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Abstract: Dynamic information such as the position and velocity of the target detected by marine
radar is frequently susceptible to external measurement white noise generated by the oscillations
of an unmanned surface vehicle (USV) and target. Although the Sage–Husa adaptive Kalman filter
(SHAKF) has been applied to the target tracking field, the precision and stability of SHAKF remain to
be improved. In this paper, a square root Sage–Husa adaptive robust Kalman filter (SR-SHARKF)
algorithm together with the constant jerk model is proposed, which can not only solve the problem
of filtering divergence triggered by numerical rounding errors, inaccurate system mathematics,
and noise statistical models, but also improve the filtering accuracy. First, a novel square root
decomposition method is proposed in the SR-SHARKF algorithm for decomposing the covariance
matrix of SHAKF to assure its non-negative definiteness. After that, a three-segment approach
is adopted to balance the observed and predicted states by evaluating the adaptive scale factor.
Finally, the unbiased and the biased noise estimators are integrated while the interval scope of the
measurement noise is constrained to jointly evaluate the measurement and observation noise for
better adaptability and reliability. Simulation and experimental results demonstrate the effectiveness
of the proposed algorithm in eliminating white noise triggered by the USV and target oscillations.

Keywords: target tracking; unmanned surface vehicle; Sage–Husa adaptive Kalman filter; square
root Sage–Husa adaptive robust Kalman filter; position; velocity

1. Introduction

Marine radar is widely exploited as a navigational sensing device that can gather
dynamic information on surrounding vessels over a wide area while maintaining a decent
detection performance [1]. However, its underlying technology is sensitive to external
disturbances like ocean waves, which will lead to inaccurate dynamic information being
obtained [2–4]. To address this issue, target tracking technology has been successfully
implemented to predict the dynamic information of the target and produce generally
accurate output results. Target tracking is the forecast of the ship’s next possible trajectory
as a function of its previous coordinates. The accuracy of the prediction is determined
by the accuracy with which the target’s prior and present positions were measured [5]. It
is easy to realize the compensation of measurement errors and this plays a vital role in
collision avoidance and search and rescue [6].

The Kalman filter (KF) algorithm [7,8] is capable of estimating certain conditions
of dynamic systems either in the past, present, or future, or unknown characteristics of
the model, and has been widely used in target tracking. Zhang et al. [9] proposed a
modified KF in which a novel fading factor is introduced into the cubature KF method to
achieve higher robustness and reduce the algorithm complexity simultaneously. The KF
is optimized using a new optimization criterion that is integrated with the least-squares
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method for bearings-only maneuvering target tracking [10]. Lu et al. [11] combined the
KF and variational Bayesian method to derive a new robust KF that is more resilient and
adaptable than the existing related filters. To tackle the instability problem caused by
large-scale application variations, Feng et al. [12] presented a novel filter structure that
integrates KF with spatial-temporal regularized correlation filters. To cope with the problem
of heavy noise causing dramatic performance degradation, Liu et al. [13] proposed two
new maximum correntropy extended KF algorithms that apply the maximum correntropy
criterion rather than the minimal mean-square-error criterion to the extended KF. For the
preceding target vehicle lateral state estimation, Zhou et al. [14] integrated sensor data and
estimated states as measurements and developed a state-input-parameter mixed KF to deal
with the cohabitation of uncertain model parameters and unknown control inputs.

The performance of a traditional KF may suffer due to the undervaluation of the noise
covariance matrix and the response latency of the gain matrix when the target undergoes
an abrupt state change. To overcome the aforementioned problems, SHAKF [15,16] has
been introduced. To fulfill the need for greater accuracy and stability of the integrated
navigation system, Guo et al. [17] implemented a Sage–Husa adaptive Kalman filter with
nonholonomic constraints and forward/backward filtering to an IMU/GPS integrated
system. In [18], a novel approach based on the adaptive current statistical model with
velocity prediction is proposed, which uses a simplified Sage–Husa estimator to achieve
an online measurement noise covariance matrix. At each tracking step, Hou et al. [19]
employed a modified Sage–Husa online noise estimator to predict the uncertain process
and measurement noise. To improve the performance of state estimation, a state error
covariance adaptive five-degree cubature Kalman technique based on the Sage–Husa
noise estimation principle is presented in [20]. Yan et al. [21] proposed a tracking method
that integrates an improved compressive tracking algorithm with a modified SHAKF
to achieve excellent accuracy and robustness in tracking. Luo et al. [22] proposed an
adaptive unscented KF based on a modified SHAKF and divergence calculation technique
to correct the measurement noise for multi-dimensional vehicle driving state evaluation.
To improve the accuracy of an attitude heading reference system, Narasimhappa et al. [23]
proposed a modified Sage–Husa adaptive robust KF (MSHARKF) based on adaptive robust
estimate theory. However, due to the small size of a USV and its susceptibility to external
environmental factors, these methods are not very effective in eliminating white noise
generated by the oscillations of the USV and the target, and this will give rise to instability
and loss of accuracy when dealing with the filter divergence problem that occurs in target
tracking. Therefore, the square root Sage–Husa adaptive robust KF (SR-SHARKF) algorithm
is used for target tracking of the constant jerk model in this paper.

