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Abstract: This paper proposes a time-series deep-learning 3D Kinect camera scheme to classify the
respiratory phases with a lung tumor and predict the lung tumor displacement. Specifically, the
proposed scheme is driven by two time-series deep-learning algorithmic models: the respiratory-
phase classification model and the regression-based prediction model. To assess the performance of
the proposed scheme, the classification and prediction models were tested with four categories of
datasets: patient-based datasets with regular and irregular breathing patterns; and pseudopatient-
based datasets with regular and irregular breathing patterns. In this study, ‘pseudopatients’ refer
to a dynamic thorax phantom with a lung tumor programmed with varying breathing patterns
and breaths per minute. The total accuracy of the respiratory-phase classification model was 100%,
100%, 100%, and 92.44% for the four dataset categories, with a corresponding mean squared error
(MSE), mean absolute error (MAE), and coefficient of determination (R2) of 1.2–1.6%, 0.65–0.8%, and
0.97–0.98, respectively. The results demonstrate that the time-series deep-learning classification and
regression-based prediction models can classify the respiratory phases and predict the lung tumor
displacement with high accuracy. Essentially, the novelty of this research lies in the use of a low-cost
3D Kinect camera with time-series deep-learning algorithms in the medical field to efficiently classify
the respiratory phase and predict the lung tumor displacement.

Keywords: deep learning; Kinect V.2; 3D camera; times-series deep learning; lung cancer;
external surrogate

1. Introduction

Every year, lung cancer claims an estimated 1.8 million lives worldwide [1]. The most
common treatment options for lung cancer include surgery, chemotherapy, radiotherapy,
and a combination of these treatments. Of particular interest is radiotherapy, which is
normally adopted as an alternative treatment for surgically inoperable cancer or as a pre-
or post-surgery routine [2].

Radiotherapy is a cancer treatment that uses high doses of radiation to kill cancer
cells and shrink tumors. Specifically, radiotherapy involves delivering a high radiation
dose to destroy the cancer while sparing the nearby healthy tissue [3,4]. In the course of
radiation treatment of lung cancer, respiration-induced cancer motion could bring about
distortion in the target cancer volume [5], a non-uniform radiation dose distribution, and,
subsequently, ineffective radiation therapy [6] in addition to imaging artifacts (an image
artifact is any feature that appears in an image that is not present in the original imaged
object) [5–9]. As a result, respiration-induced motion management should be adopted for
tumors with displacement (tumor motion) greater than 5 mm along the longitudinal axis
(head–toe direction) or on all human anatomical axes [10].
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Several respiration-induced motion management techniques have been proposed
to characterize the tumor motion. Of particular interest is the four-dimensional com-
puted tomography (4D CT) technique, which is commonly deployed to characterize the
respiration-induced movement of internal organs and improve the quality of 3D CT images
and tumor localization accuracy [11]. The generation of 4D CT images requires a CT simu-
lator and a medical external surrogate device. A CT simulator is a CT scan machine capable
of capturing images used in the planning of radiation therapy, and a medical external
surrogate device is a system for tracking the breathing motion, thus enabling oncologists to
visualize the tumor as it moves while a patient is breathing (i.e., respiratory phases) [12].

Currently, there exist several commercial medical external surrogate devices to track
the respiration-induced chest wall movement [13], e.g., the real-time position management
(RPM) system [14,15], the laser-based Sentinel™ surrogate device [16], and the AZ-733V
flexible pressure belt to be placed on the patient’s chest wall [17]. However, the com-
mercially available medical external surrogate devices are costly and of closed-system
proprietary technology, thereby prohibiting modifications to the manufacturer settings
and configurations.

In this study, we replaced the costly RPM system (i.e., a medical external surrogate
device) with a highly efficient and budget-friendly off-the-shelf Kinect v2 3D camera. The
Kinect v2 3D camera is an economical time-of-flight camera capable of detecting respiratory
motion as an external surrogate in radiotherapy [18–20].

Furthermore, to streamline and improve the respiratory-phase classification and the
prediction of lung tumor displacement, we incorporated two time-series deep-learning
algorithmic models into the proposed Kinect camera scheme (i.e., the time-series deep-
learning Kinect camera scheme). The proposed time-series deep-learning algorithmic
models include a classification model to classify the respiratory phases with a lung tumor
and a regression-based prediction model to predict the lung tumor displacement. More
importantly, the time-series deep-learning classification and regression-based prediction
models are both of an open-system algorithmic scheme as opposed to the closed-system
technology of the commercial external surrogate devices, e.g., the RPM system.

Specifically, this paper proposes a Kinect 3D camera scheme driven by two time-series
deep-learning algorithmic models: the classification and regression-based prediction mod-
els. The classification model is used to determine the respiratory phases that correspond to
the lung tumor location, while the regression-based prediction model is used to predict
the lung tumor displacement. Both the classification model and the prediction model
were validated by testing with four categories of datasets: patient-based datasets with
regular (category I) and irregular (category II) breathing patterns; and pseudopatient-based
datasets with regular (category III) and irregular (category IV) breathing patterns. In this
study, the respiratory-phase classification performance of the time-series deep-learning
classification model was determined by the total accuracy (the average F1 score), and the
performance of the regression-based model for the prediction of lung tumor displacement
was determined by the mean squared error, the mean absolute error, and the coefficient of
determination (R2).

2. Study Data and Dataset Preparation

In this research, the datasets for training and testing the time-series deep-learning
algorithmic models were based on existing data on patients with lung cancer (i.e., patient-
based datasets) and on those acquired from the dynamic thorax phantom (pseudopatient-
based datasets). This paper proposes two time-series deep-learning algorithmic models:
a deep-learning classification model (the classification model) and a regression-based
prediction model (the prediction model). The deep-learning classification model determines
the respiratory phase that corresponds to the lung tumor location, while the deep-learning
regression-based model predicts the lung tumor displacement.



