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Abstract: With the development of drone technology, drones have been deployed in civilian and
military fields for target surveillance. As the endurance of drones is limited, large-scale target
surveillance missions encounter some challenges. Based on this motivation, we proposed a new
target surveillance mode via the cooperation of a truck and multiple drones, which enlarges the range
of surveillance. This new mode aims to rationally plan the routes of trucks and drones and minimize
the total cost. In this mode, the truck, which carries multiple drones, departs from its base, launches
small drones along the way, surveils multiple targets, recycles all drones and returns to the base.
When a drone is launched from the truck, it surveils multiple targets and flies back to the truck for
recycling, and the energy consumption model of the drone is taken into account. To assist the new
problem-solving, we developed a new heuristic method, namely, adaptive simulated annealing with
large-scale neighborhoods, to optimize truck and drone routes, where a scoring strategy is designed
to dynamically adjust the selection weight of destroy operators and repair operators. Additionally,
extensive experiments are conducted on several synthetic cases and one real case. The experimental
results show that the proposed algorithm can effectively solve the large-scale target surveillance
problem. Furthermore, the proposed cooperation of truck and drone mode brings new ideas and
solutions to targets surveillance problems.

Keywords: target surveillance; truck and drone; two-echelon routing; adaptive large-scale neighbor-
hood search

1. Introduction
1.1. Research Motivation

Drones have the advantages of high flexibility, high timeliness, low cost, and free-
dom from the limitations imposed by human physiological constraints [1]. Therefore,
they have been widely used in surveillance missions in civil and military fields, such as
agriculture [2–4], search and rescue [5,6], aerial photography and surveillance [7], and
detection and defense Systems[8]. In addition, drones can accurately obtain high-precision
and high-resolution multivariate data from areas of interest. Therefore, they have become
important tools for target surveillance missions in harsh and dangerous battlefield envi-
ronments [9]. In recent studies, the drone target surveillance problem has been oriented to
static targets on the ground, and multiple heterogeneous drones have been considered [10].
Compared with a single drone system, the application of multiple drones can result in more
surveillance missions and improve the efficiency of surveilling targets [11].

In this study, the target surveillance problem focuses on how to rationally plan the
routes of trucks and drones to improve the surveillance efficiency and minimize the total
cost. However, the limited endurance of a single drone makes it difficult to surveil large-
scale targets distributed over a wide range [12]. Therefore, we study the target surveillance
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routing problem by cooperatively using a truck and multiple drones to surveil targets.
As shown in Figure 1, the truck, which is loaded with multiple drones, starts at the base,
surveils its targets and then returns to the base. Drones can take off and land from the
truck. After a drone takes off, it can surveil multiple targets and then return to the truck
within its maximum flight range. As shown in Figure 1, drone1 takes off at the 3rd target
and surveils the 8th and 9th targets. Then, it returns to the truck at the 5th target. The 3rd
and 5th targets are surveilled by the truck. By this process, the truck increases the drone’s
surveillance range. Besides, the truck has enough energy when conducting the surveillance
mission and both trucks and drones can surveil targets.

Figure 1. A truck and multiple drones for target surveillance.

However, traditional optimization solvers and exact algorithms may not obtain sat-
isfactory solutions in an acceptable time. Therefore, we design a new method to assist in
target surveillance problem solving. This method consists of two main parts: (1) Solution
initialization: The initial solution of the surveillance problem is generated according to the
nearest neighbor and the preservation strategies, and the idea of maximum cost savings is
adopted by replacing several truck targets with drone targets. (2) Solution optimization:
An adaptive simulated annealing with large-scale neighborhoods (ASALN) algorithm is
developed to optimize the surveillance routes of the truck and drones. In ASALN, multiple
destroy and repair operators are designed, and the probability of operators is dynamically
adjusted by roulette wheel selection. Meanwhile, multiple scoring operators are developed
to update the weight of the selection probability.

1.2. Research Contribution

The main contributions of this paper are summarized as follows:
(1) A new target surveillance mode based on the cooperation of a truck and multiple

drones is studied. In this mode, the truck, which carries multiple drones, starts from the
base and returns to the base after finishing the surveillance of all the targets. Both the truck
and drones can surveil the targets. Drones take off from the truck, surveil a number of
targets, and return to the truck.

(2) A novel heuristic method is proposed to assist in target surveillance problem-
solving. In this method, the initial solution is generated according to the nearest neighbor
algorithm of the maximum cost savings strategy, and then an adaptive simulated annealing
with large-scale neighborhoods algorithm is developed to further optimize the routes of
the truck and drones. Specifically, a scoring strategy is designed to dynamically update the
selection weights of the destroy and repair operators.

(3) Extensive experiments are conducted on synthetic and real cases, and the ex-
perimental results show that the proposed method can effectively solve the multitarget
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surveillance problem. Furthermore, sensitivity experiments on several crucial parameters
of this method are analyzed.

1.3. Research Organization

The brief overview of this paper is organized as follows. In Section 2, the relevant
works on the targets surveillance problem and related methods are briefly reviewed. In
Section 3, the model assumptions and development of the studied targets surveillance
problem are presented. Section 4 elaborates the proposed optimization algorithms to assist
the problem-solving, Section 5 reports and discusses the experimental results. Section 6
draws the conclusion and provides future research directions.

2. Related Work

The target surveillance problem based on drones mainly focuses on targets on the
ground, and a corresponding heuristic algorithm is proposed [13]. Huang et al. [14,15]
studied the collaboration with public transportation vehicles (PTVs) and the deployment of
charging stations for aerial surveillance by UAVs, and proposed an iterative algorithm to
optimize the locations of the charging stations. Yang et al. [16] studied the routing problem
of multiple drones traveling to multiple targets by using a particle swarm optimization
algorithm. Wu et al. [17] proposed a cooperative routing algorithm that meets drone
maneuvering constraints and adapts to the data communication delay for the cooperation of
multiple drones in uncertain environments. The authors in [18,19] studied spatiotemporal
cooperative routing to ensure that multiple drones reach their targets and made attempts
to consider communication constraints in the routing of multiple drones. Kuo et al. [20]
considered the task time window in the drone task allocation model and proposed the
variable neighborhood search procedure with a novel solution representation as a solver.
Boso et al. [21] proposed the neural dynamic programming method on the premise that the
positions and heading directions of different drones could be shared among the swarm.
Hu et al. [22] studied multidrone routing in surveillance missions to ensure full coverage
of surveillance areas. Tian et al. [23] established that target surveillance requires multiple
cooperative drone surveillance models. Ahn et al. [24] considered a multiobjective vehicle
routing problem with drones for military surveillance operations. With the development of
drone operational application technology, drones can land on carrier platforms to carry out
surveillance missions but are no longer allowed to access a fixed base for scheduling and
task planning. Gonzalez et al. [25] solved the truck drone team logistics (TDTL) problem by
mixed integer planning, which generates routes the drone must follow to visit all specified
locations and assigns rendezvous points where the drone’s batteries are replaced from
the truck.