In this paper, the contributions are primarily reflected in five aspects as follows:
(1) Use of the constant jerk model can compensate for the dynamic interference caused

by a large number of external factors in the marine environment.
(2) A SR-SHARKF algorithm is developed to significantly improve the filtering accu-

racy while reducing the impact of transient disturbance caused by the large-scale USV jitter
problem on subsequent estimation.

(3) A novel square-root decomposition method is introduced into the SHAKF algo-
rithm to decompose the covariance matrix to assure its non-negative definiteness, which
can address the issue of filtering divergence triggered by numerical rounding errors.

(4) A three-segment approach is adopted to balance the observations and predicted
states by evaluating the adaptive scale factor, which is beneficial to reduce the influence of
outliers and state disturbances generated by severe conditions of the USV oscillations.

(5) The measurement noise range is limited to a minimum and maximum thresh-
old, after which the unbiased and biased noise estimators are integrated to evaluate the
measurement and observation noise, resulting in increased flexibility and reliability by
minimizing filtering divergence.

The remainder of the paper is laid out as follows: Section 2 briefly introduces the
state-space model of the target tracking system. Section 3 describes briefly the Sage–Husa
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adaptive Kalman filter algorithm and the extended Sage–Husa adaptive Kalman filter is
proposed. In Section 4, the parameters are determined and we compare the results of
simulations with different algorithms. Finally, the conclusions are presented in Section 5.

2. State-Space Model of Target Tracking System

The acceleration of the target may be constantly changing during the movement, but it
can be considered that the change rate of acceleration, i.e., the jerk, remains a constant value
over a long period and space, and subject to random systematic errors within a certain
range. Therefore, the SR-SHARKF algorithm is applied based on the constant jerk dynamic
model. Since the algorithm is proposed for linear systems, it is only applicable to linear
systems. The constant jerk dynamic model comprises all the indispensable parameters for
target tracking, and it is used to link the radar-measured variables with the state variables.

Traditional KF-based tracking algorithms are typically accomplished by tracking the
target’s coordinates, whether applied to shipboard radar systems or other platforms. Since
the information measured by the radar includes only the velocity of the target, the range
from the USV to the target, the azimuth, and the heading of the target, the aforementioned
parameters should be converted to Cartesian coordinates to apply the KF framework.
The mapping of angles and ranges to Cartesian space has an uncertainty factor that causes
many errors, but they are within the allowable range of the system. Assuming that the initial
starting point Pinit of the USV radar target tracking is the coordinate origin, the orientation of
due east is the X-axis, and the orientation of due north is the Y-axis, a 2-D plane coordinate
system in the radar plane is established as shown in Figure 1. The coordinates of the
USV’s initial starting point Pinit, and the first point Pfirst to the current point Pcurt are
(xU

0 , yU
0 ), (xU

1 , yU
1 ),. . . ,(xU

n , yU
n ), respectively. Considering that PTcurt(x, y) represents the

current position of the marine target, the current position of the target can be obtained from
the position of the USV as follows:

x =
n
∑

i=1
(xU

i − xU
i−1) + d cos β

y =
n
∑

i=1
(yU

i − yU
i−1) + d sin β

(1)

where n represents the number of the radar’s detection periods from the start to the current
state for target tracking, d is the distance between the USV and the target, and β is expressed
as

β=

{ 5π
2 − θ, i f ( 5π

2 − θ) ≤ 2π
π
2 − θ, elsewise

(2)

where θ is the azimuth between the target and the USV.
Let the relative position, relative velocity, relative acceleration, and relative jerk in

the X-axis direction be xk, ẋk, ẍk,
...
x k, and the measured values of the relative position and

relative velocity are xkm, ẋkm, respectively. The system state-space model of the target can
be established as the following discrete formation. The system equation is

Xk =ΦXk−1+GWk−1 (3)

where Xk is the estimated state vector of the target motion in front of the k-th detection
period, Φ is the state transition matrix, G represents the system noise distribution matrix,
and Wk denotes the system noise vector. The matrix forms of Xk, Φ, and G are expressed as
follows:

Xk = [xk, ẋk, ẍk,
...
x k]

T (4)

Φ=


1 ∆T ∆T2/2 ∆T3/6
0 1 ∆T ∆T2/2
0 0 1 ∆T
0 0 0 1

 (5)
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G =
[

∆T4/24 ∆T3/6 ∆T2/2 ∆T
]T (6)

where ∆T is the radar sampling time. The measurement equation is

Zk = HXk + Vk (7)

where Zk is the measurement state vector of the target motion in front of the k-th detection
period, H is the measurement matrix, and Vk represents the measurement noise vector.
The matrix forms of Zk and H are denoted as follows:

Zk = [zk, żk]
T (8)

H =

[
1 0 0 0
0 1 0 0

]
(9)

In (3) and (7), both Wk and Vk denote Gaussian white noise that satisfies Wk ∼WN(qk, Qk),
Vk ∼WN(rk, Rk); they are independent of each other and meet the following requirements:

E[Wk] = qk (10)

Cov
[
Wk, Wj

T
]
=

{
Qk, j = k
0, j 6= k

(11)

E[Vk] = rk (12)

Cov
[
Vk, Vj

T
]
=

{
Rk, j = k
0, j 6= k

(13)

Cov
[
Wk, Vj

T
]
= 0 (14)

where qk and Qk represent the mean and covariance of the system noise, respectively, and rk,
Rk denote the mean and covariance of the measurement noise.

