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Abstract: Alzheimer’s disease is the most common form of dementia and the fifth-leading cause of
death among people over the age of 65. In addition, based on official records, cases of death from
Alzheimer’s disease have increased significantly. Hence, early diagnosis of Alzheimer’s disease
can increase patients’ survival rates. Machine learning methods on magnetic resonance imaging
have been used in the diagnosis of Alzheimer’s disease to accelerate the diagnosis process and
assist physicians. However, in conventional machine learning techniques, using handcrafted feature
extraction methods on MRI images is complicated, requiring the involvement of an expert user.
Therefore, implementing deep learning as an automatic feature extraction method could minimize the
need for feature extraction and automate the process. In this study, we propose a pre-trained CNN
deep learning model ResNet50 as an automatic feature extraction method for diagnosing Alzheimer’s
disease using MRI images. Then, the performance of a CNN with conventional Softmax, SVM, and
RF evaluated using different metric measures such as accuracy. The result showed that our model
outperformed other state-of-the-art models by achieving the higher accuracy, with an accuracy range
of 85.7% to 99% for models with MRI ADNI dataset.

Keywords: Alzheimer’s disease; deep learning; convolutional neural network (CNN); MRI; brain imaging

1. Introduction

The brain is one of the most significant and complex organs in the human body. It has
several vital functions, such as idea formation, problem-solving, thinking, decision-making,
imagination, and memory. Memory can save and retrieve information or experiences.
Our physical memory stores the whole record of our lives and plays an essential role in
defining our character and identity. Memory loss caused by dementia and the inability
to recognize our environment are terrifying experiences. Alzheimer’s disease (AD) is the
most common form of dementia. Becoming older increases people’s fears of developing
Alzheimer’s. Alzheimer’s disease gradually kills brain cells and, as a result of that, patients
end up disconnecting from everything around them and losing loving memories, childhood
memories, the ability to recognize their family members, and even the ability to follow
simple instructions. They also lose the ability to swallow, cough, and breathe in advanced
stages. Approximately 50 million people worldwide are affected by dementia, and the
cost of providing health and social care for them is equivalent to the world’s 18th largest
economy [1]. In addition, the annual number of new cases of AD and other dementias
is projected to triple by 2050, reaching 152 million cases, which means one new case of
dementia every 3 seconds. Diagnosis of AD is complicated by its overlapping symptoms
with normal ageing or vascular dementia (VD) [2,3]. Early and accurate diagnosis of
AD plays an essential role in prevention, treatment, and patient care through tracking its
development. The focus of several research projects is to detect Alzheimer’s disease using
brain imaging, including MRI. It can measure the size and number of cells in the brain.
Also, it can show the parietal atrophy for AD cases [4].
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Images play an essential role in many scientific fields. In addition, medical imaging
has become a powerful tool to understand brain functions. Brain imaging/neuroimaging,
such as magnetic resonance imaging (MRI), has been used in the medical diagnosis of brain
conditions to enable visualization of the structure and functionality of the brain. Physicians
evaluate AD signs and symptoms, as well as perform several tests to diagnose AD dementia.
Doctors may order additional laboratory tests, brain imaging tests, or memory testing for
patients. These tests can help doctors make diagnoses by ruling out other conditions that
cause similar symptoms. MRI can detect brain abnormalities associated with mild cognitive
impairment (MCI) and can be used to predict which MCI patients will develop AD in the
future. They will be looking in MRI images for any abnormalities, such as a decrease in the
size of different areas of the brain (mainly affecting the temporal and parietal lobes).

With the evolution of technology and the growth of data generated by brain-imaging
techniques, machine learning (ML) and deep learning (DL) are becoming increasingly
crucial for extracting accurate and relevant information and making accurate predictions of
AD from brain-imaging data.

Several machine-learning methods have been applied for the classification of AD, and
the results of the models show good performance. In general, the conventional learning-
based methods consist of three stages: 1—the predetermination of the regions of interest
(ROIs) of the brain, 2—features selection from the ROIs, and 3—the classification models
are built and evaluated. The main issue with conventional learning-based methods is the
process of features engineering (i.e., manual selection and extraction), which has a great
influence on the performance of the model. Compared with traditional ML methods, DL
has become a revolutionizing methodology in recent decades [5]. Instead of extracting
the features manually and in a separate process from the classifier, DL has automated the
process without the engagement of human experts for feature extraction because it can learn
directly from images through the neural networks. Recently, convolutional neural networks
(CNNs) have achieved very high accuracy and precision on image classifications [5].

Based on the excellent performance of DL and convolutional neural network methods
in various image classification tasks, this paper aims at evaluating CNN-based MRI feature
extraction for the automatic classification of Alzheimer’s diseases. CNN-based models are
developed as a DL method to diagnose Alzheimer’s diseases on MRI images with three
different classifiers (Softmax, SVM, and RF) and the model’s performance was compared
between fully connected layers. The research objectives are to answer the following research
questions. (1) Is the pre-train DL CNN approach ResNet50 used in this study useful for the
classification of Alzheimer’s diseases in MRI brain images? (2) Which classifier used with
pre-trained CNN will give us better classification performance: Softmax, SVM, or RF?

The rest of this paper is organized as follows: Section 2 reviews the previous studies
of AD diagnosis and classification, Section 3 presents the methodology, describing how to
build and evaluate the proposed CNN model, Section 4 provides the experimental and
evaluation results, and, finally, Section 5 concludes the paper and discusses future work.

2. Related Work

Several studies have proposed AD diagnosis and detection systems that utilize a
variety of classification techniques. This section contains a review of recent studies that
used conventional ML and DL approaches in AD diagnosis and detection systems.