Researchers have been increasingly interested in the cooperation of trucks and drones
for performing complex tasks, such as parcel delivery problems, road network surveillance
problems and target surveillance problems. However, the target surveillance problem
in this study focuses on rationally planning the routing of trucks and drones. In recent
years, many routing problems for trucks and drones have been studied, and correspond-
ing algorithms have been proposed. Murray and Chu [26] proposed the flying sidekick
traveling salesman problem (FSTSP), in which a truck launches a drone at a delivery point
and the drone returns to the truck after delivering to series of customers in a flight. This
problem is described as the mixed integer linear programming (MILP) problem. The
heuristic algorithm of FSTSP first solves the TSP route as truck routing problem and then
decides whether to assign the eligible drone to the drone route or reinsert it to the truck
route at a different delivery location. Agatz et al. [27] proposed a similar problem, the
traveling salesman problem with drone (TSP-D). Murray and Raj [28] extended the problem
in which only single trucks and single drones are considered and studied the problem of
the cooperation of trucks and multiple drones. Since then, many other extended problems
and improved algorithms have been proposed, including modified FSTSP routing prob-
lems [29–32], extended multitruck and multidrone routing problems [33–35], and more
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effective optimization algorithms [36–42]. In addition, Poikonen and Golden [43] proposed
the mothership and drone routing problem (MDRP), where the drone is allowed to visit
multiple targets sequentially before returning to the mothership for refueling, and an exact
branch-and-bound and two greedy heuristic methods are proposed to solve the problem.

It can be found that in the previous studies, only trucks or only drones are considered
in the target surveillance problem, while the cooperation of trucks and drones has not
yet been addressed. Different from the truck-only or drone-only mode, the cooperative
routing of trucks and drones for the target surveillance problem is a variant of the two-
echelon routing problem (2E-RP). The main distinguishing features of this problem are
that both the truck and drones can surveil targets, a drone takes off from the truck and
surveils multiple targets in a flight, and flies to the truck for recycling. Multiple drones
can simultaneously surveil targets. Eventually, the truck returns to the base with all the
drones. As a result, the truck can be used as a mobile carrier to extend the endurance
of drones; thus, more surveillance missions can be accomplished, and the surveillance
efficiency can be significantly improved. Additionally, an adaptive simulated annealing
with large-scale neighborhoods (ASALN) algorithm is designed to effectively solve the
target surveillance problem.

3. Problem Description and Model Development
3.1. Problem Description and Definitions

The target surveillance problem begins with a truck carrying multiple drones to surveil
the target set, which is aim at finding the best route for the truck and drones to surveil
all targets at the lowest cost while not violating the capacity limit of the drone battery.
Essentially, the surveillance problem based on trucks and multiple drones is a two-echelon
routing problem (2E-RP), where the first echelon is truck route and the second echelon is
drone route. In addition, according to graph theory, each point in the undirected graph
represents the distribution center and target location, and the line between two points
represents the truck or drone route. Therefore, the undirected graph can be used for the
routing problem G = (L, E), where L:{Di where i = 0, 1, 2. . . , n} represents the set of
surveillance targets and the base, and D0 represents the base, Dall = 1, 2, . . . , n represents
the set of all surveillance targets, and E represents the set of edges in the truck’s (or the
drone’s) route.

To clearly express the proposed model, we first list the symbols and definitions used
for the cooperation of the truck and drones in the target surveillance problem in Table 1,
including the truck and drone parameter definitions, set definitions, and decision variables.

3.2. Model Assumptions

The proposed model focuses on studying the target surveillance problem using a truck
and multiple drones. The truck carries multiple drones from the base and launches drones
at the surveillance target. Then, a small drone surveils multiple targets depending on its
battery capacity and flies back to the truck for recycling. The truck surveils targets along its
route and finally returns to the base with all the drones. To simplify the problem model, we
make the following assumptions:

(1) The truck has enough energy to surveil all the surveillance targets;
(2) Both the truck and drones surveil targets;
(3) Drones only take off/land on the truck when the truck stops at a surveillance

target;
(4) The truck must arrive at the landing point before the drone arrives;
(5) The truck surveillance process does not affect the taking off/landing the drones;
(6) The weight of the drone is constant, and the truck and drones maintain a uniform

speed;
(7) The unit costs of the truck and drones are fixed. That is, the change in the unit

driving cost of the truck caused by the weight change of the truck-mounted drone is
not considered.
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Table 1. Symbols and definitions.

Symbols Definitions

Sets:
G The undirected graph of the surveillance problem;
L The set of surveillance targets and the base;
E The set of edges in the truck’s (or the drone’s) route;
Dall =1, 2, ..., n, the set of all surveillance targets;
D0 =0, the base of the truck and drones;
R The main route of the truck;
Sr The set of route segments contained in truck route r, r ∈ R;
Dr The set of truck surveillance targets in truck route r, r ∈ R;
Dr′ The set of drone surveillance targets in truck route r, r ∈ R;
Rrl The set of drone routes in truck route r, r ∈ R;
Drlm The set of surveillance targets in the drone route m in route segment l in truck

route r, m ∈ Rrl , l ∈ Sr, rinR;
Erlm The set of edges in the drone route m in route segment l in truck route r, m ∈

Rrl , l ∈ Sr, rinR;
Parameters:
n The number of drone take-off points;
Lij The distance from surveillance target i to surveillance target j in the truck’s route,

i, j ∈ Dall ;
Lij′ The distance from surveillance target i to surveillance target j in the truck’s route,

i, j ∈ Dall ;
s1 The cost per kilometer of the truck;
s2 The flying cost per KWH of the drone;
wd The weight of the drone;
v1 The speed of the truck;
v2 The flying speed of the drone;
p The power of the drone;
V The maximum flight speed of the drone;
P The maximum power of the drone;
W The maximum battery capacity of the drone;
tij The time consumption of the drone from i to j;
Fij The energy consumption of the drone from i to j;
TM The maximum endurance of the drone;
ati The start time of truck surveillance target i;
dti The time required for the truck at surveillance target i;
tei The extra stop time for the truck at surveillance target i;
at′i The start time of drone surveillance target i;
dt′i The time required for the drone at surveillance target i;
cT

ij The cost for the truck to go from target i to target j, i, j ∈ Dall ;
cr The total cost of the trucks’ main route r, r ∈ R;
crlm The flight cost of drone in subroute m corresponding to route segment l of trucks’

main route r, m ∈ Rrl , l ∈ Sr, r ∈ R;
M The infinite positive numbers;
Nd The number of truck-mounted drones;
πi1,i2 The scores of the destroy and the repair operator;
ωi1,i2 The weights of the destroy and the repair operator;
Decisions:
aijlm If edge (i, j) ∈ Erlm, then aijrlm = 1; otherwise, aijrlm = 0, i, j ∈ Dall , r ∈ R, l ∈

Sr, m ∈ Rrl ;
bijlm If i ∈ Drlm, then bijlm=1; otherwise, bijlm = 0, r ∈ R, l ∈ Sr, m ∈ Rrl ;
cir If i ∈ Dr, then cir = 1; otherwise, cir = 0, r ∈ R;
xr If the truck chooses the main route r, then xr = 1; otherwise xr = 0, r ∈ R;
yrlm If the drone chooses the subroute m corresponding to the route segment l in the

main route r of the truck, then yrlm = 1. Otherwise, yrlm = 0, m ∈ Rrl , l ∈ Sr, r ∈ R;
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3.3. Energy Consumption Model of the Drone Battery

Since the energy consumption rate is a crucial factor for drone endurance, it is of great
significance to estimate the energy consumption model during the surveillance of multiple
targets in the drone subroute. For the convenience of presentation, it is assumed that the
drone’s self-weight is wd, its flight speed is a fixed value v2, and its power is p. When the
type of drone is determined, the values of all relevant parameters of the drone are known.
To achieve the highest surveillance efficiency, we assume that the drone flies at the highest
speed, i.e., it maintains its maximum power during flight.

v2 = V (1)

p = P (2)

where P denotes the maximum power, and V denotes the maximum flight speed. Thus, the
flight time and energy consumption from the i-th surveillance target to the j-th surveillance
target can be calculated as follows:

tij =
Lij
′

V
(3)

Fij = Ptij = P
Lij
′

V
(4)

On this basis, the total energy Fij consumed by the drone in a subroute can be calculated
to determine whether it exceeds the capacity of the battery. Meanwhile, the cost of drones
in a subroute can be further calculated.