The model in the Y-axis direction can be obtained in the same way, so this paper will
not describe it in detail here.

d

Y

X

b 

Pinit   

Shipboard radar 

scan line
Pfirst   

Pcurt   

PTcurt   

Figure 1. Coordinate systems for target parameterization with radar sensor measurements.

3. Proposed Square-Root Sage–Husa Adaptive Robust Kalman Filter (SR-SHARKF)
3.1. The SHAKF Algorithm

SHAKF, one of variants of the conventional KF, has a comparative advantage in
eliminating noise that can vary with environmental conditions, which is significant in
increasing the target tracking system’s stability and accuracy. The filtering flows of the
SHAKF algorithm can be described as follows [24]:
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(1) Time update
Xk,k−1 = Φk,k−1Xk−1 + Gk−1qk−1 (15)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Gk−1Qk−1GT

k−1 (16)

where Pk,k−1 represents the one-step state prediction error covariance matrix and Pk−1
denotes the error covariance matrix of state prediction.

(2) Measurement update

εk = Zk − HkXk,k−1 − rk−1 (17)

Xk = Xk,k−1+Kkεk (18)

Kk = Pk,k−1HT
k (HkPk,k−1HT

k + Rk)
−1 (19)

Pk = (I − Kk Hk)Pk,k−1 (20)

where εk is the discrepancy vector and Kk is the filter gain matrix. The statistical recursive
estimator for time-varying noise is

Gkqk = (1− dk)Gk−1qk−1 + dk(Xk −Φk,k−1Xk−1) (21)

GkQkGT
k =(1− dk)Gk−1Qk−1GT

k−1 + dk(KkεkεT
k KT

k

+ Pk −Φk,k−1Pk−1ΦT
k,k−1)

(22)

rk = (1− dk)rk−1 + dk(Zk − HkXk,k−1) (23)

Rk = (1− dk)Rk−1 + dk(εkεT
k − HkPk,k−1HT

k ) (24)

where dk= (1−b)/(1−bk) ∈ (0, 1) denotes the amnestic factor, b is the forgetting factor,
and 0 < b < 1.

3.2. The Square-Root Sage–Husa Adaptive Robust Kalman Filter (SR-SHARKF)

In order to operate on the vibration problem of the USV and target, the SR-SHARKF
method is proposed, which is based on the SHAKF algorithm. The improvement of the
SR-SHARKF algorithm is mainly split into the following several aspects.

3.2.1. Square-Root Decomposition Method

Based on the SHAKF algorithm, a square-root decomposition method of the state
error covariance matrix is proposed. On the SR-SHARKF algorithm, the one-step state
prediction error covariance matrix Pk,k−1, the error variance matrix Pk−1, and the system
noise covariance matrix Qk−1 are decomposed. This can guarantee that the covariance
matrix is non-negative definite to prevent algorithm divergence issues caused by rounding
errors [25].

The covariance decomposition matrix can be expressed as

Uk,k−1 = [Φk,k−1Uk−1 Gk−1Sk−1] (25)

where Uk,k−1, Uk−1 and Sk−1 represent the decomposition factors of matrices Pk,k−1, Pk−1
and Qk−1 respectively, and satisfy Pk,k−1 =Uk,k−1UT

k,k−1, Pk−1 =Uk−1UT
k−1, Qk−1 = Sk−1ST

k−1.
Uk−1 and Sk−1 are obtained by Cholesky factorization [26]:

Uk−1 = chol(Pk−1) (26)

Sk−1 = chol(Qk−1) (27)

where chol(·) represents the Cholesky decomposition function.
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The corresponding measurement update changes as shown

Fk = UT
k,k−1HT

k (28)

λk = [FT
k Fk + Rk]

−1 (29)

Kk =Uk,k−1Fkλk (30)

Pk = (I − Kk Hk)Uk,k−1UT
k,k−1 (31)

After decomposition, although the forms of the covariance matrix, gain matrix, and
other matrices have changed, the core idea of the KF is still there, which has a significant
effect on overcoming the filter divergence triggered by numerical rounding errors.

3.2.2. Three-Segment Method

The SR-SHARKF algorithm introduces an adaptive scale factor to balance the con-
tribution of kinematic model information and measurements on state vector estimation
utilizing a three-segment technique followed by learning statistics [27]. In each iteration,
the adaptive scale factor is updated as Kalman gain and state estimation error covariance
matrix, reducing the uncertainty in the prediction state error model.