Sensors 2022, 22, 2918 3 of 22

2.1. Acquisition and Preparation of the Patient-Based Datasets

The patient-based input (feature) and output (target) datasets for training and testing
the time-series deep-learning classification and regression-based prediction models were
acquired from an existing database of 40 lung cancer patients. The patients were 45–65 years
of age with a body weight of 50–80 kg and respiratory rates of 12–30 breaths per minute
(bpm). Respiratory rates below 12 bpm, between 12 and 20 bpm, and above 20 bpm at
rest a indicate low, normal, and high breathing rate, respectively [21]. Of the 40 patients
with lung cancer, 20 patients exhibited a regular breathing pattern and the other 20 patients
exhibited an irregular breathing pattern [22]. The use of the clinical data was reviewed and
approved by the Siriraj Institutional Review Board with the Certificate of Approval (COA)
no. Si 652/2021.

To obtain the patient-based output (target) dataset for training and testing the proposed
classification and prediction models, this research utilized 400 4D CT images of lung cancer
movement in relation to the breathing pattern. The 4D CT images were generated by
integrating 3D CT images of the cancer patients’ thorax with the patients’ external chest
wall movement generated by the real-time position management™ (RPM) system (Varian
Medical Systems, Palo Alto, CA, USA). In practice, external chest wall movement data are
acquired by using the RPM system and a six-dot marker block placed on top of the xiphoid
process, as shown in Figure 1. The xiphoid process is the cartilaginous section at the lower
end of the sternum and is not attached to any ribs.
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Figure 1. The acquisition of external chest wall movement datasets using the RPM system or the
Kinect camera and a six-dot marker block.

The 4D CT images were reconstructed using a phase-based respiratory binning method.
The 3D CT images were acquired using the SOMATOM Confidence® 32-slice CT simulator
(Siemens, Erlangen, Germany) in the helical scanning mode and 120 kV, 240 mA, a 3 mm
slice thickness, and a 0.5 s gantry rotation.

Specifically, this research systematically selected 10 breathing cycles per patient [23],
where a single breathing cycle consisted of an inhalation and an exhalation (i.e., one in-
halation plus one exhalation is one single breathing cycle). Each breathing cycle was
subsequently segregated into 10 respiratory phases, consisting of phases 0%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, and 90%, where the 0%, 10–40%, 50%, and 60–90% respi-
ratory phases represent the end-inhale, mid-exhale, end-exhale, and mid-inhale phases,
respectively, as shown in Figure 2. Given the 40 lung cancer patients (20 patients each
with regular and irregular breathing patterns), the total number of images in each dataset
was 400 (10 respiratory phases per patient × 40 patients with lung cancer), consisting of
200 image datasets each for the patients with regular and irregular breathing patterns.
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The 10 respiratory phases associated with each lung cancer patient were used as the
output (target) of the time-series deep-learning classification model. Meanwhile, the output
(target) of the time-series deep-learning regression-based prediction model is the lung
tumor displacement (in millimeters). To obtain the output (target) of the regression-based
prediction model, this research enlisted the assistance of a radiation oncologist to perform
tumor localization and a medical physicist to determine the lung tumor displacement based
on the 400 4D CT images. The tumor localization was manually carried out using the
syngo.via imaging software (Siemens, Erlangen, USA), with a window width and level
of 1500–2000 HU and 450–600 HU, respectively. The Hounsfield unit (HU) is a relative
quantitative measurement of radio density used by radiologists in the interpretation of
CT images.

In addition, to obtain the patient-based input (feature) dataset for training and testing
the proposed classification and prediction models, this research relied on the patients’
external chest wall movement data generated by the RPM system (i.e., the 40 lung cancer
patients’ chest wall movement), consisting of 400 RPM datasets. Since this research aimed
to replace the costly RPM system with a highly efficient and budget-friendly Kinect v2 3D
camera (Microsoft Inc., Redmond, WA, USA), a dynamic thorax phantom (Model 008A,
CRIS, Norfolk, VA, USA) was utilized whereby the RPM datasets (belonging to the 40 lung
cancer patients) were programmed into the dynamic phantom to mimic the external chest
wall movement of the patients. The chest wall movements of the dynamic phantom were
then tracked by the Kinect v2 3D camera and the six-dot external marker block (Figure 1),
giving rise to 400 Kinect-generated chest wall movements.

To further enhance the performance of the time-series deep-learning classification and
regression-based prediction models, the input (feature) dataset for training and testing
both models also incorporated the patients’ specifics, including the lung cancer patients’
age, weight, height, breaths per minute (bpm), heart rate (HR), and midpoint of the cancer
position (x, y, z) [24] in addition to the Kinect-generated chest wall movement data. In
this research, the midpoint of the cancer position (x, y, z) was used as an input (feature)
in place of the size of the lung tumor. Figure 3 shows the diagram of the acquisition and
preparation of the patient-based datasets.
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Specifically, out of the 400 patient-based input (feature) datasets, 200 datasets (100 each
for patients with regular and irregular breathing patterns) were used to train the time-series
deep-learning classification model and also the regression-based prediction model, while
the remaining 200 patient-based input (feature) datasets were used to test the classification
model and the regression-based prediction model.

Moreover, there were two groups of 400 corresponding patient-based output (target)
datasets: the 0–90% respiratory phases for the first grouping (400 datasets) and the lung
tumor displacement for the second grouping (400 datasets). For the proposed classification
model, the respiratory-phase output (target) datasets (200 datasets) were used to train the
classification model, while the remaining 200 respiratory-phase output (target) datasets
were used to test the classification model. For the regression-based prediction model, the
tumor-displacement output (target) datasets (200 datasets) were used to train the prediction
model, while the remaining 200 tumor-displacement output (target) datasets were used to
test the regression-based prediction model.

2.2. Acquisition and Preparation of the Pseudopatient-Based Datasets

To enhance the classification and prediction performance of both time-series deep-
learning models, this research deliberately created an additional dataset of external chest
wall movements using the dynamic thorax phantom (i.e., 6000 pseudopatient-based
datasets). In this research, ‘pseudopatients’ refer to the dynamic thorax phantom with a
lung tumor programmed with varying breathing patterns and breaths per minute.

