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Abstract: Non-Intrusive Load Monitoring (NILM) describes the process of inferring the consumption
pattern of appliances by only having access to the aggregated household signal. Sequence-to-
sequence deep learning models have been firmly established as state-of-the-art approaches for
NILM, in an attempt to identify the pattern of the appliance power consumption signal into the
aggregated power signal. Exceeding the limitations of recurrent models that have been widely used in
sequential modeling, this paper proposes a transformer-based architecture for NILM. Our approach,
called ELECTRIcity, utilizes transformer layers to accurately estimate the power signal of domestic
appliances by relying entirely on attention mechanisms to extract global dependencies between the
aggregate and the domestic appliance signals. Another additive value of the proposed model is
that ELECTRIcity works with minimal dataset pre-processing and without requiring data balancing.
Furthermore, ELECTRIcity introduces an efficient training routine compared to other traditional
transformer-based architectures. According to this routine, ELECTRIcity splits model training into
unsupervised pre-training and downstream task fine-tuning, which yields performance increases in
both predictive accuracy and training time decrease. Experimental results indicate ELECTRIcity’s
superiority compared to several state-of-the-art methods.

Keywords: NILM; non-intrusive load monitoring; transformers; energy disaggregation; imbalanced
data; deep learning

1. Introduction

Non-Intrusive Load Monitoring (NILM), or energy disaggregation, is an efficient
and cost-effective framework to reduce energy consumption [1]. Energy (or Electricity)
disaggregation algorithms aim to infer the consumption pattern of domestic appliances
by only analyzing the aggregated household consumption signal. This process can be
viewed as the decomposition of the aggregate power signal of a household into its additive
sub-components, i.e., power signals of each domestic appliance. Various NILM approaches
have been proposed in the literature. Some of the most successful exploit deep learning
structures, such as recurrent [2] or convolutional neural networks (CNN) [3], to extract
information about individual appliance consumption. Even though these techniques
have good performance in energy disaggregation tasks, there are some limitations and
challenges. Challenge 1: These algorithms are easy to be trapped in the assumption that
adjacent events in a sequence are dependent, while, as long as time passes, the interactions
between remote events are faded. Challenge 2: Long Short-term Memory (LSTM) [1]
models have a memory mechanism, that decides the worth-remembering information from
the useless one, every time a new state is entered in the sequence. Thus, local dependencies
are more powerful than global ones, and old -or infrequent- events are faded in case they
do not appear regularly. Data balancing is a necessary prerequisite in these approaches, to
maintain important information. Challenge 3: Temporal Convolutional Neural Network
(CNN) architectures capture long-range temporal dependencies in time series, with the
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necessary adaptations that include residual connections and dilated convolutions, but
require significant model depth to catch long-range dependencies.

In this study, we introduce ELECTRicity, a transformer-based framework for solving
the NILM problem. transformers do not sequentially process data. Instead, they process
the entire sequence of data, understand the significance of each part of the input sequence
and assign importance weights accordingly, using attention mechanisms, to learn global de-
pendencies in the sequence. Even though transformer architectures seem suitable for NILM
challenges, their applicability is limited [4] due to lack of efficiency and computational
complexity issues. To fully exploit the capabilities of the transformer-based architecture,
ELECTRicity consists of two parts: (i) the pre-training process, which is an unsupervised
pre-training process that requires only the aggregated power signal as input, (ii) the train-
ing process, in which the pre-trained transformer model is fine-tuned in a supervised way to
predict the electrical consumption of a specific domestic appliance. During the pre-training
step, our model consists of a transformer-based generator and a discriminator, that co-
operate to increase model performance, while using few computational resources. This
process lead to a novel, efficient NILM framework, that has the comparative advantages
summarized below:

• ELECTRIcity is capable of learning long-range temporal dependencies. In seq2seq
models, learning temporal dependencies is a demanding task, and often the model
forgets the first part, once it completes processing the whole sequence input. ELEC-
TRIcity utilizes attention mechanisms and identifies complex dependencies between
input sequence elements regardless of their position.

• ELECTRIcity can handle imbalanced datasets. Our work demonstrates that combin-
ing the unsupervised pre-training process with downstream task fine-tuning, offers
a practical solution for NILM, and handles successfully imbalanced datasets. This is
a comparative advantage against the existing state-of-the-art NILM works which, in
most cases, require data balancing to achieve good performance.