The adaptive scale factor αk is calculated as follows

αk =


1, |∆Xk| ≤ c0

c0
|∆Xk |

(
c1−|∆Xk |

c1−c0

)2
, c0 < |∆Xk| ≤ c1

0, |∆Xk| > c1

(32)

where ∆Xk = Xk − Xk,k−1 denotes the residual vector of the predicted state vector, and
1 ≤ c0 ≤ 1.5 and 3 ≤ c1 ≤ 4.5 are two constants [23,28]. The learning statistics of the
predicted state error model |∆Xk| are given as

|∆Xk|=
‖εk‖√

tr(HkPk,k−1HT
k + Rk)

(33)

where tr(·) represents the trace of the matrix. Then, the gain matrix and the error variance
matrix are adjusted to

λk = [
1
αk

FT
k Fk + Rk]

−1 (34)

Kk =
1
αk

Uk,k−1Fkλk (35)

Pk =
1
αk

(I − Kk Hk)Uk,k−1UT
k,k−1 (36)

3.2.3. Noise Covariance Adjustment Method

According to (17), if the practical system measurement noise is lower than the the-
oretical one and the preceding estimation error is too great, the R-matrix is more likely
to lose its positive definiteness, causing the filtering results to diverge. To overcome this
problem, the sequential filtering approach is used to limit the size of each element of the
R-matrix diagonal, and the biased noise estimator is introduced to regulate the R-matrix
and Q-matrix. The biased noise estimator corresponding to the R-matrix and Q-matrix can
be expressed as [29]:

Rk = (1− dk)Rk−1 + dk(εkεT
k ) (37)

GkQkGT
k = (1− dk)Gk−1Qk−1GT

k−1 + dk(KkεkεT
k KT

k ) (38)
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The upper and lower bounds of the R-matrix named Rmax and Rmin are given as
follows

Rmax = diag(R1
max, R2

max, . . . , Rl
max) (39)

Rmin = diag(R1
min, R2

min, . . . , Rl
min) (40)

where l is the dimension of measurement vector. The scalar measurement equation is
expressed as follows

βi
k = εi

k(ε
i
k)

T − Hi
kPi

k,k−1(Hi
k)

T (41)

where the superscript i denotes that this variable corresponds to the ith vector in the
R-matrix. The R-matrix range is limited to meet the following conditions

R(i)
k =


(1− dk)R(i)

k−1 + dkR(i)
min, βi

k < R(i)
min

R(i)
max, βi

k > R(i)
max

(1− dk)R(i)
k−1 + dkR(i)

k,k−1, others

(42)

where R(i)
k represents the ith scalar element of the diagonal of the R-matrix at time k [30].

The unbiased and biased noise estimators are merged, and R(i)
k,k−1 can be denoted as follows

R(i)
k,k−1 =

{
βi

k, i f R(i)
k is positive de f inite

εi
k(ε

i
k)

T, i f R(i)
k is not positive de f inite

(43)

The calculation formula of the Q-matrix can be expressed as

GkQkGT
k =

{
Equation (22), i f Qk is positive semide f inite
Equation (38), i f Qk is not positive semide f inite

(44)

3.2.4. The SR-SHARKF Algorithm Steps

The SR-SHARKF algorithm validly integrates the square-root decomposition method,
three-segment method, and noise covariance adjustment method to obtain a complete set
of algorithm update steps, which mainly include the following steps:

Step 1. The initial values X0, P0, U0, r0, R0, q0, Q0, S0, b, c0, c1, k = 1 are given.
Step 2. The nominal state and the error covariance matrix are predicted in one step by

(15) and (16) to obtain Xk,k−1 and Pk,k−1. Pk,k−1 is decomposed into Uk,k−1 using (25).
Step 3. The new information series dk, rk, εk are updated sequentially. If there exists βi

k

that satisfies βi
k > R(i)

max or βi
k < R(i)

min, then the scalar elements in the R-matrix according
to (42) are updated. If not satisfied, then the elements of the R-matrix judge whether the
R-matrix is positive definite according to (43) to be updated by (42).

Step 4. The adaptive scale factor αk is obtained by (32), and successively uses (34), (28),
(35), (18), and (36) to calculate λk, Fk, Kk, Xk, and Pk, respectively.

Step 5. qk and Qk adopting (21) and (44) are updated, and then Pk−1 and Qk−1 are
decomposed using (26) and (27) to obtain Uk−1, Sk−1.

Step 6. Skip to step 2.
The SR-SHARKF algorithm’s flow chart is presented in Figure 2.
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Figure 2. Flow chart of the SR-SHARKF algorithm.

4. Simulation and Experimental Results Discussion

Simulations and experiments for the existing standard KF, SHAKF, and MSHARKF [23]
with the proposed algorithm were performed to verify and evaluate the effectiveness of
the proposed SR-SHARKF algorithm. A simulation test was implemented to compare the
performances with the existing algorithms under severe interference from a single-Gaussian
distribution and a mixed-Gaussian distribution. Unlike the single-Gaussian distribution,
the simulation with mixed Gaussian distribution was operated with 1000 Monte Carlo
simulations. Finally, the feasibility of the SR-SHARKF algorithm is discussed by a set of
real ship experiment data.