To derive the additional pseudopatient-based dataset, a total of 6000 data points of
external chest wall movement, varying by the breathing patterns (30 pseudopatients with
regular breathing and 30 pseudopatients with irregular breathing) and breaths per minute
(below 12, between 12 and 20, and above 20 bpm), were first created. The 6000 data points
were then programmed into the dynamic thorax phantom to generate the corresponding
6000 pseudopatient-based datasets, consisting of 3000 datasets each for pseudopatients with
regular and irregular breathing patterns. In addition, the 3000 datasets of the pseudopa-
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tients with regular breathing were divided into 1000 datasets each for below 12, between 12
and 20, and above 20 bpm. Similarly, the 3000 datasets of the pseudopatients with irregular
breathing were divided into 1000 datasets each for below 12, between 12 and 20, and above
20 bpm.

The pseudopatient-based output (target) dataset for training and testing the proposed
classification and prediction models was comprised of 6000 4D CT images of the lung
cancer movement in relation to the breathing pattern. The 4D CT images were rendered by
integrating 3D CT images of the dynamic thorax phantom with the corresponding external
chest wall movement generated by the Kinect v2 3D camera.

Given the 60 pseudopatients (30 each with regular and irregular breathing patterns),
the total number of images in the pseudopatient-based output (target) dataset was 6000
(10 respiratory phases per patient × 60 pseudopatients × repeat 10 times), consisting of
3000 image datasets each for the pseudopatients with regular and irregular breathing
patterns. The 10 respiratory phases associated with each pseudopatient were used as the
output (target) of the time-series deep-learning classification model, consisting of phases
0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%.

The output (target) of the time-series deep-learning regression-based prediction model
is the lung tumor displacement (in millimeters). To obtain the output (target) of the
regression-based prediction model, this research enlisted the assistance of a radiation on-
cologist to perform tumor localization using the syngo.via imaging software and a medical
physicist to determine the lung tumor displacement based on the 6000 4D CT images.

Meanwhile, the pseudopatient-based input (feature) dataset for training and testing
both models was the pseudopatients’ external chest wall movements tracked by the Kinect
v2 3D camera and the six-dot marker block placed on top of the thorax phantom, giving
rise to 6000 Kinect-generated chest wall movement datasets. To further enhance the
performance of the time-series deep-learning classification and regression-based prediction
models, the input (feature) datasets for training and testing both models also incorporated
the pseudopatients’ specifics, including age, weight, height, bpm, HR, and midpoint of
the cancer position (x, y, z) [24], in addition to the Kinect-generated chest wall movement
data. Figure 4 shows the diagram of the acquisition and preparation of the pseudopatient-
based datasets.
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Specifically, of the 6000 pseudopatient-based input (feature) datasets, 4000 datasets
(2000 each for patients with regular and irregular breathing) were used to train the time-
series deep-learning classification and regression-based prediction models, while the re-
maining 2000 pseudopatient-based input (feature) datasets were used to test the classifica-
tion and regression-based prediction models. Moreover, there were two groups of 6000 cor-
responding pseudopatient-based output (target) datasets: the respiratory phases for the first
group (6000 datasets) and the lung tumor displacement for the second group (6000 atasets).
For the classification model, the respiratory-phase output (target) datasets (4000 datasets)
were used to train the classification model, while the remaining 2000 respiratory-phase
output (target) datasets were used to test the classification model. For the time-series
deep-learning regression-based prediction model, the tumor-displacement output (target)
datasets (4000 datasets) were used to train the prediction model, while the remaining
2000 tumor-displacement output (target) datasets were used to test the regression-based
prediction model.

2.3. Training and Testing Datasets of Both Time-Series Deep-Learning Algorithmic Models

In this research, the total number of input (feature) datasets for training the time-
series deep-learning classification and regression-based prediction models was identical
(i.e., 4200 datasets for each model), consisting of 200 patient-based datasets (100 each
for regular and irregular breathing patterns) and 4000 pseudopatient-based datasets
(2000 each for regular and irregular breathing patterns). The total number of input (feature)
datasets for testing the proposed classification and regression-based prediction models was
also identical (i.e., 2200 datasets for each model), consisting of 200 patient-based datasets
(100 each for regular and irregular breathing patterns) and 2000 pseudopatient-based
datasets (1000 each for regular and irregular breathing patterns).

Moreover, the total number of output (target) datasets for training the classifi-
cation and regression-based prediction models was identical (i.e., 4200 datasets for
each model), consisting of the corresponding 200 patient-based output datasets and
4000 pseudopatient-based output datasets. The total number of output (target) datasets
for testing the classification and regression-based prediction models was also identi-
cal (i.e., 2200 datasets for each model), consisting of 200 patient-based datasets and
2000 pseudopatient-based datasets. Nevertheless, the output (target) datasets of the
classification model were the 0–90% respiratory phases, while those of the prediction
model were the lung tumor displacements.

Figure 5a depicts the equipment setup used to collect the patient- and pseudopatient-
based datasets for training and testing the time-series deep-learning classification and
prediction models. The data collection was carried out by using the CT simulator, the
dynamic thorax phantom, and the external surrogate device. Upon the completion of the
training and testing, the Kinect camera scheme driven by the deep-learning classification
and regression-based prediction algorithms (i.e., the time-series deep-learning Kinect
scheme) would be utilized with a medical linear accelerator (LINAC) and another Kinect
v2 3D camera with the six-dot marker block to individualize the delivery of high-energy
X-rays or electrons in cancer treatment, as shown in Figure 5b. A medical LINAC is
the device commonly used for external beam radiation treatments for patients with
cancer. With the proposed time-series deep-learning-driven Kinect scheme, external
beam therapy (i.e., a LINAC machine) could be designed in such a way that it destroys
the cancer cells with pinpoint accuracy while sparing the nearby healthy tissue.