Some of the previous studies on Alzheimer’s disease diagnosis have applied conven-
tional machine-learning techniques. They are focused on developing models to analyze the
anatomical or structural brain images such as MRI and brain functionality to detect any
defect or disorders. In addition, it considered segmentation tasks as classification issues
and heavily depended on manually designed features and feature representations as to
the voxel, region, or patch-based methods. It required several expert segmented images to
train classification models, and that takes a longer time.

Liu et al. (2016) [6] proposed an inherent structure-based multiview learning (ISML)
method for AD/MCI classification. The proposed method consists of three stages: (1) mul-
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tiview feature extraction using multiple templates and using gray matter (GM) tissues
as tissue-segmented brain image for feature extraction, (2) subclass clustering-based fea-
ture selection through using voxel selection that improving the power of features, and (3)
using SVM-based ensemble classification. They evaluated the efficiency of the proposed
method on the MRI baseline dataset consisting of 549 subjects (70 AD and 30 Normal
Control—NC) provided by the ADNI (http://adni.loni.usc.edu/, accessed on 5 February
2022) database [7]. The experiment result shows that the proposed ISML method obtains
an accuracy of 93.83% and specificity of 95.69%, and sensitivity of 92.78% for AD vs. NC.

In another study, Krashenyi et al. (2016) [8] proposed an AD classification approach
based on fuzzy logic. Their classification technique is based on multimodal data PET and
MRI data. The dataset consists of 70 AD, 111 MCI, and 68 NC subjects provided by the
ADNI database. The proposed approach consists of three stages: (1) image pre-processing,
including MRI/PET normalization and MRI data segmented into white matter (WM) and
grey matter (GM), then they used a voxel selection procedure to reduce low-activated
voxels; (2) feature selection is based on ROI, and then they apply t-test as statistical tests for
feature ranking and selection to reduce the number of ROI; and (3) do a fuzzy classification
using the c-means algorithm. The classification performance of the proposed approach has
been used under the receiver operating characteristic (AUC), while the regions with the
highest AUC area should be defined in the PET and MRI images as the optimal number of
regions. The highest classification performance achieved with a combination of features
(7 MRI and 35 PET) is AUC = 94.01%. The experiment result shows that the proposed
approach obtains 89.59% accuracy, 92.2% specificity, and 93.27% sensitivity for AD vs. NC.

Lazli et al. (2018) [9] proposed an AD computer-aided diagnosis (CAD) system to
distinguish between AD cases and normal control cases and evaluate the tissue volume
of MRI and PET images. The proposed approach consists of two processes: segmentation
and classification. First, they used fuzzy possibilistic tissue segmentation as a hybrid of the
fuzzy c-means (FCM) and a possibilistic c-means (PCM) segmentation processes. Then in
the classification process, they used SVM classifiers with different types of kernels (linear,
polynomial, and RBF) to decide the final diagnosis (AD or NC). The proposed approach
was tested on MRI and PET images that consisted of 45 AD subjects and 50 healthy subjects
provided by the ADNI database. The classification performance of the proposed approach
has been evaluated with the leave-one-out cross-validation method. The experiment
showed that the proposed solution obtains better accuracy, sensitivity, and specificity
compared to the other three approaches, FCM, PCM, and VAF [10] (Voxels-As-Features),
and achieved a higher accuracy rate of 75% for MRI and 73% for PET images.

The similar work by Thulasi N P and Varghese (2018) [11] proposed a diagnosis system
of Alzheimer’s disease based on image processing techniques and SVM classifiers. The
proposed approach was trained and tested on a small MRI scanning dataset consisting of
100 subjects (70 AD and 30 NC) provided by the ADNI database. The proposed solution
consisted of two phases: feature extraction/selection and classification. In the first phase,
the authors used speeded-up robust features (SURF) to extract the key points of the cor-
responding MRI images, then the gray level co-occurrence matrix (GLCM) was used for
feature extraction. In the classification phase, they used the support vector machines (SVM)
to classify MRI images to AD or normal controls.

Recently, many improvements have been observed in the research field of AD diag-
noses/classification using DL techniques. In opposition to conventional ML methods, DL
methods are able to extract/select special features automatically from a raw dataset with
higher performance results achieved. Liu et al. (2015) [12] studied Alzheimer’s disease
classification using multi-modality data MRI and PET scans from the ADNI dataset. They
proposed a novel diagnostic framework to aid AD diagnosis by using DL architecture. To
extract complementary information from multimodal neuroimaging data (MRI and PET),
their framework uses a stacked auto-encoder SAE and a zero-mask strategy for data fusion.
It also uses a Softmax logistic regressor as a classifier. The results show that based on MRI
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and PET ADNI, this framework outperformed with 91.4% accuracy. However, when PET
data is not available and MRI is the only input, this percentage reduces to 82.6%.

Korolev et al. (2017) [13] apply two different 3D CNN approaches (3D-VGGNet and
3D-ResNet) with Softmax nonlinearity for classification. They use the ADNI dataset of 3D
structural MRI brain scans. The result shows that the accuracy of AD/CN classification
reaches 79% for Voxnet and 80% for ResNet. In addition, their algorithms are simpler to
implement and do not need the manual extraction step.

In recent evidence, Gunawardena et al. (2017) [14] proposed a simple, convolutional
neural network for AD pre-detection. Their study consists of two experiments that use MRI
scans provided by ADNI. First, they use the SVM classifier as the most common detection
method. This decision is based on their assumption that a successful AD detection method
can be successfully applied to AD pre-detection. The SVM classifier obtains 84.41% accuracy,
95.3% sensitivity, and 71.4% specificity in the first experiment. For the second experiment,
they utilized the proposed CNN model. They tested the CNN model with different datasets
and different image segmentation methods through the six evaluation processes. The best
image segmentation method was extended ROI without detecting edges, which obtained
the best and highest accuracy rate (96%), with 96% sensitivity and 98% specificity.