4.1. Simulations and Discussions
4.1.1. Simulations and Analysis of the Noise with Single-Gaussian Distribution

In this section, we compare the proposed algorithm with other existing algorithms
by using a maneuvering target tracking example that is generated based on the model
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(3) and (7) with ∆T = 2 s and verifies the higher estimate performance of our algorithm.
The single-Gaussian process and measurement noise are given as follows:

q1k ∼ N(0, 0.005)
q2k ∼ N(0, 0.005)
q3k ∼ N(0, 0.005)
q4k ∼ N(0, 0.005)
r1k ∼ N(0, 1)
r2k ∼ N(0, 1)

(45)

In this experiment, the root-mean-square error (RMSE) of position, velocity acceler-
ation, and jerk is used as the comparison criterion in the simulation, which is defined
as

RMSE=

√√√√ 1
T

T

∑
k=1

(xk − x̂k)
2 (46)

where xk denotes the real value obtained at time k in a certain direction, T represents the
time of filtering iteration, and x̂k is the estimated value of the filter at time k in a certain
direction. For comparison of various aspects, the mean absolute error (MAE) is also used
as the comparison criterion in the simulation, which is denoted by

MAE=
1
T

T

∑
k=1
|xk − x̂k| (47)

In the MSHARKF and proposed SR-SHARKF algorithms, the initial values of two
constants are chosen as c0 = 1.2, c1 = 4.5. The parameters of the initial true state are assumed
to be X0 = [0, 1, 0.001, 0.00005]T, Y0 = [0, 4, 0.01,−0.0005]T. In addition, the square-root
decomposition method (SRD), the three-segment method (TS), and the noise covariance
adjustment method (NCA) are introduced to the simulation test as comparative methods
to evaluate the advantages of each portion of the proposed algorithm.

Figure 3a shows the actual trajectory, the observation trajectory of the target, and
the trajectory estimated by the KF, SHAKF, MSHARKF, SRD, TS, NCA, and proposed
SR-SHARKF algorithms. Moreover, the target ship is represented by the small boats in
Figure 3a, and their movement on the motion trajectory will be displayed by several boats
at various location points, which can reflect the real movement of the target ship more
clearly. The actual ship determines the current position of the target ship at each given time
by mapping the information of the target ship measured at various times to the coordinates
of the Cartesian coordinate system. Figure 3b,c show the actual, observation, and filtering
velocities of the X-axis and Y-axis. It can be seen from Figure 3 that the tracking effect
in some states is not ideal, but in terms of the overall effect, the proposed SR-SHARKF
algorithm achieves satisfactory results in filtering the measurement data compared to
other algorithms. Moreover, the runtimes of the KF, SHAKF, MSHARKF, and proposed
SR-SHARKF algorithms in a single step run are 9.1× 10−4 s, 1.16× 10−3 s, 2.07× 10−3 s,
respectively.

Taking the deviation between the true and the estimated value, the KF, SHAKF, MSHARKF,
SRD, TS, NCA, and SR-SHARKF algorithms are used in radar target tracking and the simu-
lation error curves of position, velocity, acceleration, and jerk on the X-axis are shown in
Figure 4a–d. It can be seen from Figure 4 that the SRD, TS, and NCA methods for each
part of the proposed algorithm have more stable error values compared to SHAKF, and the
percentage of states with error values less than SHAKF is higher. As can also be seen from
Figure 4, the SR-SHARKF algorithm outperforms other algorithms because the error of
most states is kept at a relatively low level and is relatively stable.
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Figure 3. Filtering effect in terms of position and velocity. (a) Target trajectory. (b) Target velocity in
the X-axis direction. (c) Target velocity in the Y-axis direction.
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Figure 4. Dynamic parameter error in the X-axis direction. (a) Position error. (b) Velocity error.
(c) Acceleration error. (d) Jerk error.

According to Table 1, SRD, TS, and NCA have smaller RMSE and MAE values of posi-
tion, velocity, acceleration, and jerk on the X-axis compared with SHAKF and MSHARKF,
indicating that SRD, TS, and NCA can improve SHAKF better. Furthermore, the RMSE and
MAE values corresponding to the proposed SR-SHARKF algorithm of position, velocity,
acceleration, and jerk on the X-axis are lower compared to other algorithms, which demon-
strates that it can obtain the most accurate estimation results than other algorithms in all
four state variables and two aspects.

Table 1. Dynamic parameter error evaluation in the X-axis direction.

State
Variables

KF SHAKF MSHARKF SRD TS NCA SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-X 0.8274 0.6716 1.1095 0.9125 0.9762 0.7624 0.9412 0.7039 0.8836 0.7191 0.7845 0.6301 0.7806 0.6246
Vel-X 0.4448 0.3471 0.5050 0.3801 0.5251 0.4146 0.4058 0.2942 0.4956 0.4034 0.3858 0.3061 0.3543 0.2659
Vcc-X 0.1399 0.1097 0.1510 0.1184 0.1992 0.1512 0.1236 0.0951 0.1816 0.1494 0.1155 0.0922 0.1091 0.0849
Jer-X 0.0236 0.0199 0.0218 0.0186 0.0363 0.0281 0.0213 0.0169 0.0289 0.0251 0.0197 0.0164 0.0193 0.0159

In the Y-axis direction, the ship’s heading varied twice in the opposite direction. It
can be seen from Figure 5 that SRD, TS, and NCA are more stable compared to other
comparison algorithms, and the error of the algorithm we proposed still remains in a
relatively low and stable state compared with other algorithms, which further verifies
its relatively outstanding filtering effect. In addition, the RMSE and MAE values of each
algorithm are recorded in Table 2, in which it can be seen that the SRD, TS, NCA, and
SR-SHARKF algorithms also have obvious advantages in target tracking compared with
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other algorithms. These results further demonstrate the superior performance of the
proposed method.