Figure 6 illustrates the implementation of the proposed time-series deep-learning
Kinect v2 3D camera scheme with the medical LINAC machine for treating lung cancer,
corresponding to Figure 5b. In Figure 6, the upper algorithmic scheme represents the time-
series deep-learning classification model, and the lower algorithmic scheme represents
the time-series deep-learning regression-based prediction model. The purpose of the
classification model is to determine the respiratory phase that corresponds to the lung
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tumor location, and the purpose of the deep-learning regression-based model is to predict
the lung tumor displacement.
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3. Time-Series Deep-Learning Algorithmic Models

Respiratory motion is oscillatory in nature. Therefore, with a single isolated sample,
there will be no distinction between inhaling and exhaling. In order to make accurate
prediction, a series of samples has to be taken into account. Time series analysis can
provide the consequences of and insights into the given dataset’s features that change
over time-supporting the prediction of the future values of the time series variable. This
paper proposes two time-series deep-learning algorithmic models: a classification model
and a regression-based prediction model. The time-series deep-learning classification
model is used to determine the respiratory phase that corresponds to the lung tumor
location, and the time-series deep-learning regression-based model is used to predict the
lung tumor displacement.
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3.1. The Time-Series Deep-Learning Classification Model

Figure 7 illustrates the time-series deep-learning algorithmic scheme for classification
of the respiratory phase with a lung tumor. As described above, each breathing cycle
(i.e., an inhalation and an exhalation) was segregated into 10 respiratory phases. As a
result, the output (target) of the time-series deep-learning classification model consists of
10 respiratory phases (Y0–Y9).
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In Figure 7, the patient- and pseudopatient-based input (feature) datasets at time T0
(i.e., the current period), T−1, and T−2 are fed into the respective input nodes. Each time
period comprises 11 input nodes, consisting of the x, y, z coordinates from the six-dot
marker block (3 features) and patients’ specifics (8 features, including age, weight, height,
breaths per minute, heart rate, and the x, y, z coordinates of the midpoint of the tumor
position). The T−2, T−1, and T0 input (feature) datasets were independently fed into hidden
layers 1, 3, and 5, given as Wc1, Bc1; Wc2, Bc2; and Wc3, Bc3, respectively, where Wc and
Bc are the weight and bias coefficients of the input (feature) of the classification model,
respectively. In the training process, Wc1, Bc1; Wc2, Bc2; and Wc3, Bc3 were optimized by
the gradient descent iterative optimization algorithm with a learning rate (α) and an epoch
of 0.1 and 1000, respectively. In addition, to avoid the gradient vanishing problem, shared
weights and biases were used for Wc1, Bc1; Wc2, Bc2; and Wc3, Bc3.

The algorithmic scheme for classification consists of seven hidden layers, with 8, 10,
8, 10, 8, 10, and 5 nodes in the first, second, third, fourth, fifth, sixth, and seventh hidden
layers, respectively. In the training process, the weight (WcH) and bias (BcH) of the hidden
layers (i.e., WcH1, BcH1; WcH2, BcH2; WcH3, BcH3; WcH4, BcH4; WcH5, BcH5; WcH6,
BcH6; and WcH7, BcH7) were optimized by the gradient descent iterative optimization
algorithm with an α and an epoch of 0.1 and 1000, respectively. Furthermore, L1-norm
regularization was used to avoid overfitting, and the iteration procedure was terminated
once the cross-entropy loss of the training and testing datasets diverged.

In the output (target) layer, there were 10 output nodes (Y0–Y9), corresponding to the
10 respiratory phases with a lung tumor (i.e., phases 0%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90%), with SoftMax as the activation function. The outputs of the time-series
deep-learning classification model are given as probabilistic values.

The rationale behind the incorporation of time series into the classification algorithmic
scheme is to prevent the algorithm from returning erroneous respiratory phases. Specifically,
in the absence of time series, the algorithmic scheme could misidentify the respiratory
phase. For example, without time series, the respiratory phase Y1 (i.e., phase 10%) could be
erroneously identified as Y9 (phase 90%), Y2 (phase 20%) as Y8 (phase 80%), and Y3 (phase
30%) as Y7 (phase 70%).
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Prior to training and testing the time-series deep-learning classification algorithm, the
patient- and pseudopatient-based input (feature) and output (target) training datasets and
the corresponding testing datasets were normalized using standardization (Equation (1)):

Standardization =
Dataset−Mean of Dataset

SD
(1)

where Dataset is the input and output dataset (i.e., Xtrain, Ytrain, Xtest, Ytest), Mean of Dataset
is the mean value of the input and output datasets, and SD is the standard deviation.

In the feedforward, the hyperbolic tangent function (tanh(z)) is the activation function
between hidden layers, as expressed in Equation (2), where tanh(z) = [−1, 1]. The activation
function Softmax(z) was used in the output layer, as expressed in Equation (3) [25], where
z is the linear combination, as expressed in Equations (4) and (5). Equation (4) is for hidden
layers 1, 2, 4, 6, 7, and 8., while Equation (5) is for hidden layers 3 and 5. The outputs of the
time-series deep-learning classification model are given as probabilistic values.

tan h(z) =
(ez − e−z)

(ez + e−z)
(2)

Ŷn = Softmax(z) =
ezi

∑k
j=1 ezj

(3)

ZH(1,2,4,6,7) =


Z1
Z2
...

ZN

 =


x1

1wc1
x1
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...
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2wc2

...
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. . .

. . .
...

. . .
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NwcD

+ [ Bc1 Bc2 . . . BcD ] (4)

ZH(3,5) =


x1

1wc1
x1

2wc1
...

x1
Nwc1

x2
1wc2

x2
2wc2

...
x2

Nwc2

. . .

. . .
...