• ELECTRIcity is an efficient and fast transformer. ELECTRIcity introduces a compu-
tationally efficient unsupervised pre-training process through the combined use of a
generator and a discriminator. This leads to a significant training time decrease with-
out affecting model performance compared to traditional transformer architectures.

Related Work

Deep learning has achieved great success in domains such as computer vision and
natural language processing (NLP) [5]. Since 2015, deep neural networks (DNN) have
transversed into NILM and the number of the proposed DNN approaches has increased
rapidly [6].

Recurrent neural networks (RNN), LSTM, bidirectional LSTM (BiLSTM), and gated
recurrent unit (GRU) networks have been firmly established as state-of-the-art approaches
in NILM [7]. These techniques take advantage of recurrent mechanisms to identify temporal
patterns in power consumption sequences. Recurrent layers utilize feedback connections to
capture temporal information in ‘memory’ and are well suited to sequential power signal
data and energy disaggregation tasks. However, RNN lacks the ability to learn long-range
temporal dependencies due to the vanishing gradient problem, as the loss function decays
exponentially with time [8].

LSTMs rely on memory cells that employ forget, input, and output gates to memo-
rize long-term temporal dependencies [2]. Even though LSTMs are successful in several
time-series-related tasks, their elaborate gating mechanism may result in increased model
complexity. At the same time, computational efficiency is a crucial issue for recurrence-
based models and alternative architectures, such as GRU networks, have been developed
to alleviate this limitation. These have been widely proposed in NILM [9].

CNN-based architectures have made great progress towards capturing long-range
temporal dependencies in time series [10], but require significant model depth to expand
their receptive field. Various works have proposed CNN-based solutions that leverage



Sensors 2022, 22, 2926 3 of 14

emerging advancements like, for instance, causal or temporal 1D-CNN to address NILM-
related challenges [3]. These networks combine causal, dilated convolutions and other
model modification techniques, such as residual connections or weights normalization to
limit computational complexity without affecting the model’s performance. Alternative
approaches suggest hybrid CNN-RNN architectures, that benefit from the advantages of
both convolutional and recurrent layers. Representative examples of how these hybrid
structures can be applied to NILM are [11,12].

Sequence-to-sequence (seq2seq) models have been widely used for energy disaggre-
gation [7]. These models are particularly successful at machine translation [13], where
word sequences are translated from one language to another. By analogy, in the energy
disaggregation field, the aggregated sequence is translated through a seq2seq model to
the power consumption of a specific domestic appliance. Denoising autoencoders are
commonly considered the current state-of-the-art deep learning method for NILM [6,14].
Apart from seq2seq models, sequence-to-point (seq2point) and sequence-to-subsequence
(seq2subseq) methods have also been utilized.

Most of the aforementioned studies deploy a pre-processing strategy to handle data
balancing properly. In a NILM framework, the time interval between an appliance being
switched on and off is referred to as an activation [7]. Domestic appliances, depending
on their household use, may showcase from zero to several activations daily. Usually, the
appliance run-time is considerably shorter compared to the time it is switched off, which
leads to skewed datasets with sparse appliance activations.

Transformers [15] have rapidly emerged across a wide variety of sequence modeling
tasks [16–18], due to their ability to arbitrarily and instantly access information across time,
as well as their superior scaling properties compared to recurrent architectures. The main
advantage of transformers stems from the fact that they, in contrast to the aforementioned
architectures, process a sequence in parallel in an order-invariant way. Techniques such as
positional embeddings and attention masking are an integral part of transformer-based
methodologies [19,20]. Original transformers do not rely on past hidden states to capture
dependencies. On the contrary, they process a sequence as a whole, mitigating the risk to
lose -or ‘forget’- past information. As a consequence, transformers do not suffer from long-
range dependency issues, which is the main controversy in RNN. Even though transformer
architectures seem suitable for NILM challenges, their applicability is limited [4] due to
efficiency and computational complexity issues.

2. Background
2.1. NILM Problem Formulation

Let M be the number of household appliances and i be the index referring to the
i-th appliance (i = 1, . . . , M) [21]. The aggregate power consumption x at a given time
t is the sum of the power consumption of the individual appliances M, denoted by yi
∀ i = 1, . . . , M. Thus, in a NILM framework [22], the total power consumption x at a given
time t is:

x(t) =
M

∑
i=1

yi(t) + εnoise(t) (1)

where εnoise describes a noise term. Our goal is to solve the inverse problem and estimate
the appliance consumption patterns yi, given the aggregate power signal x. Therefore,
NILM is formulated as a blind-source separation problem that is highly undetermined,
since there are infinite combinations of yi that reconstruct x.