3.4. Mathematical Formulation

To understand the definition of the problem more accurately, a mathematical model
is established for truck and drone surveillance missions. Given the network G = (L, E),
each truck route starts from the base D0, visits multiple surveillance targets in Dall and
then returns to base D0, as shown in Figure 1, i.e., the sequence of the route is (0, 1, 2, 3, 4,
5, 6, 0). Each route (r ∈ R) should satisfy two constraints: The first constraint is that the
in-degree and out-degree of any target in r (including the surveillance targets and base)
must be equal to 1; the second constraint is that there is no subloop in r. For any directed
main route by truck r(r ∈ R), its cost can be calculated and denoted as cr.

Suppose the truck route is r(r ∈ R), where Dr is the set of surveillance targets visited
by the truck; then, all other surveillance targets in D′r should be surveilled by the drones.
Meanwhile, assuming that all route segments l in the given main route r(r ∈ R) can be
enumerated, let Sr be the set of all route segments in the main route r. For route segment
l in the main route r(l ∈ Sr), assume that the feasible subroutes corresponding to the
route segment are denoted as Rrl . Each drone’s subroute m(m ∈ Rrl) starts from the first
surveillance target in the route segment, visits several surveillance targets D′r, and ends at
surveillance target l. Suppose Drlm denotes the surveillance target set in drone subroute
m(m ∈ Rrl), and Erlm denotes the edge set in drone subroute m(m ∈ Rrl).

According to the energy consumption model, the drone flight cost of subroute m can
be calculated and expressed as crlm. Suppose xr ∈ {0,1}, yrlm ∈ {0,1}, aijrlm ∈ {0,1}, birlm ∈
{0,1}, and cir ∈ {0,1} are binary variables. If the truck chooses the main route r(r ∈ R),
then xr=1; otherwise, xr = 0. Given the truck route (r ∈ R), the directed subroute l ∈ Sr.
If the drone chooses subroute m(m ∈ Rrl), then yrlm = 1; otherwise, yrlm = 0. Given two
surveillance targets i, j(i, j ∈ Dall) and a drone subroute m(m ∈ Rrl), if edge (i, j) ∈ Erlm,
then aijrlm = 1; otherwise, aijrlm = 0. If i ∈ Drlm, then birlm = 1; otherwise, birlm = 0. If i ∈ Dr,
then cir = 1; otherwise, cir = 0.

Based on the above assumptions and definitions, we establish the 2RP-T&D mathemat-
ical formulation based on the two-echelon route problem. In the first echelon, a heuristic



Sensors 2022, 22, 2909 7 of 25

algorithm is proposed to optimize the drone subroute on the premise of a given truck route,
which can be used to calculate the lowest cost of all main routes R. In the second echelon,
the overall cost of the truck and drones is iteratively optimized.

Model 1 (Drone subroute optimization): For any given truck route r(r ∈ R) and
definitely set Sr, Dr, and D′r, the feasible drone subroutes corresponding to the main route
r can be calculated and denoted as Rrl . Then, the minimum cost of the drone’s subroute
accessing all targets in D′r can be calculated by Model 1, which can be expressed as follows:

Minzr = ∑
l,m

crlmyrlm (5)

s.t. ∑
l,m

aijrlmyrlm ≤ 1, ∀i, j ∈ Dr (6)

∑
l,m

birlmyrlm = 1, ∀i ∈ D′r (7)

∑
i∈Dr ,j∈Dr

′
aijrlm = ∑

i∈Dr
′ ,j∈Dr

aijrlm = n

∀m ∈ Rrl , ∀l ∈ Sr

(8)

ati
′ + (dti

′ +
Lij
′

v2
)aijrlm −M(1− aijrlm) ≤ atj

′

∀i, j ∈ Dall , i 6= j, ∀m ∈ Rrl , ∀l ∈ Sr
(9)

∑
(i,j)∈Erlm

Fij ≤W, ∀m ∈ Rrl , ∀l ∈ Sr (10)

yrlm ∈ {0, 1}, ∀m ∈ Rrl , ∀l ∈ Sr (11)

∑
l

yrlm ≤ Nd, ∀m ∈ Rrl . (12)

Objective function (5) minimizes the cost of the drone subroute [44]. For a given main
route r(r ∈ R), constraint (6) ensures that each truck route segment l corresponds to at
most one subroute of a drone to prevent the crossing of drone routes. Constraint (7) forces
each drone surveillance target to be visited only once. Constraint (8) imposes the takeoff
or landing of drones at only truck surveillance targets. Constraint (9) is the time window
constraint of drones, which ensures that drones can only conduct surveillance operations
only after reaching the surveillance target. Constraint (10) restricts the energy constraint
of the drone. Constraint (11) defines the decision variables. Constraint (12) refers to the
number constraint of vehicle-mounted drones.

Model 2 (Truck main route optimization): For the truck main route optimization, the
lowest total cost is obtained. The lowest subroute cost corresponding to truck main route r
denotes zr∗, which can be obtained through Model 1. The truck main route optimization
model is shown as follows:

MinZ = ∑
r

crxr+∑
r

xrzr
∗ (13)

s.t. ∑
r

xr = 1 (14)

∑
r∈R

cirxr = 1∀i ∈ Dr (15)

ati + (dti +
Lij
v1
)cir −M(1− cir) ≤ atj

∀i, j ∈ Dall ∪ D0, i 6= j, ∀r ∈ R
(16)
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ati + (dti +
Lij
v1
)cir −M(1− cir)−M(1− cjr)−

M(1− ai′ jrlm) ≤ ati′
′ + (dti′

′ +
Li′ j
′

v2
)ai′ jrlm

∀i, i′, j ∈ Dall ∪ D0, i 6= j, i′ 6= j,
∀m ∈ Rrl , ∀l ∈ Sr, ∀r ∈ R

(17)

ati′
′ + (dti′

′ +
Li′ j
′

v2
)ai′ jrlm −M(1− cir)−M(1− cjr)

−M(1− ai′ jrlm) ≤ ati + (dti +
Lij
v1
)cir + tei

(18)

∀i, i′, j ∈ Dall ∪ D0, i 6= j, i′ 6= j,
∀m ∈ Rrl , ∀l ∈ Sr, ∀r ∈ R, xr ∈ {0, 1}, ∀r ∈ R

(19)

Objective function (13) minimizes the total cost, where zr∗ is obtained by Model 1.
Constraint (14) ensures that only one truck main route can be selected. Constraint (15)
forces each truck surveillance target to be visited only once. Constraints (16–18) denote the
time window constraints. Constraint (16) restricts that the surveillance can be conducted
only after the truck arrives; Constraints (17–18) ensure that the truck reaches the landing
point before the drone and leaves the landing point after the drone lands. Constraint (19)
defines the decision variables. For the directed main route r(r ∈ R), note that there may be
no feasible solution in Model 1, in which case, zr∗ is set as infinity ∞.