. . .

xD
1 wcD

xD
2 wcD

...
xD

NwcD


{x= x0,−1}

+ ZH(2,4) (5)

In the backpropagation, the cross-entropy between the normalized training output
dataset (Ytrain; Yn) and the predicted normalized output (Ŷn) is first calculated using
Equation (6) [26]:

J(w) = − 1
N ∑N

n=1(Yn log(Ŷn)) (6)

where Yn is the actual output probabilistic value and Ŷn is the predicted output probabilistic
value. The gradient descent iterative optimization algorithm was applied to optimize W
and B (Wc1, Bc1; Wc2, Bc2; Wc3, Bc3; WcH1, BcH1; WcH2, BcH2; WcH3, BcH3; WcH4, BcH4;
WcH5, BcH5; WcH6, BcH6; and WcH7, BcH7) by using Equation (7) [26] and the chain
rule derivative.

∂J(w)

∂Wi
and

∂J(w)

∂Bi
(7)

where i = 1, 2, 3, 4, 5, 6, and 7 corresponding to Wc1, Bc1; Wc2, Bc2; Wc3, Bc3; WcH1, BcH1;
WcH2, BcH2; WcH3, BcH3; WcH4, BcH4; WcH5, BcH5; WcH6, BcH6; and WcH7, BcH7. The
derivative of the tanh(z) activation function for hidden layers is expressed in Equation (8).

∂[tan h(z)]
∂z

= 1− (tanh(z))2 (8)

The performance of the time-series deep-learning classification model was assessed by
the F1 score and the total accuracy (the average of the F1 scores) [26]. The F1 score is a value
that indicates the classification performance of an algorithmic model based on Precision
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(Equation (9)) and Recall (Equation (10)). The F1 score and the total accuracy (the average
of the F1 scores) can be calculated by Equations (11) and (12), respectively.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP is the number of true positives, FP is the number of false positives, and FN is the
number of false negatives.

In this research, a true positive (TP) means that the time-series deep-learning classifi-
cation model is able to correctly determine the respiratory phase with a lung tumor. A false
positive (FP) means that the time-series deep-learning classification model erroneously
determines the respiratory phase with a lung tumor. For example, the actual respiratory
phase with a lung tumor is phase 10% but the classification model returns any other respi-
ratory phase (i.e., phases 0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%) than phase
10%. A false negative (FN) means that the time-series deep-learning classification model
erroneously determines the respiratory phase. For example, in an FN (which is contrary
to an FP), the classification model returns the respiratory phase 10% although the actual
respiratory phase with the lung tumor is another phase (phase 0%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, or 90%).

F1 Score = 2× Precision ∗ Recall
Precision + Recall

(11)

Total Accuracy =
(F1 Score (Y0)) + . . . + (F1 Score (Y 9))

10
(12)

3.2. The Time-Series Deep-Learning Regression-Based Prediction Model

Figure 8 shows the time-series deep-learning regression-based algorithmic scheme
for prediction of the lung tumor displacement. Specifically, the proposed time-series deep-
learning regression-based prediction model is used to predict the lung tumor displacement
along the longitudinal axis (in the head–toe direction). The proposed time-series deep-
learning prediction model is applicable to predicting the lung tumor displacement in the
head–toe direction because the lung tumor motility is predominantly along the longitudinal
axis [10].
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Figure 8. The acquisition of respiratory phases and external chest wall movements along the human
anatomical axes (the longitudinal, horizontal, and sagittal axes).

In Figure 9, the patient- and pseudopatient-based input (feature) datasets at time T0,
T−1, and T−2 are fed into the respective input nodes. Each time period comprises 11 input
nodes, consisting of the x, y, z coordinates from the six-dot marker block (3 features) and
patients’ specifics (8 features, including age, weight, height, breaths per minute, heart
rate, and the x,y,z coordinates of the midpoint of lung tumor). The T−2, T−1, and T0 input
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(feature) datasets were independently fed into hidden layers 1, 3, and 5, given as Wr1, Br1;
Wr2, Br2; and Wr3, Br3, respectively, where Wr and Br are the weight and bias coefficients of
the input (feature) of the regression-based prediction model. In the training process, Wr1,
Br1; Wr2, Br2; and Wr3, Br3 were optimized by the gradient descent iterative optimization
algorithm with a learning rate (α) and an epoch of 0.1 and 5000, respectively. In addition,
to avoid the gradient vanishing problem, shared weights and biases were used for Wr1, Br1;
Wr2, Br2; and Wr3, Br3.
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Figure 9. Time-series deep-learning regression-based algorithmic scheme for prediction of lung
tumor displacement.

The regression-based algorithmic scheme comprises seven hidden layers, with 8, 10,
8, 10, 8, 10, and 5 nodes in the first, second, third, fourth, fifth, sixth, and seventh hidden
layers, respectively. In the training process, the weight (WrH) and bias (BrH) of the hidden
layers (i.e., WrH1, BrH1; WrH2, BrH2; WrH3, BrH3; WrH4, BrH4; WrH5, BrH5; WrH6,
BrH6; and WrH7, BrH7) were optimized by the gradient descent iterative optimization
algorithm with an α and an epoch of 0.1 and 5000, respectively. Furthermore, L1-norm
regularization was used to avoid overfitting and the iteration procedure was terminated
once the cross-entropy loss of the training and testing datasets diverged.

The output (target) layer is the longitudinal-axis lung tumor displacement, with
the rectified linear unit (ReLU) as the activation function. The output of the time-series
deep-learning regression-based prediction model is the longitudinal-axis lung tumor dis-
placement (in millimeters).

The rationale behind the incorporation of time series into the algorithmic scheme is to
prevent the algorithm from returning an erroneous tumor displacement. In the absence
of time series, the algorithmic scheme could miscalculate the lung tumor displacement
relative to the reference point (i.e., phase 50% or the trough of the respiration).

Prior to training and testing the time-series deep-learning regression-based prediction
model, the training and testing input and output datasets (Xtrain, Ytrain, Xtest, Ytest) were
normalized using min–max normalization (Equation (13)).