Lan Lin et al. (2018) [15] proposed a new classification method that automatically
differentiates patients with AD from HC based on MRI data. The feature was extracted
from the pre-trained convolutional neural network (CNN) using AlexNet, as well as feature
selection based on principal component analysis (PCA) and sequential feature selection
(SFS). While they adopt a support vector machine (SVM) to evaluate the classification
accuracy, the results show that a high classification accuracy for AD/CN classification
reaches 90%.

Another related work is found in the study elaborated by Bäckström et al. (2018) [16].
Their work was focused on proposing a novel and effective three-dimensional convolu-
tional network (3D ConvNet) architecture to achieve high performance for the detection of
AD. The proposed 3D ConvNet consisted of five convolutional layers for feature extraction,
followed by three fully connected layers for AD/NC classification. In addition, the study
focused on the impact of the following factors on the performance of AD classification:
hyper-parameter selection, pre-processing, data partitioning, and dataset size. They ob-
tained a dataset from ADNI consisting of 430 subjects (199 AD and 141 NC). MRI scans
were randomly partitioned into three subsets, with 60% in the training set, 20% in the
validation set, and 20% in the test set. The results showed that the proposed method
achieved a 98.74% accuracy rate for detecting AD vs. CN.

On the other hand, Huanhuan et al. (2019) [5] proposed an ensemble learning method
for the early diagnosis of AD by using convolutional neural networks (ConvNets) as a DL
technique based on MRI scans. They obtained a dataset consisting of 615 MRI images that
were split into 179 AD, 254 MCI, and 182 NC in NifTI format from ADNI. They resized
the MRI images to 224 × 224 and grouped them into WM and GM. Only 20 slices were
selected as the data from GM and WM and sent to the DL model ConvNet for training. To
enhance the classification process, the researchers used ensemble learning methods after
the convolutional operations. They selected ResNet50, NASNet, and MobileNet as the
combined base classifiers for the early diagnosis of AD. The results show that the proposed
method obtained accuracy rates of 98.59 % for AD vs. NC, 97.65% for AD vs. MCI, and
88.37% for MCI vs. NC.

The study by Rallabandi et al. (2020) [17] proposed a model for early diagnosis and
classification of AD and MCI from elderly cognitive normal, as well as the prediction and
diagnosis of early and late MCI individuals. The dataset consists of 1167 whole-brain
magnetic resonance imaging subjects, 371 NC, 328 early MCI, 169 late MCI, and 284 AD,
provided by the ADNI database. They used FreeSurfer analysis for each individual scan
to extract 68 features of the cortical thickness and utilized these features for building the
model. They further tested scans using various machine learning methods (non-linear
SVM (RBF kernel), naive Bayesian, K-nearest neighborhood, random forest, decision tree,
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and linear SVM). The non-linear SVM classifier with radial basis function showed the
highest specificity, sensitivity, F-score, Matthew’s correlation coefficient, and kappa-statistic,
receiver operating characteristic area under the curve (ROC AUC), as well as 75% accuracy
in classifying all four groups using 10-fold cross-validation.

Table 1 below summarizes the reviewed studies and shows a comparison between them
based on (1) dataset (dataset name, image modality, and size of the dataset that was used),
(2) methodology (feature selection and classifier), and (3) performance evaluation results.

Table 1. Summary and comparison of the selected recent research.

References
Dataset Methodology

Evaluation Result
Name Modality Size Feature Selection Classifier

Liu et al. (2016) [6] ADNI MRI 549 subjects
70 AD
30 NC

Multiview learning using
GM

SVM AD vs. NC.
Accuracy: 93.83%
specificity: 95.69%
sensitivity: 92.78%

Krashenyi et al. (2016) [8] ADNI MRI
PET

249 subjects
70 AD
111 MCI
68 NC

ROI + statistical tests (t test) fuzzy logic using:
c-means algorithm

AD vs. NC
Accuracy: 89.59%
specificity: 92.2%
sensitivity: 93.27%
AUC= 94.01%.

Lazli et al. (2018) [9] ADNI MRI
PET

95 subjects
45 AD
50 NC

Fuzzy-Possibilistic Tissue
Segmentation

SVM (Linear,
Polynomial, and
RBF)

AD vs. NC
Accuracy: 75% (for MRI), 73% (for
PET)

Thulasi N P and Varghese
(2018) [11]

ADNI MRI 100 subjects
70 AD
30 NC

Speeded Up Robust
Features (SURF)
Gray Level Co-Occurrence
Matrix (GLCM)

SVM -

Liu et al. (2015) [12] ADNI MRI
PET

758 MRIsubjects
180 AD
160 cMCI
214 ncMCI
204 NC
331 subject Both MR & PET
data
85 AD
67 cMCI
102 ncMCI
77 NC

stacked auto-encoder SAE Softmax logistic
regressor

AD vs. NC
Accuracy: 91.40%
specificity: 90.42%
sensitivity: 92.32%
MCI vs. NC.
Accuracy: 82.10%
specificity: 92.32%
sensitivity: 60.00%

Korolev et al. (2017) [13] ADNI MRI 231 Subjects
50 AD
43 LMCI
77 EMCI
61 NC

3D CNN
(VoxCNN & ResNet)