Based on the above model, the surveillance problem based on the 2RP-T&D model can
be optimized in two main steps. First, the main route of the truck is obtained so that the set
R can be obtained. For the main route r(r ∈ R), the subroutes of the drones are obtained by
Model 1. Second, the optimized route of the truck and drones is obtained by Model 2.

4. Algorithm Design

With the increase in the scale of the target surveillance problem using a truck and
multiple drones, it is difficult to obtain high-quality solutions in an acceptable time using
an exact algorithm or optimization solver. Therefore, we design a method to assist problem
solving in this section, where the nearest neighbor and cost savings strategies are first
developed to obtain the initial solution. Then, the adaptive simulated annealing with
large-scale neighborhoods algorithm is developed to optimize the initial solution, in which
a scoring strategy is designed to dynamically update the selection weights of the destroy
and repair operators. The flowchart of the proposed method is presented in Figure 2.

4.1. Nearest Neighbor Cost-Savings Strategy (NNCS)

Inspired by the idea of truck first drone second, we design a heuristic algorithm
combining nearest neighbor and cost savings strategy (NNCS). This strategy is graphically
represented in Figure 3. First, the nearest neighbor search is applied to construct the
main route of the truck, which is shown in Figure 3a. Then, the maximum cost savings
are adopted by replacing several trucks with drones, which is shown in Figure 3b. The
pseudocode of the NNCS algorithm is presented in Algorithm 1.

From Algorithm 1, the current surveil target d′, the target set that never surveilled
Du, the target set that has already been surveilled Ds, the truck route S0 and the drone
route S1 are initialized (line 1). First, the main route of truck is constructed (lines 3–8). The
target dc nearest to d′ from Du is found, and it is reassigned to the current target d′ (line 3).
The target dc is removed from the unsurveil target set Du, and the target dc is added to the
surveilled target set Ds (lines 4–6). When the truck returns to base, a truck-only route S0 is
generated (line 8).
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Figure 2. The flowchart of the proposed method.

Then, several truck targets are replaced with drone targets according to the order of
the surveillance targets in the main route (lines 10–18). In each iteration, the cost-savings
Csi (line 11) for surveillance target i is calculated, and the surveillance target with the
maximum cost-savings Csimax is found (line 12). If Csimax ≥ 0, target i is removed from
truck route S0, and target i is added to drone route S1 (lines 13–15). If Csimax < 0, then the
loop is terminated (lines 16–17), and the initialized solution S = {S0, S1} is output (line 18).

(a) (b)

Figure 3. The initial solution schematic diagram by combining the nearest neighbor and cost-
savings strategies. (a) Truck only for surveillance targets. (b) Cooperation of a truck and drones for
surveillance targets.
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Algorithm 1: NNCS(Dall , D0)
Input: The target set Dall , the base D0;
Output: The initialized solution S

1 Initialize the current surveil target d′ ← D0, the target set that never surveilled
Du ← Dall , the target set that has already been surveilled Ds ← ∅, the truck
route S0 ← ∅, the drone routes S1 ← ∅;

2 # Constructing the main-route of truck-only as lines 3-8;
3 while Du 6= ∅ do
4 dc ← find the target nearest to d′ from Du;
5 d′ ← dc, update the current surveil target;
6 Du ← Du − dc, remove target dc from the un-surveil target set Du;
7 Ds ← Ds+dc, add target dc to the surveilled target set Ds;

8 S0 ← Ds + D0;
9 #Replacing several truck targets with drone targets as lines 10-18;

10 while Du∅ 6= do
11 CSi ← calculate the cost-saving of target i from truck-surveil to drone-surveil;
12 Csimax ← find the maximum cost-saving from CSi;
13 if Csimax>0 then
14 S0 ← S0 − i, remove the target i from truck route S0;
15 S1 ← S1+i, add the target i to drone route S1;
16 else
17 Break;

18 S← {S0, S1}, construct the initialized solution S;

4.2. Adaptive Simulated Annealing with Large-Scale Neighborhoods (ASALN)

In this section, the proposed ASALN algorithm is presented. The destroy operators
and repair operators designed in ASALN are described, and the adaptive adjustment
strategy developed in ASALN is presented to dynamically select the destroy and repair
operators. In addition, simulated annealing is introduced as an iterative optimization
framework, and the tabu list is utilized to avoid short-term loops and make the routing
algorithm for trucks and drones more effective.

4.2.1. Design of Destroy and Repair Operators

Since adaptive large-scale neighborhoods have significant advantages, the self-definition
of the operator, which increases the diversity of solutions, is easy to expand, and the added
heuristic information improves the algorithm search efficiency [40], which is suitable for
solving the routing problem of the truck and drones. However, when the size of the neigh-
borhoods gradually increase, the time complexity increases exponentially. To improve
search efficiency, the proposed ASALN algorithm allows multiple neighborhoods to be
searched in a single search, the neighborhood operator weight is adjusted according to the
solution’s quality, and the neighborhood of the next iteration is selected based on its weight.
Specifically, the design of the destroy and repair operators is elaborated as follows.

(1) Destroy Operator Design
When the NNCS algorithm obtains an initial solution, the destroy operator is generated

by roulette wheel selection and q surveillance targets are removed from the route of the
truck or the drones, resulting in a route Sp that is missing q targets and has q deleted targets.
In subsequent repair operations, the q surveillance targets will be reinserted into Sp.

Considering that the drone must take off or land from the surveillance target visited
by the truck, the destroy operation is divided into two types, as shown in Figure 4a. If the
selected target does not include the takeoff or landing point of the drone, it can be deleted
directly. If the selected target consists of the takeoff or landing point of the drone, as shown
in Figure 4b, a new takeoff or landing point needs to be constructed when the drone takeoff
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or landing point is deleted. Specifically, if the drone takeoff point is deleted, the previous
point is taken as the new drone takeoff point; if the drone landing point is deleted, the next
point is taken as the new landing point.

(a) Nontakeoff or nonlanding point.

(b) Takeoff or landing point.

Figure 4. Schematic diagram of destroy operators.

There are two specific destroy operator designs, i.e., random destroy operators and
maximum saving destroy operators.

Random Destroy Operators

The random destroy operator randomly removes the q surveillance target from the
route of the truck and the drones, resulting in a partial solution Sp that is missing q
surveillance targets and has q removed surveillance targets, as shown in Figure 5. Random
destroy operators enhance the randomness of heuristic algorithms and thus increase the
diversity of solutions.