In the simulation test, compared with the previous ones, the proposed algorithm
effectively reduces the appearance rate of non-positive matrices in the X-axis and Y-axis
directions, which is due to the effective elimination of numerical rounding errors by the
SRD method for covariance decomposition, and the interval restriction of the Q-matrix
and R-matrix, as well as the transformation of non-positive to positive matrices by the
NCA method together preventing the filtering divergence. Moreover, it can be seen from
the simulation tests that the proposed algorithm has significantly improved the speed
of adaptation of the time-varying noise covariance compared with the previous ones,
which is due to the TS method being employed in the proposed algorithm to balance the
observations and predicted states to improve the robustness of the algorithm.
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Figure 5. Dynamic parameter error in the Y-axis direction. (a) Position error. (b) Velocity error.
(c) Acceleration error. (d) Jerk error.

Table 2. Dynamic parameter error evaluation in the Y-axis direction.

State
Variables

KF SHAKF MSHARKF SRD TS NCA SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-Y 0.9057 0.7444 0.8804 0.6469 0.8048 0.6150 0.7691 0.6111 0.7507 0.6038 0.8366 0.6408 0.7237 0.5737
Vel-Y 0.4121 0.3413 0.4174 0.3279 0.4079 0.3210 0.3330 0.2700 0.4089 0.3124 0.4128 0.3306 0.3964 0.3013
Vcc-Y 0.1408 0.1161 0.1433 0.1080 0.1472 0.1177 0.1119 0.0910 0.1303 0.0975 0.1449 0.1216 0.1289 0.1022
Jer-Y 0.0322 0.0266 0.0311 0.0250 0.0341 0.0259 0.0285 0.0242 0.0283 0.0215 0.0320 0.0272 0.0304 0.0250

To further verify the robustness of the proposed algorithm, another set of simulation
tests was performed for the same model and different trajectories. We only compared the
proposed algorithm with the KF, SHAKF, and MSHARKF algorithms. The parameters of
the initial true state were chosen as X0 = [2, 1, 0.001, 0.0002]T, Y0 = [1, 2, 0.0005, 0.0001]T.



Sensors 2022, 22, 2924 13 of 23

Figure 6a shows the actual trajectory, the observation trajectory of the target, and the
trajectory estimated by the KF, SHAKF, MSHARKF, and proposed SR-SHARKF algorithms.
Figure 6b,c show the actual, observation, and filtering velocities of the X-axis and Y-axis.
From Figure 6, it can be seen that the proposed SR-SHARKF algorithm outperforms other
algorithms in filtering the measurement data.
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Figure 6. Filtering effect in terms of position and velocity. (a) Target trajectory. (b) Target velocity in
the X-axis direction. (c) Target velocity in the Y-axis direction.
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In the X-axis direction, the USV sails in a positive direction and has a rapid speed
change. It can be observed from Figure 7 and Table 3 that the proposed SR-SHARKF has
a higher percentage of smaller error values than other algorithms, and the RMSE and
MAE values corresponding to the proposed SR-SHARKF algorithm of position, velocity,
acceleration, and jerk are lower compared to other algorithms, which shows the superiority
of the proposed algorithm over other algorithms.
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Figure 7. Dynamic parameter error in the X-axis direction. (a) Position error. (b) Velocity error.
(c) Acceleration error. (d) Jerk error.

Table 3. Dynamic parameter error evaluation in the X-Axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-X 0.6280 0.4785 0.6847 0.5143 0.7937 0.6657 0.5786 0.4448
Vel-X 0.3694 0.2994 0.3452 0.2686 0.3066 0.2413 0.2947 0.2446
Vcc-X 0.1611 0.1318 0.1200 0.0923 0.1549 0.1256 0.1254 0.0981
Jer-X 0.0397 0.0343 0.0314 0.0257 0.0410 0.0345 0.0321 0.0270

In the Y-axis direction, the USV sails in a negative direction and the speed changes
faster. It can be observed from Figure 8 and Table 4 that the faster the speed change,
the worse the tracking effect of all algorithms. However, the proposed SR-SHARKF
still outperforms other algorithms, indicating that the algorithm can also bring better
performances for different trajectories.
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Figure 8. Dynamic parameter error in the Y-axis direction. (a) Position error. (b) Velocity error.
(c) Acceleration error. (d) Jerk error.