Softmax AD vs. NC
Accuracy:
79% VoxCNN
80% ResNet
AUC:
88% VoxCNN
87% ResNet

Gunawardena et al. (2017)
[14]

ADNI MRI D1: 36 subjects (AD 7, MCI
14, NC 15) > 1615 2D images
generated
D2: 36 subjects (AD 9, MCI
16, NC 11) > 1743 2D images
generated from 3D

CNN SVM The best classification accuracy (96%)
with (Extended ROI without detecting
edges) among the other segmentation
methods

Lan Lin et al. (2018) [15] ADNI MRI 422 subjects
105 AD
123 MCI
194 NC

CNN (AlexNet) SVM AD vs. NC
Accuracy: 90%
specificity: 91%
sensitivity: 87%
AD vs. MCI
Accuracy: 81%
specificity: 88%
sensitivity: 70%
MCI vs. NC
Accuracy: 72%
specificity: 74%
sensitivity: 69%

Bäckström et al. (2018) [16] ADNI MRI 340 subjects
199 AD
141 NC
1198 MRI Scans

3D ConvNet Softmax AD vs. NC
Accuracy: 98%

Huanhuan et al. (2019) [5] ADNI MRI 615 subjects
179 AD
254 MCI
182 NC

ConvNet ResNet50,
NASNet, and
MobileNet

AD vs. NC
Accuracy: 98.59%
AD vs. MCI
Accuracy: 97.65%
MCI vs. NC
Accuracy: 88.37

Rallabandi et al. (2020) [17] ADNI MRI 1167 subjects 371 NC
328 EMCI,
169 LMCI
284 AD

FreeSurfer Non-linear SVM
(RBF kernel)
Naive Bayesian
K-Nearest
Neighborhod
Random Forest
Decision Tree
Linear SVM

non-linear SVM classifier showed the
highest result in classifying all four
groups
77% specificity
75% sensitivity
72% F-score
71% Matthew’s correlation coefficient
69% kappa-statistic
76% (ROC AUC)
75% accuracy

Considering the above, to the best of our knowledge no study has focused on evaluat-
ing CNN-based MRI feature extraction using different classifiers. Thus, the aim of this paper
is to analyze CNN-based MRI feature extraction for automatic classification of patients
with Alzheimer’s disease using pretrained CNN ResNet-50 with SVM, RF, and Softmax.

3. Materials and Methods

The main aim of this paper is to investigate and enhance the classification perfor-
mance of MRI images for the early diagnosis of AD through DL and CNN. Thus, this
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paper proposes to build and evaluate a disease diagnosis approach based on a CNN DL
technique based on MRI feature extraction for the automatic classification of AD using
three different classifiers, SVM, RF, and Softmax. Figure 1 shows the general structure of
the proposed approach.
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Figure 1. The general structure of the proposed approach.

In this work, we will start by building and validating a CNN model for feature
extraction and classification. The validated model will then be used in experiments to
evaluate the model through analyzing the features extracted by CNN (ResNet) from the
fully connected layer. Three of the most well-known conventional ML classifiers will be
applied (SVM, RF, and Softmax) for each set of features and for evaluating the results, where
SVM and RF are the most common classification techniques used for AD classification
based on our literature review. To build an AD diagnosis approach, the methodology
goes through the following stages: first, the MRI data collection stage. In the second
stage, the image pre-processing, we resized each MRI image to a suitable size for the CNN
model. After that, we employed the pre-trained convolution neural networks ResNet50
to extract MRI image features and utilize them in the following classification stage in the
feature’s extraction stage. We use three different classifiers, SoftMax, SVM, and RF, in the
classification stage. Finally, we looked at the different results, analyzed the efficiency and
the effectiveness of each approach using the evaluation metrics, and compared our results
with recent studies results. Figure 2 illustrates the detailed steps of the solution.
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3.1. MRI Dataset

This study will use two public datasets, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [7] and Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD) [18]. The ADNI [7] was launched in 2003 by the National Institute of Biomedical
Imaging and Bioengineering as a non-profit organization led by principal investigator
Michael W. Weiner, MD. The initial goal of ADNI is to evaluate the progression of early
Alzheimer’s disease. The ADNI-1 Dataset consists of 1.5 T T1-weighted MRI images with
128 sagittal slices, typically 256 × 256 matrices with a voxel size of approximately 1.33 mm
× 1 mm × 1 mm). The dataset is encompassing 741 subjects divided into Alzheimer’s
disease (AD) and normal control (NC). This dataset consists of 314 AD scans and 427 NC [7].
The MIRIAD dataset is a publicity available scan database of MRI brain scans consisting
of 46 Alzheimer’s patients and 23 normal control cases. Many scans were collected from
each participant at intervals between 2 weeks and 2 years, and the study was designed
to examine the feasibility of using MRI scans as an outcome measure for clinical trials of
Alzheimer’s therapies. It includes a total of 708 scans. Three-dimensional T1-weighted
images were acquired with an IR-FSPGR (inversion recovery prepared fast spoiled gradient
recalled) sequence, field of view 24 cm, 256 × 256 matrix, 124 1.5 mm coronal partitions,
TR 15 ms, TE 5.4 ms, flip angle 15◦, and TI 650 ms [18]. In both datasets, images from AD
patients did not specify AD degrees. In our experiments, multiple images from one patient
are treated independently, as if for different patients.

The data format is NIFTI and the file extension is (.nii). MRI data provide details of
the brain and visualize the anatomy in all three planes: axial, sagittal, and coronal (see
Figure 3 below). Figure 4 shows a comparison between a healthy brain (NC brain) and an
AD brain of axial planes [18].

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. MRI Imaging Planes. 

 
Figure 4. Normal brain vs. brain affected with Alzheimer’s. 