NILM presents several significant challenges that need to be overcome. The power sig-
nal exhibits severe non-linearity, since the temporal periodicity of the individual appliance
activation depends on contextual characteristics [1], i.e., geographic and socioeconomic
parameters or even residents’ habits. This leads to diverse energy consumption patterns
in households. Therefore, it is challenging to implement models with good generaliza-
tion ability that achieve high performance when tested on unseen houses. Other notable
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challenges include long-range temporal dependencies in appliance activations, as well as
dataset imbalance. Many appliances may not be turned on every day, and operate for a
small period of time, resulting in their activation function being dominated by zeros.

2.2. Transformer Model Fundamentals

The transformer model [15] consists of two major components: a multi-head attention
(MHA) module and a position-wise feed-forward network (PFFN). An overview of the
transformer layer is depicted in Figure 1. The input signal is first normalized and fed to the
multi-head attention layer, which calculates the attention scores (see Section 2.2.1). Then,
the attention scores are normalized and passed on to a position-wise feed-forward layer
(see Section 2.2.2). Residual connections and dropout regularization [23] are introduced to
increase the stability of the model. In the following subsections, we shall introduce the two
key components (MHA and PFFN) of a transformer layer.

Figure 1. Overview of a transformer layer [15]. Dashed lines indicate Dropout regularization [23].

2.2.1. Multi-Head Attention Mechanism

Transformers implement attention mechanism as a Query-Key-Value (QKV) model.
Attention consists of a series of linear transformations that process input sequences in an
order-invariant way and assign importance weights to each position in the sequence. Thus,
single-head dot-product attention mechanism applies linear transformations to the input
signal to form query (Q), key (K) and value (V) matrices. Let us denote the input signal as
x ∈ Rdb×dl , where db is the batch size and dl the input length. The linear transformations
can be formulated as matrices Wq ∈ Rdl×dq , Wk ∈ Rdl×dk and Wv ∈ Rdl×dv .

Q = WT
q x, K = WT

k x, V = WT
v x (2)

To ease matrix computations, Wq, Wk and Wv should have the same size dk = dq = dv.
Single-head dot product attention (denoted by A) is then a matrix multiplication of Q, K
and V after a scaling and softmax operation.

A(Q, K, V) = so f tmax(
QKT
√

dk
)V (3)
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The first term in Equation (3) can be viewed as the important weighting of values at
all positions of the sequence. Therefore, attention can inherently understand which parts of
the sequence are significant to predict the output and ignore parts that are not. This feature
is particularly useful when dealing with imbalanced datasets since the respective weight
for negative samples can automatically be set to a small value. Attention is an integral part
of our proposed model architecture, which is illustrated in Figure 2.

Figure 2. Proposed model architecture for ELECTRIcity’s generator and discriminator models. The
architecture consists of 3 parts: (1) Encoding layer, which performs feature extraction from the
input signal, (2) Transformer layers, which assign importance weights to the extracted features and
(3) Decoding layer, which generates the desired output sequence.

Instead of simply applying a single attention function, transformers deploy a multi-
head attention mechanism. MHA is calculated by extending the aforementioned single-
head attention mechanism to h dimensions (multiple heads) by concatenating the single-
head attention outputs, followed by a linear layer.

MHA = Concat(A(Qi, Ki, Vi)) ∀i ∈ 1, . . . h (4)

In literature, multiple single-head attention techniques have been developed (additive
attention [13], multiplicative attention [24], dot-product attention [15]). The latter is the
most widely used variation.

2.2.2. Position-Wise Feed-Forward Network

The normalized attention scores are passed on to a position-wise feed-forward layer
(PFFN), which performs linear transformations with GELU activation function [25]. The
linear transformations are applied to each position separately and identically, meaning that
the transformations use the same parameters for all positions of a sequence and different
parameters from layer to layer. Let us denote the attention sub-block output as a and
the weight matrices and bias vectors of each linear transformation as W1, b1 and W2, b2
respectively. Then:

PFFN(a) = GELU(0, aW1 + b1)W2 + b2 (5)