Table 4. Dynamic parameter error evaluation in the Y-axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-Y 0.7002 0.5509 0.6749 0.5377 0.7618 0.6432 0.6567 0.5410
Vel-Y 0.4912 0.3912 0.4785 0.4057 0.4952 0.3900 0.4438 0.3562
Vcc-Y 0.1863 0.1562 0.2360 0.1835 0.2973 0.2422 0.1597 0.1286
Jer-Y 0.0420 0.0352 0.0324 0.0272 0.0429 0.0382 0.0331 0.0287

4.1.2. Simulations and Analysis of the Noise with Mixed-Gaussian Distribution

The same model as above is used to generate a maneuvering target tracking example
except that the process and measurement noise are white noise satisfying the mixed-
Gaussian distribution. The mixed-Gaussian process and measurement noise are given as
follows: 

q1k ∼ 0.9N(0, 0.01)+0.1N(0, 0.1)
q2k ∼ 0.9N(0, 0.01)+0.1N(0, 0.1)
q3k ∼ 0.9N(0, 0.01)+0.1N(0, 0.1)
q4k ∼ 0.9N(0, 0.01)+0.1N(0, 0.1)
r1k ∼ 0.6N(0, 4)+0.4N(0, 20)
r2k ∼ 0.6N(0, 4)+0.4N(0, 20)

(48)

In this experiment, the initial values of two constants with respect to the MSHARKF
and proposed SR-SHARKF algorithms are also chosen as c0 = 1.2, c1 = 4.5. The parameters
of the initial true state are assumed to be X0 = [0, 0, 0.001, 0.00001]T,
Y0 = [0, 0, 0.005, 0.0005]T. The RMSE is employed as the comparison criterion, but the
true value xi

k and the estimated value x̂i
k at the kth moment of the ith MC run are used



Sensors 2022, 22, 2924 16 of 23

instead of xk and x̂k, and we replace T by the number of MC runs Mc. The averaged
root-mean-squared error (ARMSE) of position, velocity acceleration, and jerk is also used
as the evaluation criterion to test the filter performance, which is defined as

ARMSE=

√√√√ 1
TMc

T

∑
k=1

Mc

∑
i=1

(xi
k − x̂i

k)
2 (49)

To evaluate the dispersion of position, velocity, acceleration, and jerk for all algorithms
over 1000 Monte Carlo runs, the standard deviation (STD) and the averaged STD (ASTD)
as the evaluation criteria are defined as follows

STD =

√
1

Mc

Mc
∑

i=1
(xi

k − xi
k)

ASTD =

√
1

TMc

T
∑

k=1

Mc
∑

i=1
(xi

k − xi
k)

2
(50)

where xi
k represents the mean of the algorithm estimates for position, velocity, acceleration,

or jerk.
Figures 9a–d and 10a–d show that the RMSE and STD of position, velocity, accelera-

tion, and jerk on the X-axis are calculated as the average and standard deviation of each
state over 1000 Monte Carlo runs. It can be seen from Figure 9a–d that the RMSEs of
SHAKF and MSHARKF have different degrees of divergence in terms of position, velocity,
acceleration, or jerk, which is caused by their inability to estimate the noise covariance
accurately in 1000 Monte Carlo simulations, while the proposed SR-SHARKF can effectively
prevent the divergence and the RMSE remains relatively stable and lower, indicating that
the performance of SR-SHARKF outperforms KF, SHAKF, and MSHARKF. As shown in
Figure 10a–d and the ASTD of Table 5, we can see that the dispersion of the estimates of
position, velocity, and acceleration for all algorithms increases with time since the changes
in position, velocity, and acceleration become larger after the amount that can be changed
becomes larger. The dispersions estimated by all algorithms are similar.

The ARMSE values were evaluated for all algorithms in both directions and are
given in Table 5. We can see from these tables that the SR-SHARKF algorithm gives more
competitive results than the KF, SHAKF, and MSHARKF algorithms.

Table 5. Dynamic parameter ARMSE and ASTD evaluation in the X-Axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

ARMSE ASTD ARMSE ASTD ARMSE ASTD ARMSE ASTD

Pos-X 9.3615 17.592 14.080 17.635 8.6543 17.638 8.0235 17.641
Vel-X 2.4925 1.1366 3.5065 1.1380 2.7888 1.1362 2.2881 1.1394
Vcc-X 0.5828 0.0526 0.6239 0.0499 0.6795 0.0525 0.5025 0.0515
Jer-X 0.0797 0.0024 0.0736 0.0014 0.0876 0.0024 0.0704 0.0018

In the Y-direction, we may obtain similar results as in the X-direction by Figures 11a–d
and 12a–d and Table 6. It is further verified that the proposed algorithm has better perfor-
mance compared to other existing algorithms.
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Figure 9. Dynamic parameter RMSE in the X-axis direction. (a) Position RMSE. (b) Velocity RMSE.
(c) Acceleration RMSE. (d) Jerk RMSE.
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Figure 10. Dynamic parameter STD in the X-axis direction. (a) Position STD. (b) Velocity STD.
(c) Acceleration STD. (d) Jerk STD.
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Figure 11. Dynamic parameter RMSE in the Y-axis direction. (a) Position RMSE. (b) Velocity RMSE.
(c) Acceleration RMSE. (d) Jerk RMSE.
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Figure 12. Dynamic parameter STD in the Y-axis direction. (a) Position STD. (b) Velocity STD.
(c) Acceleration STD. (d) Jerk STD.
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Table 6. Dynamic parameter ARMSE and ASTD evaluation in the Y-axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

ARMSE ASTD ARMSE ASTD ARMSE ASTD ARMSE ASTD

Pos-Y 9.3762 90.525 12.807 90.260 8.8452 90.390 8.0821 90.366
Vel-Y 2.4890 3.8397 3.4720 3.8202 2.8147 3.8403 2.2455 3.8377
Vcc-Y 0.5820 0.1202 0.6239 0.1156 0.6903 0.1120 0.4878 0.1179
Jer-Y 0.0795 0.0026 0.0742 0.0018 0.0901 0.0026 0.0694 0.0019