3.2. Data Pre-Processing 
The pre-processing phase of the MRI datasets aims to transform the data into a more 

optimal representation to match the pre-trained CNN’s input size requirements. First, we 
extracted the brain from MRI 3D images by removing the skull from the image and elim-
inating noise for improving the model performance. Then, applying the smoothing tech-
nique of MRI is often used to reduce noise within an image and produce a less pixelated 
image. We have smoothed our MRI images with a 4 mm FWHM Gaussian filter, while 
FWHM is the width of the kernel. Moreover, the ResNet architecture uses input images 
224 × 224 pixels in size, meaning that each input MRI image in our CNN model resized to 
224 × 224 pixels before being fed into the model.  

3.3. CNN Model 
The architecture of the proposed pre-trained CNN model (ResNet-50 [19]) consists of 

five Conv blocks stages, pooling layers, and the fully connected (FC) layer. Convolutional 
and pooling layers are used for feature extraction, while the fully connected layers are 
used for the image classification stage. Feature extraction in CNN uses local connections 
for local features detected and pooling for merging similar local features to be one feature. 
Meanwhile, FC layers are used to compute the output for each input MRI image. In addi-
tion, for optimizing the classification task, the FC layers can be replaced by other classifi-
ers, such as SVM or RF. 

After the data collection and image pre-processing stage, the dataset is divided into 
three sets: training, validation, and a testing set. Since we have small datasets, we used 
the data augmentation technique, which helps to increase the number of samples in our 
training dataset and this has expanded the number of images to 741 for ADNI [7] and 708 
for MIRIAD [18]. The training set (a labeled dataset) trains the CNN model on a particular 
task, such as feature extraction, where the CNN model will generate MRI features vectors 
from the fully connected layer. After that, the features vectors are entered into three 

Figure 3. MRI Imaging Planes.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. MRI Imaging Planes. 

 
Figure 4. Normal brain vs. brain affected with Alzheimer’s. 

3.2. Data Pre-Processing 
The pre-processing phase of the MRI datasets aims to transform the data into a more 

optimal representation to match the pre-trained CNN’s input size requirements. First, we 
extracted the brain from MRI 3D images by removing the skull from the image and elim-
inating noise for improving the model performance. Then, applying the smoothing tech-
nique of MRI is often used to reduce noise within an image and produce a less pixelated 
image. We have smoothed our MRI images with a 4 mm FWHM Gaussian filter, while 
FWHM is the width of the kernel. Moreover, the ResNet architecture uses input images 
224 × 224 pixels in size, meaning that each input MRI image in our CNN model resized to 
224 × 224 pixels before being fed into the model.  

3.3. CNN Model 
The architecture of the proposed pre-trained CNN model (ResNet-50 [19]) consists of 

five Conv blocks stages, pooling layers, and the fully connected (FC) layer. Convolutional 
and pooling layers are used for feature extraction, while the fully connected layers are 
used for the image classification stage. Feature extraction in CNN uses local connections 
for local features detected and pooling for merging similar local features to be one feature. 
Meanwhile, FC layers are used to compute the output for each input MRI image. In addi-
tion, for optimizing the classification task, the FC layers can be replaced by other classifi-
ers, such as SVM or RF. 

After the data collection and image pre-processing stage, the dataset is divided into 
three sets: training, validation, and a testing set. Since we have small datasets, we used 
the data augmentation technique, which helps to increase the number of samples in our 
training dataset and this has expanded the number of images to 741 for ADNI [7] and 708 
for MIRIAD [18]. The training set (a labeled dataset) trains the CNN model on a particular 
task, such as feature extraction, where the CNN model will generate MRI features vectors 
from the fully connected layer. After that, the features vectors are entered into three 

Figure 4. Normal brain vs. brain affected with Alzheimer’s.

3.2. Data Pre-Processing

The pre-processing phase of the MRI datasets aims to transform the data into a more
optimal representation to match the pre-trained CNN’s input size requirements. First,
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we extracted the brain from MRI 3D images by removing the skull from the image and
eliminating noise for improving the model performance. Then, applying the smoothing
technique of MRI is often used to reduce noise within an image and produce a less pixelated
image. We have smoothed our MRI images with a 4 mm FWHM Gaussian filter, while
FWHM is the width of the kernel. Moreover, the ResNet architecture uses input images
224 × 224 pixels in size, meaning that each input MRI image in our CNN model resized to
224 × 224 pixels before being fed into the model.

3.3. CNN Model

The architecture of the proposed pre-trained CNN model (ResNet-50 [19]) consists of
five Conv blocks stages, pooling layers, and the fully connected (FC) layer. Convolutional
and pooling layers are used for feature extraction, while the fully connected layers are used
for the image classification stage. Feature extraction in CNN uses local connections for
local features detected and pooling for merging similar local features to be one feature.
Meanwhile, FC layers are used to compute the output for each input MRI image. In
addition, for optimizing the classification task, the FC layers can be replaced by other
classifiers, such as SVM or RF.

After the data collection and image pre-processing stage, the dataset is divided into
three sets: training, validation, and a testing set. Since we have small datasets, we used
the data augmentation technique, which helps to increase the number of samples in our
training dataset and this has expanded the number of images to 741 for ADNI [7] and 708 for
MIRIAD [18]. The training set (a labeled dataset) trains the CNN model on a particular task,
such as feature extraction, where the CNN model will generate MRI features vectors from
the fully connected layer. After that, the features vectors are entered into three different
classifiers. The validation set provides an impartial evaluation of a model fit on the training
dataset while tuning the model. The test set was used to evaluate the ResNet50-Softmax,
ResNet50-SVM, and ResNet50-RF model approaches.