3. ELECTRIcity: An Efficient Transformer for NILM

ELECTRicity is an efficient model training routine for energy disaggregation. ELECTRic-
ity splits model training into a pre-training (Section 3.1) and a training routine (Section 3.2).
The pre-training step includes an unsupervised model trained with unlabeled data that
uses only the aggregate signal and is applied for weight initialization to boost model
performance. Here, during pre-training, we introduce the concept of generator and dis-
criminator that is inspired by [26,27] to improve the efficiency of the proposed model.
Then, the model is fine-tuned to handle the signal of an individual appliance [18] using the
discriminator model.
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3.1. ELECTRIcity’s Unsupervised Pre-Training Process

It is a common strategy in various transformer architectures to utilize a model pre-
training procedure [4,18]. In such approaches, the model is pre-trained in an unsupervised
way by replacing certain values from the input signal, and it is subsequently fine-tuned to
solve any downstream task. Nevertheless, the loss function in such approaches [4,18] is
calculated only considering the replaced positions, meaning that only a small fraction of
the data is taken into account for model training. Even though it is an interesting technique,
we argue that ignoring most output values is data inefficient and that a more effective
strategy could lead to higher performance.

ELECTRicity’s efficient pre-training approach is illustrated in Figure 3. Contrary to
the traditional transformer approaches described above, which use a single transformer
model, ELECTRicity consists of two twin transformers, a generator, and a discriminator.
In our approach, a fixed percentage of values in a given aggregate sequence x ∈ RN is
masked/replaced to create a masked aggregate signal xm. 80% of the masked samples
are replaced with a predefined value (e.x. −1), 10% with a random value taken from a
standard Gaussian distribution, and 10% with the original input value. The generator
receives the masked aggregate signal and tries to predict the original signal values at the
masking positions and reconstruct the original aggregate sequence. This procedure forces
the model to understand the interdependencies of the aggregate sequence without relying
on labeled data. The discriminator task is then to receive the generator estimation and
understand which samples correspond to the aggregate signal and which were replaced.

Figure 3. Overview of ELECTRIcity’s model training routine. Training is split into an unsupervised
pre-training mechanism and a supervised process. During pre-training, the aggregate signal is masked
at random positions with fake samples and the generator tries to reconstruct the original signal.
The discriminator has to distinguish which positions of the generator output were fake (replaced)
and which correspond to the original signal. During training, the generator is discarded and the
discriminator is fine-tuned to predict the individual appliance consumption from the aggregate signal.
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To account for the data inefficiency of traditional masked pre-training mechanisms [4],
the generator loss function is computed only on the masked portion of the signal, whereas
the discriminator loss function utilizes the whole signal. The generator loss function
consists of a combination of Mean Squared Error (MSE) and Kullback-Leibler Divergence
(DKL), while the discriminator loss function implements Binary Cross-Entropy (BCE) loss.
To properly formulate the loss functions, let x ∈ RN be the aggregate signal and x̂ ∈ RN

the generator output. Let further m ∈ RN be a binary mask with M masking positions
and xm be the masked input signal. Finally, let c be the discriminators’ output. Then the
pre-training loss functions Lgen and Ldisc are:

Lgen =
1
T

M

∑
i=1

(x̂i − x)2 + DKL(so f tmax(
x̂
τ
)‖so f tmax(

x
τ
))

Ldisc = −
1
N

N

∑
i=1

milog(p(ci)) + (1−mi)log(1− p(ci))

(6)

where τ is a hyperparameter to control softmax temperature. From a dataflow perspective,
the aggregate signal x is masked to produce xm that is used as input to the generator.
The generator output x̂ is passed on to the discriminator which predicts which values
correspond to the original aggregate signal and which were replaced. That information is
captured in vector c. This process can be summarized as:

x → xm → generator→ x̂ → discriminator→ c (7)

3.2. ELECTRIcity Supervised Training Process

On a high level, the pre-training process can be seen as a task-specific weight initializa-
tion technique to boost model performance. During training, the generator is discarded and
the discriminator is re-trained to produce the appliance signature. Since, during training,
the objective of the model changes, a different loss function is required that fits the energy
disaggregation problem. The discriminator loss function is formulated in Equation (8).