Datanormalization =
(Dataset−Datasetmin)

(Datasetmax −Datasetmin)
(13)

where Dataset is the training and testing input and output dataset (i.e., (Xtrain, Ytrain, Xtest, Ytest);
Datasetmin is the minimum training input and output dataset (Xtrain, Ytrain) and the minimum
testing input and output dataset (Xtest, Ytest); and Datasetmax is the maximum training input and
output dataset (Xtrain, Ytrain) and the maximum testing input and output dataset (Xtest, Ytest).
The value of the normalized datasets (Datanormalization) lies between 0 and 1 ([0, 1]).

In the feedforward of the time-series deep-learning regression-based prediction model,
the activation function between hidden layers is the hyperbolic tangent function (tanh(z))
in Equation (3), where tanh(z) = [−1, 1]. The activation function ReLU(z) was used in
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the output layer, as expressed in Equation (14), where z is the linear combination, as
expressed in Equations (4) and (5). Equation (4) is for hidden layers 1, 2, 4, 6, 7, and 8, while
Equation (5) is for hidden layers 3 and 5.

The predicted output (ŷn) of the time-series deep-learning regression-based prediction
model is the longitudinal-axis lung tumor displacement (based on the chest wall movement
tracked by the Kinect v2 3D camera and patients’ specifics, including age, weight, height,
breaths per minute, HR, and midpoint of the cancer).

ReLU(z) =
{

0, z < 0
z, z ≥ 0

(14)

In the backpropagation of the time-series deep-learning regression-based prediction
model, the mean squared error (MSE) between the normalized training output dataset
(Ytrain; yn) and the predicted normalized output (ŷn) is first calculated by using Equation (15),
and the gradient descent iterative optimization algorithm is subsequently applied to fine-tune
W and B by using Equation (16) and the chain rule derivative.

MSE =
1
n

n

∑
i =1

(yn − ŷn)
2 (15)

∂MSE
∂Wi

and
∂MSE

∂Bi
(16)

where i = 1, 2, 3, 4, 5, 6, and 7 corresponding to Wr1, Br1; Wr2, Br2; Wr3, Br3; WrH1, BrH1;
WrH2, BrH2; WrH3, BrH3; WrH4, BrH4; WrH5, BrH5; WrH6, BrH6; and WrH7, BrH7. The
derivative of the tanh(z) activation function for hidden layers is expressed in Equation (8).

The prediction performance of the time-series deep-learning regression-based predic-
tion model was assessed by the mean squared error (MSE; Equation (15)), the mean absolute
error (MAE; Equation (17)), and the coefficient of determination (R2; Equation (18)).

MAE =
1
n

n

∑
i =1
|yn − ŷn| (17)

where yn is the normalized testing output dataset (Ytest), ŷn is the predicted normalized
output (Ypredict), and n is the number of datasets.

R2 =
(Var(Y)−MSE)

Var(Y)
(18)

where Var is the mean of the differences between yn and average(yn) squared and MSE is
the mean squared error (Equation (15)).

4. Results and Discussion

This section discusses the performance of the time-series deep-learning classification
and prediction models under the four dataset categories (patient-based datasets with
regular (category I) and irregular (category II) breathing patterns and pseudopatient-based
datasets with regular (category III) and irregular (category IV) breathing patterns).

4.1. Classification and Prediction Performance for Patient-Based Datasets with a Regular Breathing
Pattern (Category I)

Table 1 tabulates the results of the time-series deep-learning classification model of the
respiratory phases for the patient-based datasets with a regular breathing pattern in terms
of F1 scores and total accuracy (the average of the F1 scores). The proposed classification
model correctly determined all respiratory phases with a lung tumor, as evidenced by the
F1 scores of 100% for all classifications (Y0–Y9) and the total accuracy of 100%.
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Table 1. The classification performance of the time-series deep-learning classification model for
patient-based datasets with a regular breathing pattern.

Classification
(Phase)

Precision
(Equation (9))

Recall
(Equation (10))

F1 Score
(Equation (11))

Y0 (phase 0%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y1 (phase 10%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y2 (phase 20%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y3 (phase 30%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y4 (phase 40%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y5 (phase 50%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y6 (phase 60%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y7 (phase 70%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y8 (phase 80%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Y9 (phase 90%)

TP = 10

100% 100% 100%FP = 0

FN = 0

Total accuracy
(average of the F1 scores; Equation (12)) 100%

Note: The definitions of TP, FP, and FN are provided in the subsection on the time-series deep-learning classifica-
tion model.

Figure 10a,b show the actual and predicted results of the time-series deep-learning
classification and prediction models for the patient-based datasets with a regular breathing
pattern. Figure 10a compares the actual and predicted respiratory phases and lung tumor
displacements. The classification model correctly determined all respiratory phases with
a lung tumor for three example breathing cycles, consistent with the F1 scores and total
accuracy shown in Table 1. Given the space limitations, only three breathing cycles are
illustrated in the figure. Moreover, the MSE, MAE, and R2 of the time-series deep-learning
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regression-based prediction model are 1.3%, 0.65%, and 0.98, respectively, indicating that
the proposed prediction model can predict the lung tumor displacement with high accuracy.

Figure 10b shows the scatter plot between the actual and predicted lung tumor dis-
placement using the time-series deep-learning regression-based prediction model. The
relationship between the actual and predicted lung tumor displacement is nearly linear,
suggesting that the proposed predication model can predict the lung tumor displacement
with high accuracy.
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Figure 10. The actual and predicted results of the time-series deep-learning classification and
prediction models for the patient-based datasets with a regular breathing pattern: (a) the respiratory
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4.2. Classification and Prediction Performance for Patient-Based Datasets with an Irregular
Breathing Pattern (Category II)

Table 2 tabulates the F1 scores and total accuracy of the time-series deep-learning
classification model for the patient-based datasets with an irregular breathing pattern. The
proposed classification model correctly identified all respiratory phases with a lung tumor,
as evidenced by the F1 scores of 100% for all classifications (Y0–Y9) and the total accuracy
of 100%.