We apply a pre-trained CNN called ResNet-50 using Tensorflow [20] and Keras [21]
applications to the MRI images instead of training a CNN from scratch, which requires a
huge dataset. In addition, this helps to avoid the overfitting problem caused by the small
dataset. We selected the ResNet-50 model because it is arguably the most groundbreaking
work in the computer vision/DL community in the last 5 years. ResNet makes it possible
to train hundreds of layers that go deeper and deeper and still achieve good performance.
It won the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and it
outperformed all prior competitors and won the challenge by reducing the top-five error to
3.57%. Our study used ResNet-50 with three classifiers, Softmax, SVM, and RF, to determine
which one performs better with the ResNet-50 model.

In the following paragraphs, there will be a brief description of the methodology CNN
model of each set of layers.

3.3.1. Convolutional Layer

The convolutional layer is the essential part and the core building block of the DL
CNN. It is responsible for the feature extraction process, while its output sets of 2D matrices
are called feature maps. Each convolutional layer consists of a fixed number of filters that
act as feature detectors and extract the features by convolving the input image with these
filters. The size of the filters is chosen in ResNet50 (7 × 7), (1 × 1), and (3 × 3). During the
training process, each filter acquires the ability to detect the analyzed images’ low-level
features, such as colors, edges, blobs, and corners.

3.3.2. Pooling Layer

The pooling layers [22] are places after the convolutional layers (Conv). The sub-
sampling layer is responsible for decreasing the size of the feature maps that produce the
convolutional layers. Max pooling is the most popular pooling operation that reduces
the feature maps by reducing the small region in the image with the maximum value in
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the region. The max-pooling process is based on the partition of the images into sets of
2 × 2 non-overlapping regions. The maximum value from every region is taken. The 2 × 2
pooling layer reduces the size of the feature map by four times.

The process of max pooling is performed to avoid overfitting by providing an abstract
of the image representation regions. In addition, it minimizes the computational cost by
decreasing the number of parameters. Furthermore, the average pooling layer is another
type of pooling. This layer acts as max pooling, but it calculates 2 × 2 rectangles’ averages
to create a subsampled image instead of taking the maximum value.

3.3.3. Batch Normalization Layer

The batch normalization layer [23] is used to normalize the convolution layer’s output
by setting the batch’s mean to 0 and the variance to 1. This technique speeds up the training
process, using higher learning rates. Moreover, it prevents the gradients of the model
from vanishing during backpropagation. In addition, DL models with batch normalization
layers are more robust against improper weights initialization.

3.3.4. Dropout Layer

The dropout layer [24] is used to avoid overfitting phenomena. This technique is based
on a mechanism where, during the training, neurons are randomly removed. The dropout
rate parameter controls the number of removed neurons, which decides the likelihood of
neuron removal. The neurons are removed only during the training process.

3.3.5. Fully Connected Layer

The fully connecting layer is the last layer in the ResNet50 network. It acts as a classi-
fier, and its function is to connect the layers in the network and give the final result of the
classification. Usually, it is followed by the final layer with a normalized exponential func-
tion (Softmax). This layer has been modified to fine-tune the ResNet50 for the classification
of Alzheimer’s disease.

3.4. MRI Image Classification

The FC layers of CNN can be replaced by other classifiers, for example, based on
logistic regression or SVMs, which are optimized for the task of classification. In this project,
we will evaluate CNN with Softmax, SVM, and RF classifier.

3.4.1. Softmax Classification Layer

In general, in the last layer of CNN architecture is the Softmax function used to classify
the labeled data and calculate the probability of each ground-truth label of outputs between
0 and 1, and output values converted to perceptible values. The formula of the Softmax
function is given by the following equation [25]:

f (x)i =
ezj

∑N
n=1 ezk

f or j = 1, . . . . . . , N, (1)

where N is denoted as the dimension of random values (x), which are converted to the
meaningful values between 0 and 1 by the Softmax function f (x).

3.4.2. SVM Classification

We will replace the final FC layers by SVM classifier with a number of splits (folds
number = 10 and seed = 7). SVMs are often used for binary image classification, AD vs. NC,
and they have achieved noteworthy results in real-life problems. In addition, using the RBF
kernel, the SVM classifier generates a nonlinear classifier that can map the original dataset
to the higher dimensional space by generating linear data. This is shown in the equation



Sensors 2022, 22, 2911 10 of 16

below, where input vectors are shown by x and y, the squared Euclidean distance between
x and y vectors is shown by ||x− y||2, and the kernel parameter is shown by σ2 [25]:

k(x, y) = exp

(
−||x− y||2

2σ2

)
, (2)

3.4.3. Random Forest

Random forest (RF) is a technique for reducing the variance of an estimated prediction
function. RF is a substantial modification of bagging that builds a large collection of
de-correlated trees and then averages them. The essential idea in bagging is to average
many noisy but approximately unbiased models and reduce the variance. Trees are ideal
candidates for bagging since they can capture complex interactions [26]. It can be used for
classification and regression. When used for classification, a random forest obtains a class
vote from each tree and then classifies using a majority vote. When used for regression, the
predictions from each tree at target point x are simply averaged. In our study, we used RF
for classification with number estimator = 20 while the default = 100 and it can be change
from 1–100 after trying several values 20 gives us the best result.

On many problems, random forests’ performances are much like boosting, and they are
simpler to train and tune. Consequently, random forests are popular, and are implemented
in a variety of packages [26].