Maximum Savings Destroy Operators

The maximum savings destroy operators remove the q surveillance targets with the
highest cost increase in the route of the truck and drones. Thus, a partial solution Sp
is missing q surveillance targets and has q removed surveillance targets, as shown in
Figure 6. For solution s, the cost savings of removing target i are defined as cost(i, s) =
f (s)− fi(s), where f (s) is the cost of the current solution and fi(s) is the cost of the solution
after removing surveillance target i. The cost savings for each surveillance target are
calculated and recorded, and the surveillance target with the largest cost savings in the
existing solution is removed. Then, the current solution is updated, the cost savings of
all surveillance targets are recalculated, and the surveillance targets with the largest cost
savings are deleted. This process is repeated until q surveillance targets are deleted. The
maximum saving destruction operator makes the algorithm obtain a smaller cost portion of
the solution Sp, and the surveillance targets have more costs removed. The reconstruction
of the route may cause the targets to be inserted into a different location than the current
solution, which will reduce the cost of the surveillance problem.
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Figure 5. Schematic diagram of the random destroy operator when q = 2.

Figure 6. Schematic diagram of the maximum savings destroy operator.

(2) Repair Operator Design
When q surveillance targets are deleted by the destroy operator, a repair operator is

executed based on roulette wheel selection. According to the repair operator, the algorithm
will insert q surveillance targets and reinsert them into the route of the truck or drone to
obtain a new solution S′. Specifically, two repair operators are designed, the greedy repair
operator and the regret repair operator.

Greedy Repair Operator

The greedy repair operator inserts q deleted surveillance targets into the partial so-
lution Sp with a greedy strategy; thus, a new complete solution S′ is obtained, which is
graphically presented in Figure 7. The greedy repair operator first inserts each of the q
surveillance targets previously deleted into the truck and drone routes of partial solution
Sp and selects the surveillance targets and locations corresponding to the lowest cost so-
lution. Then, the insertion action is executed to obtain the new partial solution S′p and
the remaining q− 1 surveillance targets. The insertion cost of the remaining surveillance
targets in the new solution S′p is recalculated to determine the next surveillance targets to
be inserted. Then, the q deleted surveillance targets are successively added to the partial
solution Sp.
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Figure 7. Schematic diagram of the greedy repair operator.

Regret Repair Operator

Different from the greedy repair operator, the regret repair operator first selects an
appropriate surveillance target according to the extra cost and then inserts it into the appro-
priate position to minimize the total cost. The regret value insertion operator determines
the insertion of q deleted surveillance targets according to the regret value of the insertion
cost.

The regret value is the cost difference between the best insertion position and the
rest insertion position of surveillance targets in the route. The higher the regret value is,
the more significant the cost difference between the optimal insertion position and the
suboptimal insertion position of the surveillance target. Therefore, surveillance targets
with high regret values should be inserted into the truck and drone routes. The regret value
is calculated as follows:

max
i∈U

ci∗ = ∆ fi
2 − ∆ fi

1 (20)

where ∆ fi1 denotes the increased cost after inserting surveillance target i at the optimal
insertion location, ∆ fi2 denotes the increased cost after inserting surveillance target i at
the suboptimal location, ci∗ denotes the regret values of surveillance target i inserted at
different locations, and U is the set of deleted surveillance targets.

According to the characteristics of the surveillance problem, it is necessary to calculate
the regret value of the surveillance target inserted into the two different routes of truck and
drone and compare the regret value of all the different insertion targets of each surveillance
target in the truck and drone routes to obtain the maximum value of the regret value of
each surveillance target.

First, the increased cost of each previously deleted surveillance target i after the inser-
tion of each feasible insertion point is calculated, and the increased cost of the surveillance
target i after the insertion of the optimal insertion point is subtracted to obtain the maxi-
mum regret value of each surveillance target. Then, the largest regret of each surveillance
target is compared, and the maximum regret value is selected. Thus, the surveillance target
that needs to be inserted and its location can be determined, and then the regret value
of the deleted surveillance targets is recalculated. The q previously deleted surveillance
targets are added to the partial solution Sp in iteration until all the surveillance targets are
inserted into the truck and drone routes.

4.2.2. Adaptive Adjustment Strategy (AAS)

For the selection strategy of destruction and repair, an adaptive adjustment strat-
egy (AAS) is designed. The selection weight wj of the adaptive adjustment operator is
determined according to the number of destroy and repair operators used.

Specifically, the core idea of the designed adaptive strategy is to calculate the score of
destroy and repair operators by three bonuses, i.e., the higher the score is, the better the
performance of the operator. The first bonus σ1 occurs when generating new and improved
solutions by deleting and inserting operations. The second bonus σ2 occurs when accepting
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an unaccepted solution that is better than the current solution. The third bonus σ3 occurs
when accepting an unaccepted solution that is worse than the current solution.

The process of added bonuses is divided into several periods. In each period, the score
of the operators is initialized to zero. The roulette probability of all operators is the same.
After each additional period, the total score of each operator in the previous period is used
to calculate the new weight, and the formula for calculating the weight is presented as
follows:

ωi,j+1 = ωi,j(1− r) +
rπi
θi

(21)

where ωij denotes the weight of operator i in period j, πi denotes the scores of operator
i, and θi denotes the number of uses of operator i. Influence factor r controls the change
speed and change proportion of weight. The algorithm determines the probability that the
next periodic operator will be selected by roulette according to the new weight. The better
the operator performs, the higher its score and weight, and the greater the probability that
the operator will be used. The pseudocode of the adaptive adjustment strategy is presented
In Algorithm 2.

Algorithm 2: AAS (Zbest, Z, Z′, πi1, πi2, σ1, σ2, σ3)
Input: The objective function value of the best solution; the current solution and

temporary solution Zbest, Z, and Z′, respectively; the scores of destroy
operator and repair operator πi1 and πi2, respectively; the bonuses σ1, σ2,
and σ3;

Output: πi1 and πi2;
1 Zs ← Z′ − Z, calculate the differences of objective function values;
2 if Zs < 0 then
3 πi1 ← πi1+σ2;
4 πi2 ← πi2+σ1;
5 if Z′ == Zbest then
6 πi1 ← πi1+σ2;
7 πi2 ← πi2+σ1;

8 else
9 if Z == Z′ then

10 πi1 ← πi1+σ3;
11 πi2 ← πi2+σ3;

The input of Algorithm 2 is the objective function values of the best solution, current
solution and temporary solution, which are Zbest, Z, and Z′, respectively. First, the differ-
ences in objective function Zs are calculated. If the temporary solution is better than the
current solution, then the operator score is the score plus σ2 (lines 2–4). If the best solution
is obtained, then the operator score is the score plus σ1 (lines 5–7). If accepting a temporary
solution that is worse than the current one, then the operator score is the score plus σ3 (lines
9–11). Thus, the operator scores πi1 and πi2 are updated and finally output.

4.2.3. The Proposed ASALN Algorithm

As mentioned above, the proposed ASALN algorithm adopts the SA algorithm as the
iterative optimization framework. Specifically, the core idea of SA is to accept the poor
solution with a certain probability that may jump out the local optima and may obtain the
global optimum. In addition, the lack of short-term memory easily leads to short-term
loops and revisiting targets. Therefore, the efficiency of SA can be improved by memorizing
the tabu list. In the search for a target surveillance problem, the new solution is accepted if
it costs less than the old one, or the new solution is accepted with a certain probability if the
new solution costs more than the old one. Once the new solution is accepted, the selected
neighborhood is added to the tabu list. Without loss of generality, neighbor solutions in
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the tabu list cannot be inserted into the new solution until the temperature drops. In all,
the pseudocode of the adaptive simulated annealing with large-scale neighborhoods is
presented in Algorithm 3.