4.2. Experiments and Discussion

To further verify the superiority of the proposed SR-SHARKF method, the experi-
mental data were collected by the LanXin USV in the waters along the Dalian Xinghai
Cross-Sea Bridge. The experimental flow chart is shown in Figure 13. The USV’s velocity
was 3.3657 m/s, the heading angle was 138.71°, and the target information sensed by the
radar was within the range of 1852 m. An experimental target ship was installed with
integrated navigation to save its position and velocity information as the assumed true
position and velocity of the target. The assumed accuracy of position and velocity were,
respectively, ±15 m and ±5 m/s. The SR-SHARKF algorithm proposed in this paper was
compared with the tracking filtering effect of other existing algorithms.

Square root 

Sage–Husa 

adaptive

robust Kalman 

filter

Position and 

velocity 

measurements

XY

Z

Position and 

velocity filter 

evaluation 

output results

Radar image 

data processing

Figure 13. Lanxin USV experiment flow chart.

Figure 14a shows the true, radar observation trajectories of the target and the trajectory
estimated by the KF, SHAKF, MSHARKF, and SR-SHARKF algorithms. It can be seen from
Figure 14a that the combined filtering effect of the SR-SHARKF method in the X-axis and
Y-axis directions has a better smoothing impact on the measured data, which makes it closer
to the true value. Figure 14b,c show the velocity filtering effects of these algorithms in the
X-axis and Y-axis directions, respectively. It can be seen from them that the SR-SHARKF
algorithm can obtain a stable filtering effect on the whole. Compared with other algorithms,
no matter whether in terms of trajectory or velocity, the SR-SHARKF algorithm proposed
in this paper has a better filtering effect than other algorithms.

Figure 15a–d show the error curves of position and velocity on the X-axis and the
Y-axis by the KF, SHAKF, MSHARKF, and SR-SHARKF algorithms. It can be seen from
Figure 15 that the majority of the states of the error curves of the SR-SHARKF algorithm
are smaller than other algorithms, demonstrating that this algorithm’s tracking filtering
effect is superior to other algorithms.

According to Tables 7 and 8, the RMSE and MAE values corresponding to the proposed
SR-SHARKF algorithm of position and velocity on the X-axis and the Y-axis are given. This
demonstrates that the SR-SHARKF algorithm’s error for actual ship experimental data can
also obtain a smaller value compared with other algorithms.
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Figure 14. Filtering effect comparison of multiple algorithms in terms of position and velocity.
(a) Target trajectory comparison. (b) Target velocity comparison in the X-axis direction. (c) Target
velocity comparison in the Y-axis direction.
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Figure 15. Dynamic parameter error. (a) Position error in the X-axis direction. (b) Velocity error in
the X-axis direction. (c) Position error in the Y-axis direction. (d) Velocity error in the Y-axis direction.

Table 7. Dynamic parameter error evaluation in the X-axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-X 9.1431 7.3619 8.859 7.1264 9.2173 6.9731 7.4972 5.8540
Vel-X 1.3325 1.0482 1.0261 0.8532 1.0504 0.8056 0.4804 0.3839

Table 8. Dynamic parameter error evaluation in the Y-axis direction.

State Variables
KF SHAKF MSHARKF SR-SHARKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Pos-Y 8.8864 7.0412 8.5659 6.7926 9.3207 7.3058 6.9925 5.3837
Vel-Y 0.9418 0.6898 0.8113 0.6495 0.8283 0.6283 0.7311 0.5845

5. Conclusions

In this study, the SR-SHARKF algorithm was developed based on adaptive theories,
which can not only solve the problem of filtering divergence triggered by numerical round-
ing errors, inaccurate system mathematics, and noise statistical models, but also improve
the filtering accuracy. First, a novel square-root decomposition method was proposed
to decompose the covariance matrix of SHAKF to ensure its non-negative definiteness.
Second, an adaptive scale factor was introduced into the SHAKF algorithm and updated at
each iteration. Third, the noise covariance adjustment method was applied by combining
noise-biased estimation, unbiased estimation, and a fixed observation noise interval. Sim-
ulation and experimental results demonstrate that the proposed algorithm has stronger
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stability and robustness than the KF, SHAKF, and MSHARKF algorithms. In practical
application, the proposed algorithm may be widely used in collision risk evaluation and
collision avoidance, etc. In our future work, the algorithm proposed in this paper will be
applied to multi-target tracking scenarios, and considering the motion of multiple targets
at the same time is critical to avoiding ship collisions.
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The following abbreviations are used in this manuscript:

USV Unmanned surface vehicle
SHAKF Sage–Husa adaptive Kalman filter
SR-SHARKF Square root Sage–Husa adaptive robust Kalman filter
KF Kalman filter
MSHARKF Modified Sage–Husa adaptive robust KF
RMSE Root-mean-square error
MAE Mean absolute error
SRD Square root decomposition
TS Three segment
ARMSE Averaged root-mean-squared error
STD Standard deviation
ASTD Averaged standard deviation
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