3.5. Performance Evaluation Metrics

The most important performance indicator (accuracy, ACC) of the AD diagnosis is
used to measure the ResNet50-Softmax, ResNet-SVM, and ResNet-RF performance models.
In addition, sensitivity (SEN) and specificity (SPE) are performance indicators. The true
positives (TP) refer to the classifier’s positive tuples that were correctly labeled. Let TP
be the number of true positives. The false positives (FP) are the negative tuples that were
incorrectly labeled as positive. Let FP be the number of false positives. The true negative
(TN) are the negative tuples that the classifier correctly labeled. Let TN be the number of
true negatives. The false negatives (FN) are the positive tuples that were mislabeled as
negative. Let FN be the number of false negatives.

• Accuracy (ACC): the percentage of the number of records classified correctly versus
the total records shown in the equation below:

ACC = (TP + TN)/(TP + TN + FP + FN), (3)

• Sensitivity (SEN)/Recall shows the percentage of the number of records identified
correctly over the total number of AD subjects, as shown in the equation below:

SEN = TP/(TP + FN), (4)

• Specificity (SPE): the percentage of the number of records. Normal control is divided
by the total number of normal nodes, as shown in the equation below:

SPE = TP/(TP + FP), (5)

• Fmeasure: a measure of a test’s accuracy:

Fmeasure = 2 ∗ (precision ∗ recall)
(precision + recall)

(6)

4. Experiments and Results

This section describes the conducted experiment and its setup, followed by our ex-
periment’s results. We will first give a brief description of the experiment’s setup, which
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includes software and hardware settings, followed by the results of model training and
validation. The third subsection is related to the obtained results when applying the CNN
model for feature extraction with the three classifiers (Softmax, SVM, and RF). Finally, we
will compare the obtained results in the proposed approach with those of other methods.

4.1. Experimental Setup

The experiments were conducted using the Google Colaboratory Pro [27] platform
(Colab Pro) as a Python development environment. It is a cloud service provided by Google
that allows users to write and execute Python codes in a hosted GPU. We used DL Python
libraries TensorFlow [20], Keras [21], Scikit-learn [21], Numpy [21], and OpenCV [28]
for developing the proposed solution. In addition, we used Nibabel [29], Nilearn [30],
and DeepBrain [31] as Python libraries for neuroimaging data (MRI) analysis. This study
employed an ADNI [7] dataset with the NIFTI format of MRI scans and focused on coronal
plane visualization of brain anatomy. A coronal plane is an x-z plane perpendicular to the
ground, which (in humans) separates the anterior from the posterior. Studies show that
using the coronal plane is more effective [32].

The dataset consists of 741 subjects [AD:427 and, NC: 314]. As a pre-processing stage,
for ResNet-50 we needed to resize all MRI images to 224 × 224 and convert them to RGB.

4.2. The Results of Model Training and Validation

In our study, the dataset was randomly partitioning into 75:15:10, 75% for the training,
15% for validation, and 10% for testing. Table 2 below shows the details of the dataset.

Table 2. Datasets details.

Data Set Size Training (75%) Validation (15%) Testing
(10%)

ADNI [7] 741 [AD:427,
NC:314] 555 111 75

MIRIAD [18] 708 [AD:466,
NC:243] 530 105 73

The proposed CNN model structure is the same as that of the ResNet50 model, with
some modifications that were made to avoid overfitting and enhancing the model per-
formance. After the last convolution layer and after each fully connected layer, a batch
normalization layer was added to normalize the output. One dropout layer was added
before the classifier and after the last fully connected layer to avoid overfitting phenomena,
while the dropout rate was set to 0.5. The ResNet-50 network was trained using the stochas-
tic gradient descent (SGD) optimizer with the learning rate to 0.0004 and momentum to 0.9.
The batch size was set to 10 for training and validation sets, while batch size equals sample
number in the testing set. We set epoch to 100, while it is a hyperparameter predefined
before training a model.

We evaluated the model based on the accuracy and categorical cross-entropy (loss)
of classification AD and normal MRI images. Loss functions are intended to compute the
quantity that a model should seek to minimize during training. Figure 5 shows the per-
formance of the proposed pretrained CNN model ResNet-50 from training and validation
for the ADNI and MIRIAD datasets. Top graphs show loss vs. epochs; meanwhile, down
graphs show accuracy vs. epochs; red from training and orange from validation results,
while epochs equal 100.
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4.3. Classification Result Evaluation or Performance Analysis

To answer our first and second research questions, different experiments were con-
ducted using three different classifiers (Softmax, SVM, and RF). Thus, in our experiments,
we evaluated the proposed model’s classification performance using Softmax, SVM, and
RF classifiers with the ADNI [7] dataset and MIRIAD [18] dataset.

The experiment aims at determining the most accurate approach for the AD diagnostic
pre-train model ResNet50. First, we apply transfer learning on ResNet50 using Softmax in
the classifier layer. After that, the proposed approaches (ResNet50-Softmax, ResNet50-SVM,
and ResNet50-RF) were tested on the ADNI and MIRIAD datasets. Results showed that the
model with the Softmax classifier outperforms SVM and RF in all performance measures.
Table 3 below shows the accuracy, specificity, sensitivity, and F-measure of each classifier
on both datasets.

Table 3. Performance of the three classifiers in the proposed model.

Dataset
Classifier
Used with
ResNet50

Accuracy Specificity Sensitivity F-Measure

ADNI [7]
Softmax 99% 98% 99% 98%

SVM 92% 91% 87% 89%
RF 85.7% 88% 79% 84%

MIRIAD [18]
Softmax 96% 95% 96% 97%

SVM 90% 91% 87% 87%
RF 84.8% 84% 73% 79%

Since Softmax has the best results over the other classifiers (RF and SVM) for both
datasets, we will investigate more in evaluating this classifier’s performance in terms
of individual classes [AD and NC]. Figure 6 below shows the confusion matrix for the
Softmax classifier on the ADNI and MIRIAD datasets. Tables 4 and 5 show the classification
performance results of Softmax in precision, recall, f1-measure, and support, where support
represents the number of samples.
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Table 4. Resnet50-Softmax experiment results with the ADNI dataset.