Algorithm 3: The proposed ASALN
Input: The target set Dall , the base D0, the initial temperature T1, the terminate

temperature T2, the maximum number of iterations Nmax, the cooling ratio
R, the operator weight update pu, the factor r of weight transformation, the
destroy and repair operator set Ω;

Output: The best solution Sbest, the best objective function value Zbest;
1 Initialize outer iteration N ← 0, inner iteration N′ ← 0, temperature T ← T1, tabu

list Tb ← ∅;
2 Initialize operator weights ωi1, and ωi2, operator scores πi1 and πi2;
3 Initialize solution S← NNCS(Dall , D0), Z ← calculate its objective value;
4 while N < Nmax and T > T2 do
5 while N′ < pu do
6 os ← use roulette to select destroy and repair operator from Ω;
7 S′ ← generate feasible solution by os on q surveillance targets in S;
8 Z′ ← calculate the objective function value of S′;
9 Tb ← update the tabu list;

10 if Z′ − Z < 0 then
11 Z ← Z′, update the current objective function value;
12 S← S′, update the current solution;
13 if Z′ < Zbest then
14 Zbest ← Z′ , update the best objective function value;
15 Sbest ← S′ , update the best solution;

16 else
17 if random() < exp(−(Z′˘Z)/T) then
18 S← S′, accept a worse solution as the current solution;

19 πi1, πi2 ← AAS (Zbest, Z, Z′, πi1, πi2, σ1, σ2, σ3) ;
20 N′ ++;

21 θi1, θi2 ←, count the number of use of operators;
22 ωi1, ωi2 ← , update the operator weights by (21);
23 T ← T ∗ R, cool down the temperature;
24 N ++; N′ ← 0, reset parameters and goto the next iteration;
25 πi1 ← 0, πi2 ← 0, reset the scores of the operators;

From Algorithm 3, the input is target set D, the initial temperature T1, the terminate
temperature T2, the maximum number of iterations Nmax, cooling ratio R. First, parameters
of iterations and the tabu list are initialized (line 1), and the operator weights ωi1 and ωi2,
the operator scores πi1 and πi2 are initialized (line 2). The initial solution is obtained by the
NNCS algorithm (line 3). At each temperature, the number of iterations and tabu list is set
to improve the performance of the inner loop (line 5). In each iteration, the algorithm adopts
a roulette strategy to select destroy and repair operators and the current neighborhood is
generated (line 6). The temporary solution is obtained from the current neighborhood S′

(line 7), and its objective function value Z′ is calculated (lines 8). The invalid moves are
added to the tabu list (line 9). If the difference (Z′˘Z) is less than 0 (line 10), the solution
S′ is considered the best solution (line 12). If the temporary solution is better than the
best solution, the best solution is reset to the temporary solution (lines 13–15). In addition,
a poor solution may be accepted with a certain probability according to the criterion of
random() < exp(−(Z′˘Z)/T) (lines 17–18). At the end of each iteration, the operator scores
are updated by the AAS algorithm (line 19). After the inner loop, the number of uses of
the destroy operator θi1 and repair operators θi2 are counted (line 21), the weights of the
destroy and repair operators are updated (line 22), the temperature is cooled down (line 23),



Sensors 2022, 22, 2909 16 of 25

and the scores of the operators are reset to zero in the next iteration (lines 24–25). When the
termination condition of SA is met, the best solution Sbest and the best objective function
value Zbest are output.

5. Experiments and Analysis

In this section, three scales of the synthetic cases are generated to verify the perfor-
mance of the proposed algorithm. In addition, a real case of target surveillance, i.e., 100
traffic surveillance targets in Changsha, China, is conducted for comparison with different
surveillance modes. Furthermore, the sensitivity of crucial factors of the truck and drone
for surveillance problems is analyzed, including the scale of the drone surveillance target in
the initial solution, the influence of the number of drones, and the battery power of drones.

5.1. Experimental Design and Settings

The environment is conducted on an Intel Core i5-8300H CPU with 8 GB memory.
The experimental cases include several synthetic cases and a real case. The synthetic cases
include small-scale, medium-scale, and large-scale cases, and the real case is selected from
traffic surveillance targets in Changsha.

(1) Surveillance case setting
The surveillance targets of synthetic cases are generated in the same way as in [40].

The surveillance area is divided into four parts, and each part generates the same number
of surveillance targets. For the synthetic cases, each of the small, medium, and large
surveillance scales generates ten instances. The number of surveillance targets and the
surveillance area dimensions corresponding to the target surveillance scale are listed in
detail in Table 2. For the real case, 100 traffic intersection surveillance targets in Changsha
are selected according to the longitude and latitude of traffic intersections, which are
obtained from Baidu and converted into the relative coordinate values x and y according to
the Miller coordinate system.

Table 2. The setting of synthetic cases

Scale The Number of Targets Surveillance Area Size

Small 50 10 km × 10 km
Medium 80 15 km × 15 km

Large 100 20 km × 20 km

(2) Algorithm parameter settings
To verify the effectiveness of the proposed algorithm, we compare it with a truck-

only surveillance algorithm and three other cooperation of truck and drone surveillance
algorithms, including the SA algorithm, the TS algorithm and the truck-only (TO) algorithm.
The parameter settings of these algorithms are as follows.

ASALN algorithm: According to the settings in [45], the iteration pu is set to 5 times
to ensure the timeliness of the operator weight update. The influence factor r of weight
transformation is set as 0.4. The bonus σ1 for deleting and inserting operations that generate
new and better solutions is 33. Bonus σ2 for accepting an unaccepted solution that is better
than the current one is 9. Bonus σ3 for accepting an unaccepted solution that is worse than
the current one is 13. In addition, the initial temperature T1 = ω ∗ ci/log(2), where ω =
0.05, ci denotes the cost of the initial solution; the initial temperature T1 is 6000 ◦C; the
terminating temperature T2 is 100 ◦C; the cooling ratio R is 0.9; and the maximum number
of iterations Nmax is the same as pu and is set to 5. The above parameters are set according
to the settings in [45].

SA algorithm: The parameters in the SA search are the same as those in the SA-TS
search, T1 = ω ∗ ci/log(2). The cooling function Tk = Ts ∗ 0.99k is adopted according to
the settings in [46]; the initial temperature T1 is set to 6000, and the terminate temperature
T2 = T1/50. The cooling ratio R is set to 0.99.
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TS algorithm: According to the settings in [47], the maximum number of iterations
and the maximum number of unimproved solutions are set to 100 and 10, respectively.

TO algorithm: According to the settings in [48], the initial temperature T1 is set to
93 ◦C, the termination temperature T2 is set to 3 ◦C, and the cooling ratio R is set to 0.99.

(3) Truck and drone settings
The parameters of the truck and drones are set according to the parameters commonly

used in surveillance problems. The truck can travel up to 400 km with a full tank of gas.
Therefore, it can complete surveillance missions without refueling. In addition, truck costs
include energy consumption and operating expenses. According to the settings in [44], a
delivery truck has an efficiency of six miles per gallon when using diesel and consumes
0.392 L per kilometer, and the cost of a truck is $0.717/km. In addition, the operating cost
of the truck is $0.484/km after factoring in maintenance, depreciation and driver wages.
Thus, the total truck operating cost is $1.201/km.