Figure 11a,b show the actual and predicted results of the time-series deep-learning clas-
sification and prediction models for the patient-based datasets with an irregular breathing
pattern. Figure 11a compares the actual and predicted respiratory phases and lung tumor
displacements. The classification model correctly determined all respiratory phases with a
lung tumor in all breathing cycles. The MSE, MAE, and R2 of the time-series deep-learning
regression-based prediction model are 1.3%, 0.65%, and 0.98, indicating that the proposed
regression-based prediction model can predict the lung tumor displacement with very
high accuracy.

Figure 11b shows the scatter plot between the actual and predicted lung tumor dis-
placement using the time-series deep-learning regression-based prediction model. The
relationship between the actual and predicted lung tumor displacement is nearly linear,
suggesting that the proposed prediction model can predict the lung tumor displacement
with high accuracy.
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Table 2. The classification performance of the time-series deep-learning classification model for
patient-based datasets with an irregular breathing pattern.

Classification
(Phase)

Precision
(Equation (9))

Recall
(Equation (10))

F1 Score
(Equation (11))

Y0 (phase 0%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y1 (phase 10%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y2 (phase 20%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y3 (phase 30%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y4 (phase 40%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y5 (phase 50%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y6 (phase 60%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y7 (phase 70%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y8 (phase 80%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Y9 (phase 90%)
TP = 10

100% 100% 100%FP = 0

FN = 0

Total accuracy
(average of the F1 scores; Equation (12)) 100%

Note: The definitions of TP, FP, and FN are provided in the subsection on the time-series deep-learning classifica-
tion model.
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4.3. Classification and Prediction Performance for Pseudopatient-Based Datasets with a Regular
Breathing Pattern (Category III)

Table 3 presents the F1 scores and total accuracy of the time-series deep-learning
classification model for the pseudopatient-based datasets with a regular breathing pattern.
In this paper, ‘pseudopatients’ refer to the dynamic thorax phantom with a lung tumor
programmed with varying breathing patterns and breaths per minute. The proposed classi-
fication model correctly identified all respiratory phases with a lung tumor, as evidenced
by the F1 scores of 100% for all classifications (Y0–Y9) and the total accuracy of 100%.

Table 3. The classification performance of the time-series deep-learning classification model for
pseudopatient-based datasets with a regular breathing pattern.

Classification
(Phase)

Precision
(Equation (9))

Recall
(Equation (10))

F1 Score
(Equation (11))

Y0 (phase 0%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y1 (phase 10%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y2 (phase 20%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y3 (phase 30%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y4 (phase 40%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y5 (phase 50%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y6 (phase 60%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y7 (phase 70%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y8 (phase 80%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Y9 (phase 90%)
TP = 100

100% 100% 100%FP = 0

FN = 0

Total accuracy
(average of the F1 scores; Equation (12)) 100%

Note: The definitions of TP, FP, and FN are provided in the subsection on the time-series deep-learning classifica-
tion model.

Figure 12a,b show the actual and predicted results of the time-series deep-learning
classification and prediction models for the pseudopatient-based datasets with a regular
breathing pattern. Figure 12a compares the actual and predicted respiratory phases and
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lung tumor displacements. The classification model correctly determined all respiratory
phases with a lung tumor in all breathing cycles. The MSE, MAE, and R2 of the time-series
deep-learning regression-based prediction model are 1.2%, 0.7%, and 0.97, indicating that
the proposed regression-based prediction model can predict the lung tumor displacement
with high accuracy.
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Figure 12b shows the scatter plot between the actual and predicted lung tumor dis-
placement using the time-series deep-learning regression-based prediction model. The
relationship between the actual and predicted lung tumor displacement is nearly linear,
suggesting that the proposed prediction model can predict the lung tumor displacement
with high accuracy.

4.4. Classification and Prediction Performance for Pseudopatient-Based Datasets with an Irregular
Breathing Pattern (Category IV)

Table 4 shows the F1 scores and total accuracy of the time-series deep-learning classifi-
cation model for the pseudopatient-based datasets with an irregular breathing pattern. The
proposed classification model was able to identify most of the respiratory phases with a
lung tumor correctly, except for Y3, Y4, Y6, and Y7 with respective F1 scores of 81.81%.

The erroneous classification could be attributed to shallow breathing (as is evident in
breathing cycle 2 in Figure 13), resulting in the aggregation of respiratory phases Y3 and
Y4 and Y6 and Y7. The erroneous respiratory phase classification thus resulted in a total
accuracy (average of the F1 scores) of 92.44%.
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Figure 13. The actual and predicted results of the time-series deep-learning classification and pre-
diction models for the pseudopatient-based datasets with an irregular breathing pattern: (a) the
respiratory phase and lung tumor displacement; (b) a scatter plot of the regression-based predic-
tion model.
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Table 4. The classification performance of the time-series deep-learning classification model for
pseudopatient-based datasets with an irregular breathing pattern.

Classification
(Phase)

Precision
(Equation (9))

Recall
(Equation (10))

F1 Score
(Equation (11))

Y0 (phase 0%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Y1 (phase 10%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Y2 (phase2 0%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Y3 (phase 30%)

TP = 90

81.1% 81.1% 81.1%

FP = 10
(i.e., the actual respiratory phase with a lung tumor

at Y3 is incorrectly assigned to Y4)

FN = 10
(the actual respiratory phase with a lung tumor at

Y4 is incorrectly assigned to Y3)

Y4 (phase 40%)

TP = 90

81.1% 81.1% 81.1%

FP = 10
(i.e., the actual respiratory phase with a lung tumor

at Y4 is incorrectly assigned to Y3)

FN = 10
(the actual respiratory phase with a lung tumor at

Y3 is incorrectly assigned to Y4)

Y5 (phase 50%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Y6 (phase 60%)