Precision Recall F1-Score Support

NC 98% 100% 99% 43
AD 100% 97% 98% 32

Accuracy 99% 75
Macro avg 99% 98% 99% 75

Weighted avg 99% 99% 99% 75

Table 5. Resnet50-Softmax experiment results with the MIRIAD dataset.

Precision Recall F1-Score Support

NC 92% 96% 94% 25
AD 98% 96% 97% 48

Accuracy 96% 73
Macro avg 95% 96% 95% 73

Weighted avg 96% 96% 96% 73

From Figure 6 and Tables 4 and 5, it can be clearly observed that the proposed AD diag-
nosis model has been shown to be effective, with a favorable AD classification rate (96.875%)
and a low false alarm of 3.125% for the ADNI dataset, and with an AD classification rate
(95.83%) with a low false alarm of 4.16% for the MIRIAD dataset.

Results also show that the performance is consistent in the three classifiers. This
is demonstrated by the accuracy achieved by the Softmax classifiers being the highest.
Likewise, SVM comes as the second-best classifier, and RF comes third. This shows that
performance of the proposed model is not affected by the dataset.

4.4. Comparison with the State-of-the-Art Models

As shown in the previous sections, the proposed model has shown promising results
on the ADNI [7] and MIRIAD [18] datasets with three different classifiers, with accuracy,
specificity, sensitivity, and F-measure. It gave good results, answering our first research
question about the effectiveness of the proposed model needs and evaluating its classifica-
tion performance compared to other approaches in the literature to assess its effectiveness.
To achieve that, we need to compare its performance against some of the state-of-the-art
approaches discussed in our literature review. The approaches in the related work section
were tested on the MRI of the ADNI [7] dataset. We compared the obtained results on
ADNI with our proposed method in all three approaches (ResNet-50 + Softmax, ResNet-50
+ SVM, and ResNet-50 + RF). Table 6 shows the results of our proposed model on the
ADNI dataset in comparison to the results obtained by other approaches. From the results,
it can be clearly seen that the proposed ResNet50-Softmax approach achieved very high
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performance of 99%, close to the approach result proposed by Huanhuan et al. [5], which
combines three pre-trained models, including ResNet50, and achieves 98.59%. In addition,
the proposed approach using different techniques such as MRI image smoothing, add batch
normalization, and dropout layers that improve the network performance, compared with
the ResNet50-Softmax approach proposed by Korolev et al. [13], is one of the proposed
approaches using the same pre-train model ResNet50 without add batch normalization, or
dropout and achieves only 80%. On the other hand, ResNet50 + SVM obtains a good result
compared with [6,9,13,16]; it achieves 92% accuracy. In addition, ResNet + RF outperform
three approaches that are the fuzzy-possibilistic tissue segmentation + SVM approach [9],
VoxCNN + Softmax, and ResNet50 + Softmax proposed by [13]. Figure 7 below represents
the results in the flow chart.

Table 6. Comparison of our test performance with eight existing state-of-the-art methods.

Models Used Approach Accuracy Specificity Sensitivity

Liu et al. (2016) [6] Multiview learning using GM
+ SVM 93.83% 95.69% 92.78%

Lazli et al. (2018) [9] Fuzzy-Possibilistic Tissue
Segmentation + SVM 73% - -

Liu et al. (2015) [12] stacked auto-encoder SAE +
Softmax 91.40 90.42% 92.32%

Korolev et al. (2017) [13] VoxCNN + Softmax 79% - -
ResNet + Softmax 80% - -

Lan Lin et al. (2018) [15] AlexNet + SVM 90% 91% 87%
Bäckström et al. (2018) [16] 3D ConvNet + Softmax 96%

Huanhuan et al. (2019) [5] ResNet50, NASNet, and
MobileNet + Softmax 98.59 - -

Rallabandi et al. (2020) [17] Non-linear SVM (RBF kernel) 75% 79% 75%

Proposed model
ADNI [7]

ResNet50 + Softmax 99% 98% 99%
ResNet50 + SVM 92% 91% 87%
ResNet50 + RF 85.7% 88% 79%
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5. Conclusions

To conclude, in this paper an Alzheimer’s disease classification model was developed
for MRI. The pre-trained convolution neural network (CNN) architecture ResNet-50 was
applied for an AD diagnoses system with different approaches (ResNet50 + Softmax,
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ResNet50 + SVM, and ResNet50 + RF). First, we evaluated the performance for transfer
learning from pre-trained CNN ResNet-50 for the classification task using Softmax. After
that, we evaluated the performance for ResNet-50 for extracting features and using a
support vector machine (SVM) and random forest (RF) for the classification task. This study
was conducted on the ADNI MRI and MIRIAD datasets. The results show an accuracy of
99% for ResNet + Sofmax, 92% for ResNet50+SVM, and 85.7% for ResNet50 + RF with the
ADNI dataset, while the results of the MIRIAD dataset showed accuracy of 96% for ResNet
+ Sofmax, 90% for ResNet50 + SVM, and 84.4% for ResNet50 + RF. We compared our model
with the state-of-the-art models using the ADNI dataset and the results show that our model
ResNet50 + Softmax achieved a higher accuracy than most of the state-of-the-art models.
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