According to the parameters of the Amazon octa-rotor drone [49], the weight of the
drone is set to 2 kg, and the weight of the surveillance camera loaded by the drone is set to
2 kg. Based on the energy consumption model, the drone has a power of 5000 mAh and
a maximum sailing distance of 14 km. For the cost of the drone, according to the work
in [44], it can be estimated that the unit energy cost of the drone is $1.345 × 10−4/mAh.
When the battery power of the drone is 5000 mAh and the maximum range is 14 km,
the energy consumption cost per unit distance of the drone is approximately $0.048/km.
After considering the drone cost and depreciation fee, the cost of a drone is approximately
$0.45/km. Thus, the total cost of drones is approximately $0.498/km. Therefore, the
parameters of the truck and drone can be determined as shown in Table 3.

Table 3. The parameter settings of the truck and drones

Truck Cost $1.201/km

Self-weight 2 kg
Drone Battery power 5000 mAh

Maximum range 14 km
Cost $0.498/km

5.2. Experimental Analysis on Synthetic Cases

On each scale, five examples are generated using the above experimental settings and
parameters. For each case, the initial solution obtained by the NNCS is compared with the
solution obtained by ASALN. Meanwhile, the solutions generated by the proposed ASALN
algorithm are compared with those generated by the traditional SA and TS algorithms.
Each case runs ten times, and the average is then calculated. The experimental results on
synthetic cases at three scales are shown in Table 4.

Comparison with the NNCS algorithm: From Table 4, for the small-scale cases, com-
pared to the cost of the initial solution obtained by the NNCS, the cost of the solution
obtained by the proposed ASALN algorithm is reduced by 38.78% to 45.90%. For the
medium-scale cases, compared to the cost of the initial solution obtained by the NNCS, the
cost of the ASALN algorithm is reduced by 22.64% to 42.81%. For the large-scale cases, the
cost of the ASALN algorithm is reduced by 33.40% to 42.81%. In most cases, the final cost
calculated by the ASALN algorithm is more than 30% lower than the cost calculated by the
NNCS, which proves the effectiveness of the proposed ASALN algorithm.

Comparison with SA and TS algorithm: The experimental results of the SA and TS
algorithms on the small-scale, medium-scale, and large-scale cases are recorded in Table 4. It
can be found that the cost of the ASALN algorithm is similar to the cost of the SA algorithm.
However, with the increase in the case scale, the SA algorithm is more time-consuming,
and takes up to 1.27 times longer to run than the ASALN algorithm. The reason can be
inferred as the lack of heuristic information in the SA algorithm which easily leads to
short-term repetition. Compared with the TS algorithm, the experimental results of the
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ASALN algorithm are more stable, and they become sensitive to the increase in the case
scale. On the large-scale cases, the ASALN algorithm has a cost savings that is 7.90% higher
(25.21% total) compared to the TS algorithm. However, in terms of algorithm computational
time, the computation time of the ASALN algorithm is longer than that of the TS algorithm,
but it can still be controlled within 2 min. Considering the cost savings, the computation
time of the ASALN algorithm can be accepted.

Table 4. Experimental results on synthetic cases on three scales

Area Size
TO T&D T&D (TS) T&D (SA) T&D (ASALN) Comparison (%)

Cost ($) Cost ($) Cost ($) Time (s) Cost ($) Time (s) Cost ($) Time (s) NNCS (%) TO (%)

Small Scale

179.89 79.94 44.94 51.32 44.73 63.18 44.73 51.64 44.05 75.13
197.62 87.26 56.45 51.23 48.52 70.98 49.68 49.88 43.07 74.86
178.63 78.36 43.87 52.00 42.36 63.65 42.39 52.68 45.90 76.27
187.35 80.32 55.68 48.64 45.89 60.54 46.30 50.01 42.36 75.29
202.69 87.68 60.87 50.98 52.93 66.58 53.68 49.68 38.78 73.52

Medium Scale

560.96 170.08 124.87 213.81 105.38 386.63 100.74 275.67 40.77 82.04
598.67 176.56 136.9 240.39 106.96 356.29 100.98 282.69 42.81 83.13
585.62 179.65 138.62 252.95 121.94 297.63 121.75 263.95 32.23 79.21
541.35 180.63 139.75 257.65 120.98 340.95 115.64 289.64 35.98 78.64
574.98 184.65 157.62 275.65 140.96 360.89 142.85 298.79 22.64 75.16

Large Scale

872.89 241.67 174.75 428.69 167.04 576.52 160.95 489.64 33.40 81.56
909.65 305.08 217.62 452.97 190.97 562.98 189.64 492.63 37.84 79.15
863.98 298.63 201.68 421.63 179.00 591.39 170.78 465.19 42.81 80.23
790.65 278.17 198.65 399.67 162.66 567.99 162.39 458.66 41.62 79.46
921.78 298.66 254.97 401.03 189.99 577.08 190.69 508.96 36.15 79.31

Comparison with truck-only surveillance mode: Two different surveillance modes,
i.e., the cooperation of truck and drone target surveillance ASALN and truck-only (TO)
target surveillance, are compared. From Table 4, it can be observed that the mode of
cooperation of trucks and drones can dramatically reduce the total cost compared to that of
the truck-only mode. With the assistance of drones, the final cost generated by the ASALN
is more than 70% lower than that of the truck-only model. The comparative analysis of the
two modes is shown in Figure 8.

Figure 8. The comparison results of the two surveillance modes.
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5.3. Experimental Analysis on a Real Case

(1) Source of data: One-hundred surveillance target sites are selected in Changsha,
China. Specifically, the latitude and longitude of the locations in this experiment are
obtained from Google Maps and converted into Miller coordinates.

(2) Analysis of experimental results: The surveillance route of the truck and drones
is shown in Figure 9, where the bold line represents the truck route, and the fine lines of
different colors represent the routes of the drones. From Figure 9, 29 targets are surveilled
by the truck and 71 targets are surveilled by the drones. A total of six drones are needed. In
addition, from the route shown in Figure 9, the main route of the truck is relatively smooth,
while remote surveillance targets and the surveillance targets that may cause round-trip
trends are surveilled by drones, which significantly reduces the total cost.

Figure 9. The surveillance route of truck and drone.

Figure 10 presents the convergence curve of the proposed ASALN algorithm. The
termination conditions of ASALN adopts the termination criteria of simulated annealing,
where the temperature would drop at each iteration until the termination temperature is
reached. Specifically, the parameters are set as follow: the initial temperature T1 is set to
6000 ◦C, the terminating temperature T2 is set to 100 ◦C, and the cooling ratio R is set to
0.9. From Figure 10, the objective function value converges at the 64th iteration, and the
number of iterations is within an acceptable range. In the first 20 iterations, the objective
function value converges quickly, and the operator’s reconstruction of the initial solution
is more intense. In the iterative process, the convergence curve can continuously find a
promising solution. The reason can be speculated to be that the ASALN algorithm allows
multiple neighborhoods to be searched in a single search, which increases the diversity of
solutions. Meanwhile, the SA algorithm can jump out of the local optimum, and the TS
algorithm can avoid reducing the repeated search of the solution space of poor quality to
improve the search efficiency of the ASALN method.
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Figure 10. Convergence curve of the objective function value.