L(y, s) =
1
N

N

∑
i=1

(ŷi − yi)
2

+ DKL(so f tmax(
ŷ
τ
)‖so f tmax(

y
τ
))

+
1
N

N

∑
i=1

log(1 + exp(ŝisi)) +
λ

N ∑
i∈O
|ŷi − yi|

(8)

where, λ is another hyperparameter that controls the impact of the absolute error from the
set O of incorrectly predicted samples and timepoints when the status of the appliance is
on. The loss function also considers the ground truth status of the appliance, as well as
the on-off status s of the predicted consumption signal. During training, the dataflow is
simpler. The aggregate signal x is used as input to the pre-trained discriminator, which
outputs the individual appliance consumption signal y.

x → discriminator→ y (9)

4. Experimental Results

We use three open-source datasets for results comparison, UK-DALE [28], REDD [29]
and Refit [30]. All datasets include electricity measurements from multiple houses and
provide both low-and high-frequency data. We focus on low-frequency data and will
examine 4 appliance types: (1) Appliances with distant activations and very short activation
period (Kettle, Microwave) (2) Appliances with frequent, recurring activations that do not
have high power consumption peaks (fridge, fridge-freezer) (3) appliances with distant
activations and long activation period (Washing Machine, Dishwasher) and (4) appliances
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with distant activations and low power consumption peak (TV). It should be noted that
UK-DALE and Refit contain significantly more data than REDD and, therefore, more
appliance activations.

The data was minimally processed to meet the requirements of Table 1. Aggregate
and appliance signals were examined at 1

6 Hz frequency and time gaps shorter than 3 min
were forward-filled. No measures were taken to tackle class imbalance, as we would like to
test to what extent the models can perform well in real life scenarios when the appliances
are turned off most of the time. In the training set, the signals were split in windows of
480 samples (48 min) with a stride of 240 samples for UK-DALE and Refit and 120 samples
for REDD. The models were tested on unseen data from a house not included in the training
set without window stride. More specifically, in UK-DALE houses 1, 3, 4 and 5 were used
for training and house 2 for testing. In REDD, house 1 was kept for model evaluation and
houses 2, 3, 4, 5 and 6 were included in the training set, while in Refit houses 2, 3 and 16
were used for training and the models were tested on data coming from house 5.

Table 1. Pre-processing values for the REDD (upper), UK-DALE (middle) and Refit (lower) datasets.

Appliance λ Max. Limit On Thres. Min. on Duration [s] Min. off Duration [s]

Washer 10−3 500 20 1800 160
Microwave 1 1800 200 12 30
Dishwasher 1 1200 10 1800 1800

Fridge 10−6 300 50 60 12
Washer 10−2 2500 20 1800 160

Microwave 1 3000 200 12 30
Dishwasher 1 2500 10 1800 1800

Kettle 1 3100 2000 12 0

Washer 10−2 2500 20 70 182
TV 1.5 80 10 14 0

Fridge-Freezer 10−6 1700 5 70 14

To validate the performance of our methodology, we utilized several state-of-the-
art models that are based on different technologies. More specifically, we adopted two
recurrent approaches, GRU+ and LSTM+ [31], a convolutional seq2seq network [32,33] and
a transformer-based solution [4]. The models were trained on a Google Colab server with
an Nvidia Tesla P100 GPU.

In ELECTRIcity, both generator and discriminator followed the same architecture
(Figure 2). Feature extraction was performed with a 1D-convolutional layer with kernel
size 5 and a replicate padding of 2 on both sides. Feature extraction was followed by
a squared average pooling layer with kernel size and stride 2. On the decoding side, a
de-convolutional layer with kernel size 4, stride 2, and padding length 1 was implemented.
Both models contain 2 transformer layers with 2 attention heads each and a hidden size dk
of 64 for the generator and 64 for the discriminator. A Dropout probability of 10% has been
adopted in all Dropout layers.

4.1. Performance Metrics

We recorded four widely used metrics to evaluate model performance. Mean Relative
Error (MRE), Mean Absolute Error (MAE) and Mean Squared Error (MSE) (Equation (10))
were calculated using the ground truth and estimated appliance signature.

MRE =
1

max(Y)

N

∑
i=1
|ŷi − yi|, MAE =

1
N

N

∑
i=1
|ŷi − yi|, MSE =

1
N

N

∑
i=1

(ŷi − yi)
2 (10)
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Accuracy and F1 score were also determined to assess if the model can properly
address the class imbalance. The on-off status of the device is required and can be com-
puted by comparing the appliance signature with the predefined requirements of Table 1.
Accuracy is equal to the amount of correctly predicted time points over the sequence length,
while F1-score is computed according to Equation (11), where TP stands for True Positives,
FP for False positives and FN for false negatives.