TP = 90

81.1% 81.1% 81.1%

FP = 10
(i.e., the actual respiratory phase with a lung tumor

at Y6 is incorrectly assigned to Y7)

FN = 10
(the actual respiratory phase with a lung tumor at

Y7 is incorrectly assigned to Y6)

Y7 (phase 70%)

TP = 90

81.1% 81.1% 81.1%

FP = 10
(i.e., the actual respiratory phase with a lung tumor

at Y7 is incorrectly assigned to Y6)

FN = 10
(the actual respiratory phase with a lung tumor at

Y6 is incorrectly assigned to Y7)

Y8 (phase 80%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Y9 (phase 90%)

TP = 100

100% 100% 100%FP = 0

FN = 0

Total accuracy
(average of the F1 scores; Equation (12)) 92.44%

Note: The definitions of TP, FP, and FN are provided in the subsection on the time-series deep-learning classifica-
tion model.
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To circumvent the respiratory phase aggregation, the radiation oncologist is required
to instruct the lung cancer patient to breathe deeply. Nevertheless, the breathing pattern
(i.e., the regular and irregular breathing patterns) had no effect on the performance of the
time-series deep-learning classification model, as is evidenced by the total accuracy of 100%
under dataset categories I–III (Tables 1–3).

Figure 13a,b show the actual and predicted results of the time-series deep-learning
classification and prediction models for the pseudopatient-based datasets with an irreg-
ular breathing pattern. Figure 13a compares the actual and predicted respiratory phases
and lung tumor displacements. The classification model identified most of the respira-
tory phases with a lung tumor correctly, except for Y3, Y4, Y6, and Y7 with respective
F1 scores of 81.81%. However, the MSE, MAE, and R2 of the time-series deep-learning
regression-based prediction model are 1.6%, 0.8%, and 0.97, respectively, indicating that
the proposed regression-based prediction model can predict the lung tumor displacement
with high accuracy.

Figure 13b shows the scatter plot between the actual and predicted lung tumor dis-
placement using the time-series deep-learning regression-based prediction model. The
relationship between the actual and predicted lung tumor displacement is less robust in
comparison with those under dataset categories I, II, and III.

Regarding other studies on the prediction of tumor motion, Akimoto et al. recom-
mend updating the 4D model several times during a treatment session to increase the
accuracy of the linear regression prediction model [27]. Ginn John S et al. demonstrated
that an image regression model built from a single-plane cine MRI image could be used
to predict the tumor target motion for radiotherapy [28]. Zhou Dejun et al. observed
that the regression-based prediction model does not represent the tumor motion accu-
rately. CNN-driven prediction models were found to outperform the regression-based
prediction model [29]. This paper proposes a Kinect v2 3D camera scheme driven
by time-series deep-learning algorithmic models that can improve the accuracy of
real-time tumor motion prediction compared with the regression model. Because
Respiratory motion is oscillatory in nature. Therefore, with a single isolated sample,
there will be no distinction between inhaling and exhaling. In order to make accurate
prediction, a series of samples has to be taken into account. Time series analysis can
provide the consequences of and insights into the given dataset’s features that change
over time-supporting the prediction of the future values of the time series variable.

A limitation of this study is that the prediction performance may decrease with
irregular breathing patterns. Additionally, predictions may be inaccurate when the
motion lies outside the range of motion included in the training dataset and can be
improved by increasing the number of respiratory patterns and tumor displacement
measurements of prospective patients to cover any situation and input features or train
the patient to breathe regularly so that the model can provide accurate predictions.

Although Kinect was developed for gaming, its performance is suitable for a
range of medical applications [30]. The Kinect V2 camera can provide information
on the patient’s position and the patient’s movement by tracking the body surface
motion during radiotherapy. In addition, the Kinect V2 camera may be useful in other
medical applications. For example, Heß et al. used the Kinect camera to determine
the correlation between body surface motion and internal organs for the purpose of
respiratory motion correction to reduce the blurring effect and attenuation correction
artifacts in positron emission tomography (PET) images [31]. Noonan et al. modified
the Kinect V3 camera for the purpose of tracking the motion of a subject in a routine
clinical PET/CT scan [32]. The Kinect V3 camera is also currently the subject of a
clinical trial.
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5. Conclusions

This paper proposed an economical and highly efficient Kinect v2 3D camera scheme
driven by two time-series deep-learning algorithmic models: a classification model and
a regression-based prediction model. The classification model is used to determine the
respiratory phases that correspond to the lung tumor location, and the regression-based
prediction model is used to predict the lung tumor displacement (in millimeters). The
budget-friendly Kinect v2 3D camera is employed in place of the costly RPM system.
In the study, both the classification model and the prediction model were validated by
testing with four dataset categories (patient-based datasets with regular (category I) and
irregular (category II) breathing patterns and pseudopatient-based datasets with regular
(category III) and irregular (category IV) breathing patterns). ‘Pseudopatients’ refer to
the dynamic thorax phantom with a lung tumor programmed with varying breathing
patterns and breaths per minute. The respiratory phase classification performance of the
classification model was determined by the total accuracy (average of the F1 scores), and the
performance of the regression-based model for the prediction of lung tumor displacement
was determined by the MSE, MAE, and R2. The total accuracy was 100%, 100%, 100%,
and 92.44% for the dataset categories I, II, III, and IV, respectively, with a corresponding
MSE, MAE, and R2 of 1.2–1.6%, 0.65–0.8%, and 0.97–0.98, respectively. The numerical
results indicate that both the time-series deep-learning classification and regression-based
prediction models are capable of classifying the respiratory phases and predicting the lung
tumor displacement with high accuracy. In comparison with the costly RPM-based scheme,
the proposed time-series deep-learning Kinect 3D camera scheme is highly affordable.
In addition, the time-series deep-learning classification and regression-based prediction
models are both of an open-system algorithmic scheme as opposed to the closed-system
technology of the RPM system. Furthermore, the proposed time-series deep-learning
models were demonstrated to improve the prediction of lung tumor displacement.
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