5.4. Sensitivity Analysis

Based on the above real case, sensitivity analyses are conducted on three crucial
factors, i.e., the proportion of drone surveillance targets in the initial solution, the number
of vehicle-mounted drones, and the drone endurance.

(A) Sensitivity analysis of drone surveillance target proportion in the initial solution:
To investigate the influence of drone surveillance target proportion in the initial solution,
the proportions of drone surveillance targets are set as 25%, 35%, 45%, 55% and 65% of the
total number of targets. The experimental results are shown in Table 5.

Table 5. Different proportions of drone surveillance targets in the initial solution.

Proportions 25% 35% 45% 55% 65%

Objective values 17.98 17.84 17.72 17.72 —

From Table 5, it can be found that the proportion of drone surveillance targets in the
initial solution has little influence on the objective function value when other parameters
remain the same. In the initial solution, when drone surveillance targets are set to 65% of
the total surveillance targets, “—” means that the number of vehicle-mounted drones is
insufficient to complete the surveillance of all drone surveillance targets.

In addition, the influence of the drone surveillance target scale on algorithm conver-
gence in the initial solution is shown in Figure 11. By observing the convergence of different
curves, it can be seen that the curves can converge quickly in 100 generations. It can be
inferred that this is the optimization effect of the proposed ASALN algorithm on the initial
solution. Although the proportions of drone surveillance targets in the initial solution are
different, the initial solution is destroyed and repaired by the proposed ASALN algorithm,
which makes the proportion of drone surveillance targets and truck surveillance targets
in the final solution tend to be the same. Therefore, the above convergence curves of four
scales can converge well and there is little difference between the convergent values. How-
ever, the different scales of drones in the initial solution lead to different convergence rates
of the proposed ASALN algorithm. Specifically, as the proportions of drone surveillance
targets go from 25% to 45%, the scale of the drone surveillance target in the initial solution
gradually enlarged and the convergence rate becomes faster. When the proportion of drone
surveillance targets in the initial solution reaches 55%, the convergence rate of the proposed
ASALN algorithm becomes slowed down. When the proportion of drone surveillance
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targets in the initial solution is 65%, there is no feasible solution due to the limited number
of drones.

Figure 11. The convergence of different drone surveillance targets in the initial solution.

(B) Sensitivity analysis of vehicle-mounted drone number: Since vehicle-mounted
drones can only be used once in a surveillance mission, the number of vehicle-mounted
drones determines the upper limit of the number of drone surveillance routes. To investigate
the influence of the number of vehicle-mounted drones, different numbers of drones are set
under the condition that other parameters are unchanged. The experimental results are
shown in Figure 12.

From Figure 12, as the number of vehicle-mounted drones increases, the targets in the
best solution can make cost-savings after changing their surveillance mode, and the targets
can be surveilled by the drones, thus saving cost. Therefore, it is necessary to explore
the appropriate number of vehicle-mounted drones for a specific case. As the number of
vehicle-mounted drones increases from 3 to 9, the average number of targets surveilled
by drones is decreased, and some targets that are originally surveilled by trucks become
surveilled by drones. Combining the results in Table 4, the cost of surveilling targets by the
truck decreases, while the cost of surveilling targets by drones increases, and the total cost
decreases. Specifically, the total cost decreased from $20.52 to $17.74, a reduction of 13.6%.
Truck costs decreased from $15.78 to $8.73, a reduction of 44.7%. Drone costs increased
from $4.74 to $9.01, an increase of 90%. By observing the curve trend in Figure 12, it can
be seen that with the increase in the number of vehicle-mounted drones, the rate of total
cost reduction gradually slows down. When there are more than 6 drones, the total cost
remains constant. In this case, the drones appear idle, and blindly increasing drones may
produce more costs. The endurance of drones becomes the main constraint. In addition,
as the operators in the ASALN algorithm always give priority to the target that saves the
most costs, the rate of cost-savings should be expressed as high to low, which is consistent
with the results in Figure 12.
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Figure 12. Experimental results under different numbers of drones.

(C) Sensitivity analysis of drone endurance: Drone endurance, as an important pa-
rameter of a drone, determines the maximum number of surveillance targets in a flight,
and the reasonable selection of different drone endurances is of great help to save costs. To
investigate the influence of the drone endurance on total cost, the drone endurance is set to
10–22 km, and the experimental results are shown in Figure 13.

Figure 13. Experimental results under different drone endurances.

From Figure 13, as the drone endurance increases, some targets surveilled by the truck
are changed to be surveilled by drones, which reduces the cost of the truck and increases the
cost of the drones, meanwhile the total cost decreased from $21.14 to $17.34, a reduction of
18%. Truck costs decreased from $13.92 to $8.73, a reduction of 37.3%. Drone costs increased
from $4.74 to $9.01, an increase of 19.4%. The reason can be explained as follows. In the
process of optimization solutions, adding a truck target to an existing drone route may
yield cost-savings, while the drone may not afford surveillance missions at that target due
to endurance constraints. However, adding that target to a new drone route would increase
the total cost. Increasing the endurance of the drone would generate a better solution. In
addition, when the drone has a range of more than 16 km, the total cost remains constant.
In this case, there are no extra suitable targets for drone surveillance, and the drone has
surplus energy. The targets outside the drone surveillance route are closer to the truck’s
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route; thus, the cost of surveillance by the truck becomes smaller, and the remaining energy
is always few so as to the second take-off will not be enough to complete the surveillance
mission or can only surveil fewer targets, and this part of the energy is often wasted.

6. Conclusions

In this paper, we study the target surveillance problem based on a new mode, i.e.,
the cooperation of trucks and drones, This new mode focuses on how to rationally plan
the routes of trucks and drones to improve the surveillance efficiency and the aim of this
target surveillance problem is to minimize the total cost. In this mode, a truck departs
from the base and surveils targets along the way and returns to the base with all drones.
After being launched from the truck, drones surveil multiple targets and then return to
the truck. Based on this motivation, we propose a method ASALN, where the nearest
neighbor and cost-saving strategy is designed to generate initial solutions to the target
surveillance problem. Then, an adaptive large-scale neighborhood strategy is developed
under the simulated annealing framework to optimize the routing of the truck and drones.
In addition, extensive experiments are conducted on real and synthetic cases, and the
results show that the proposed method ASALN has competitive performance than the SA
and TS algorithms on the small-scale, medium-scale and large-scale cases of multitarget
surveillance problems. Therefore, the proposed cooperation of truck and drone mode
brings new ways to targets surveillance problem.

In the future, we will further explore the target surveillance problem via the cooper-
ation of multiple trucks and multiple drones. Additionally, the objective function of this
paper is to consider the minimum cost of the target surveillance problem are not comprehen-
sive enough, studing the customer satisfaction as an objective function is meaningful work.
Therefore, in the next stage of research work, further studying the multi-objective optimiza-
tion problem to improve the level of multi-target surveillance problems is a promissing
direction, where considering the objective of minimum cost and the objective of customer
satisfaction simultaneously.
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