F1 =
TP

TP + 1
2 (FP + FN)

(11)

MRE, MAE and MSE indicate the model’s ability to correctly infer the individual
appliance consumption levels, whereas F1-score indicates the model’s ability to adequately
detect appliance activations in imbalanced data. In our study, F1-score is the most important
metric, as it captures the model’s ability to identify appliance activations and minimize
false positives.

4.2. Evaluation

The experimental results for UK-DALE, REDD and Refit are presented in Tables 2–4
respectively, while Figure 4 illustrates prediction examples for each examined appliance.
Across all datasets, ELECTRIcity outperforms the other models in most of the appliances.

Figure 4. Comparison between ground truth appliance consumption signal and comparative model
outputs for all examined appliances.
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Table 2. Comparison of ELECTRIcity’s model performance to other techniques in the UK-
DALE dataset.

Device Model MRE MAE MSE Acc. F1 Training Time (min)

Kettle

GRU+ [31] 0.004 12.38 28,649.73 0.996 0.799 40.67
LSTM+ [31] 0.004 11.78 28,428.10 0.997 0.800 34.70
CNN [32,33] 0.002 6.92 16,730.81 0.998 0.889 51.87

BERT4NILM [4] 0.003 9.80 16,291.56 0.998 0.912 697.87
ELECTRIcity 0.003 9.26 13,301.43 0.999 0.939 294.37

Fridge

GRU+ [31] 0.797 31.47 1966.50 0.750 0.673 33.35
LSTM+ [31] 0.813 32.36 2058.13 0.748 0.661 34.67
CNN [32,33] 0.726 30.46 1797.54 0.718 0.686 44.43

BERT4NILM [4] 0.683 20.17 1087.36 0.859 0.831 687.12
ELECTRIcity 0.706 22.61 1213.61 0.843 0.810 428.79

Washer

GRU+ [31] 0.056 21.90 27,199.96 0.950 0.228 33.06
LSTM+ [31] 0.055 23.42 32,729.26 0.950 0.221 34.14
CNN [32,33] 0.023 15.41 25,223.21 0.984 0.518 44.46

BERT4NIMLM [4] 0.012 4.09 4369.72 0.994 0.775 687.74
ELECTRIcity 0.011 3.65 2789.35 0.994 0.797 462.95

Microwave

GRU+ [31] 0.015 7.16 8464.09 0.994 0.131 35.18
LSTM+ [31] 0.014 6.60 7917.85 0.995 0.207 37.05
CNN [32,33] 0.014 6.44 7899.43 0.995 0.193 47.32

BERT4NILM [4] 0.014 6.53 8148.81 0.995 0.049 755.58
ELECTRIcity 0.013 6.28 7594.23 0.996 0.277 518.93

Dishwasher

GRU+ [31] 0.035 28.60 43,181.30 0.975 0.722 44.31
LSTM+ [31] 0.036 28.75 42,333.18 0.975 0.727 47.48
CNN [32,33] 0.051 41.44 80,292.31 0.960 0.087 56.99

BERT4NILM [4] 0.026 14.11 14,676.17 0.982 0.804 859.87
ELECTRIcity 0.028 18.96 24,152.70 0.984 0.818 462.83

Let us now consider the kettle and microwave appliances. For these appliances,
ELECTRIcity showcases a performance increase in terms of F1-Score and, in some cases,
a slightly lower MAE across both datasets (UK-DALE, REDD). This can be translated
to a better model capability to detect activations, while not always reaching a precise
consumption prediction, which can be explained by the high data sparsity due to the
timespan of each activation. In these appliances, lighter models in terms of computational
complexity (CNN, LSTM+, and GRU+) reach lower performance at a lower training time. It
can be argued that there is a tradeoff between performance and computational complexity
during training for these appliances. It should be mentioned that ELECTRIcity and the
compared models (CNN, LSTM+, and GRU+) present similar computational demands
during the testing phase, while ELECTRIcity has a higher performance. A different pre-
training strategy, in the sense of using an alternative masking distribution, may lead to
a further performance increase. In future work, we will evaluate such approaches to
investigate the full capabilities of our model.

