more accurate building edges. The second scenario focuses on large
building targets. U-Net and AGs-Unet-2 models have many missed detections at the edge
of buildings, while the buildings extracted by the AGs-Unet model have smoother edges,
indicating that the four-dimensional AG module effectively enhances the ability of building
edge extraction. As shown in the third line, water background exists in the building target
with regular distribution of aggregation, as shown in the upper left area of the image
in the third row. In this case, other models have worse performance, resulting in lots
of misjudgment. This model correctly excludes the interference of the water area and
accurately extracts the building. It is proved that the multi-dimensional features extracted
by AGs-Unet through four-level attention gates can suppress background information and
extract effective features of buildings.
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Figure 10. Comparison of aBlation experimental results. The first two columns are aerial images and
ground truth, respectively. Columns 3–5 are building extraction results of U-Net, our proposedAGs-Unet-2
with 2 AG in U-Net, and AGs-Unet, respectively. The green, red, blue, and black pixels of the maps
represent the predictions of true positive, false positive, false negative, and true negative, respectively.

The test set of the experimental results uses 120 images of the three groups with
different proportions of selected buildings. As shown in Table 6, the experimental results
show that the number of AGs will affect the accuracy of the test data. The highest accuracy
of the AGs-Unet is 97.81%, and the highest accuracy on IoU is 84.38%. In Precision, U-Net
model is the best, AGs-Unet-2 is the second best, and our proposed AGs-Unet with four
AG is lower. We analyze that adding the AG module to standard U-Net increases the
complexity of the model, but instead weakens the ability of the model to recognize the false
positive pixels. It makes the pixels of FP in our proposed AGs-Unet model increase, which
decreases the precision in turn, as Formula (4) shown.

Table 6. Accuracy statistics of ablation experiment in WHU dataset. The best scores are highlighted
in bold.

Model OA Precision IoU

U-Net 0.9713 0.9689 0.8358
AGs-Unet-2 0.9778 0.9251 0.8402
AGs-Unet 0.9781 0.9051 0.8438

In short, in the experiment, this study compared the proposed method with the most
advanced method and verified the effectiveness and rationality of the proposed method.
Thereafter, the WHU building data set was used for model simplification, and remarkable
results are shown in the test and verification sets.

6. Conclusions

In this study, the AGs-Unet model is proposed, and four AG modules are integrated
into the standard U-Net model to solve the task of extracting dense building targets in
the semantic segmentation model of high-resolution remote sensing images. Two public
datasets, Inria Aerial Image Labeling Dataset and WHU Building Dataset, were used to
verify the effectiveness of AGs-Unet. These datasets contain buildings with highly diverse
sizes, types and shapes. Experimental results have demonstrated that the AGs-Unet made
full use of the local and global information together and obtained higher final accuracy.



Sensors 2022, 22, 2932 19 of 21

AGs-Unet can reduce the number of false positive and false negative pixels in the buildings
and extract the building contour more accurately. In addition, this paper discusses the
advantages and problems of CNN models with different numbers of AGs in remote sensing
image building extraction.

In this study, the above experiments prove the effectiveness and progress of the present
method, however, it still has some limitations. For example, buildings in areas with sparse
distribution of objects have poor extraction and low accuracy, and the method is adversely
affected by impermeable surface interference, low quality images caused by clouds and fog,
and vegetation shading. Meanwhile, the boundaries of adjacent buildings are blurred, and
the method outlined in this paper finds that the model has more difficulty in determining
the adjacent relationship of the buildings with blurred boundaries, and are likely to be
identified as a single building. We add the partial structure of four AG modules to the
connection layer, which increases the numbers of parameters to a certain extent and can
raise extra training time. In the future, we intend to introduce interferometric synthetic
aperture radar (InSAR) technology to overcome the influence of vegetation shading and
non-building interference, yield higher-resolution remote sensing images and improve the
building blocks of the host model. We will continue to integrate additional and higher-
resolution remote sensing images, and explore the post processing methods to make the
relationships of buildings clearer, then improve the extraction accuracy of sparse buildings.
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