In the second case of experiments, we have examined the fridge in UK-Dale and fridge-
freezer in Refit appliances. When disaggregating the fridge appliance, ELECTRIcity is
outperforming most comparison models, but falls short to BERT4NILM [4]. The activations
frequency for this appliance is unique, as it exhibits a periodicity that is usually not user-
controlled. The fridge turns on when the inside temperature falls under a certain threshold,
and turns off when that threshold is reached. Throughout a day, we can assume that the
house temperature remains at a certain level, which in turn means that the periodicity of
activations is constant and the appliance activates frequently. Therefore, a disaggregation
model needs to capture the activation pattern very precisely to reach low regression errors
and high classification performance. The masking procedure in the pre-training process of
ELECTRIcity aims to model the noisy distributions in the aggregate signal, which is not
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suitable for constant recurring activations, as in the case of the fridge. On the contrary, the
fridge-freezer appliance in the Refit dataset is different than the fridge, as it combines a
periodic low-power activation with high consumption peaks stemming from the freezer
cooling. Even though ELECTRIcity achieves the best MRE, it does not fully capture the
activation pattern behavior, resulting in lower F1 score.

Table 3. Comparison of ELECTRIcity’s model performance to other techniques in the REDD dataset.

Device Model MRE MAE MSE Acc. F1 Training Time (min)

Washer

GRU+ [31] 0.028 35.83 87,742.33 0.985 0.576 2.94
LSTM+ [31] 0.026 35.71 89,855.09 0.983 0.490 3.08
CNN [32,33] 0.020 35.78 94,248.61 0.982 0.000 3.80

BERT4NILM [4] 0.021 35.79 93,217.72 0.990 0.190 59.01
ELECTRIcity 0.016 23.07 44,615.35 0.998 0.903 35.14

Microwave

GRU+ [31] 0.061 18.97 23,352.36 0.983 0.382 1.89
LSTM+ [31] 0.060 18.91 24,016.75 0.983 0.336 1.53
CNN [32,33] 0.056 18.07 24,653.65 0.987 0.336 2.22

BERT4NILM [4] 0.055 16.97 22,761.11 0.989 0.474 27.72
ELECTRIcity 0.057 16.41 17,001.33 0.989 0.610 16.49

Dishwasher

GRU+ [31] 0.049 24.91 22,065.08 0.962 0.341 2.76
LSTM+ [31] 0.050 25.09 22,297.01 0.961 0.350 2.98
CNN [32,33] 0.041 25.28 23,454.64 0.962 0.000 4.45

BERT4NILM [4] 0.038 19.67 15,488.62 0.974 0.580 59.24
ELECTRIcity 0.051 24.06 19,853.05 0.968 0.601 35.08

Next, we examine appliances with sparse, but longer duration activations (Washing
Machine, Dishwasher), where ELECTRIcity showcases superior performance compared
to the other models. For the washing machine, ELECTRIcity has better performance both
in regression and in classification metrics. This performance increase is especially evident
in the REDD dataset, where the F1 score is approximately 40% better than the second-
best performing model. As for the dishwasher, its activation pattern is different than
the washing machine, and contains more major fluctuations. ELECTRIcity produces a
higher F1 score in both datasets, albeit with a lower MAE. This is due to the fact that the
pre-training process of ELECTRIcity is suitable for modeling abnormal noisy distributions
in the aggregate signal, which fits the activation profile of this appliance category. At the
same time, ELECTRIcity requires 55% less training time than the second-best performing
model (BERT4NILM) for the washing machine and 45% for the dishwasher, confirming the
efficiency increase of our approach. We can therefore draw the conclusion ELECTRIcity is
the most suitable model for disaggregation of the washing machine and the dishwasher.

In addition to the aforementioned appliances, we evaluate the disaggregation per-
formance of an entertainment appliance (television). Entertainment appliances have par-
ticular disaggregation interest since they can be one of the main sources of energy sav-
ing for a domestic household. The television consumption pattern is different from the
appliances examined so far, as the activations are distant and have a lower power con-
sumption. Therefore, it is easier for the activations to be “lost” in the aggregate signal.
However, our approach outperforms the other models both in regression and classification
metrics, while requiring 75% less training time than the second-best performing model.
This finding is very interesting and paves the way for evaluating ELECTRIcity on other
entertainment appliances.

To summarize the above findings across all datasets, ELECTRIcity exhibits an average
comparative performance increase of 9.03%, 5.38% and 23.59% in terms of MRE, MAE
and MSE respectively, as well as an increase of 5.10% and 27.68% in terms of accuracy
and F1-score to the second-best performing model [4], thus confirming the superiority of
our approach.
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Table 4. Comparison of ELECTRIcity’s model performance to other techniques in the Refit dataset.

Device Model MRE MAE MSE Acc. F1 Training Time (min)

Washer

GRU+ [31] 0.089 24.60 31,082.49 0.929 0.128 17.95
LSTM+ [31] 0.098 25.76 32,958.09 0.920 0.130 22.86
CNN [32,33] 0.096 23.58 29,383.90 0.924 0.248 28.62

BERT4NILM [4] 0.080 22.19 27,420.48 0.939 0.188 813.25
ELECTRIcity 0.089 23.67 26,465.39 0.936 0.398 217.32

TV

GRU+ [31] 0.619 38.36 2539.97 0.410 0.370 26.51
LSTM+ [31] 0.657 39.35 2467.22 0.374 0.357 32.59
CNN [32,33] 0.776 19.52 980.39 0.352 0.318 41.17

BERT4NILM [4] 0.593 32.15 1769.43 0.452 0.381 1280.10
ELECTRIcity 0.278 19.29 1375.13 0.740 0.505 316.10

Fridge-Freezer

GRU+ [31] 0.756 56.17 4773.60 0.552 0.710 17.95
LSTM+ [31] 0.730 54.92 4567.50 0.551 0.710 22.86
CNN [32,33] 0.686 58.15 5660.37 0.561 0.713 28.62

BERT4NILM [4] 0.587 50.16 5437.78 0.623 0.674 813.25
ELECTRIcity 0.586 51.08 5331.71 0.613 0.668 217.32

Finally, we examine the performance advantages that the pre-training procedure yields
in terms of training time between the two transformer-based models (ELECTRIcity and
BERT4NILM). The total amount of training time per appliance can be seen in Figure 5. On
average, ELECTRIcity required approximately 50% less training time than BERT4NILM
using the same model size and hyperparameters. Overall, the introduction of a more
efficient pre-training technique that is not limited to a percentage of the data leads to
both performance and training time improvements, which makes ELECTRIcity a fast and
efficient transformer architecture for energy disaggregation.

Figure 5. Training time comparison between transformer architectures on UK-Dale, REDD and Refit
datasets. Averaging accross all datasets, our approach delivers a training time decrease of 50%.

5. Conclusions

In this paper, we introduced ELECTRIcity, an efficient fast transformer-based architec-
ture for energy disaggregation. ELECTRIcity outperforms state-of-the-art models in both
examined datasets without requiring any data balancing. Averaging across all devices,
ELECTRIcity achieves a performance boost across both datasets. The most significant
increase can be showcased through the MSE and F1-score, where ELECTRIcity attains an
average comparative increase of 23.59% and 27.68% respectively against the second-best
performing model BERT4NILM [4]. At the same time, ELECTRIcity requires 50% less
training time than BERT4NILM, making our approach superior in both performance and
computational efficiency.

However, the performance evaluation of our approach has highlighted some limi-
tations. In appliances with sparse and short activations, the increased training time of
ELECTRIcity may not be always justified, compared to models with lower computational



Sensors 2022, 22, 2926 13 of 14

demands during the training phase. The disaggregation performance of the model, even
though it outperforms the other comparative models, needs to be enhanced to solidify
the preference toward ELECTRIcity, especially in cases where the pre-training masking
procedure fails to model the noise distribution of the aggregate signal. At the same time,
ELECTRIcity offers a great opportunity to improve the performance of NILM on appliances
such as fridges or fridge-freezers, where the activation behavior is recurring at a similar
consumption level. The results on entertainment appliances with small power consumption
(and thus difficult to be disaggregated), such as the television, are very promising and
open further research opportunities in that direction. Finally, we believe that our approach,
which can work with minimal data pre-processing, is a big step towards the large-scale
integration of NILM techniques in domestic households. With future improvements and op-
timizations, ELECTRIcity has the potential to enable efficient federated learning strategies,
thereby increasing privacy for customers and significantly reducing data storage costs.

In future research, we will explore different pre-training strategies to assess their
impact on different appliances and improve the capabilities of the model. Additionally,
we aim to investigate the performance of our approach on less studied appliances related
to entertainment, as information about power consumption for such appliances can lead
to more environmentally aware consumption behaviors in domestic households. Finally,
we aim to evaluate the potential of ELECTRIcity at different lower sampling rates, which
could enable less intrusive metering approaches and lower storage costs for data generated
by smart meters.
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