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Abstract: Hydropower stands as a crucial source of power in the current world, and there is a vast
range of benefits of forecasting power generation for the future. This paper focuses on the significance
of climate change on the future representation of the Samanalawewa Reservoir Hydropower Project
using an architecture of the Cascaded ANFIS algorithm. Moreover, we assess the capacity of the
novel Cascaded ANFIS algorithm for handling regression problems and compare the results with the
state-of-art regression models. The inputs to this system were the rainfall data of selected weather
stations inside the catchment. The future rainfalls were generated using Global Climate Models at
RCP4.5 and RCP8.5 and corrected for their biases. The Cascaded ANFIS algorithm was selected to
handle this regression problem by comparing the best algorithm among the state-of-the-art regression
models, such as RNN, LSTM, and GRU. The Cascaded ANFIS could forecast the power generation
with a minimum error of 1.01, whereas the second-best algorithm, GRU, scored a 6.5 error rate. The
predictions were carried out for the near-future and mid-future and compared against the previous
work. The results clearly show the algorithm can predict power generation’s variation with rainfall
with a slight error rate. This research can be utilized in numerous areas for hydropower development.

Keywords: Cascaded-ANFIS; GRU; regression; LSTM; RNN; Sri Lanka; hydropower; forecasting

1. Introduction

The Sustainable Development Goals (SDGs) were announced in 2012. Seventeen
goals were recommended to be completed by 2030. One of the essential aims at the list is
to achieve clean energy generation [1]. Global hydropower output peaked in 2020 with
38.2 exajoules, up from 37.7 exajoules the previous year, and climbed by 11.6 exajoules in the
two decades from 2000 to 2020 [2]. Thus, hydropower contributes more than 16% of total
energy generation [3]. Many South Asian nations, including Sri Lanka, fulfill a considerable
portion of their electrical demand through hydropower facilities (approximately 40% of
total energy in Sri Lanka) [4]. Renewables are still regarded as being one of the most
environmentally friendly power producing systems in the world. As a result, a 75–100%
increase in production capacity is projected in the coming years [3]. In comparison to
wealthy countries, which have utilized 70% of their total capacity, emerging nations have
only built 23% of financially feasible hydropower plants [5]. As a result, many developing
nations are rapidly spending considerable resources in developing hydropower facilities,
since they are seen as safe and cost-effective sources of renewable energy that minimize
carbon emissions [6].

Hydropower is one of the cleanest forms of energy sources; however, the inflow to dam
reservoirs significantly impacts the pace of hydropower output. Therefore, hydropower
generation is very unpredictable due to its dependency on meteorological conditions and
weather conditions. Furthermore, climate change is likely to disrupt hydropower plant

Sensors 2022, 22, 2905. https://doi.org/10.3390/s22082905 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082905
https://doi.org/10.3390/s22082905
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5235-8552
https://orcid.org/0000-0002-7341-9078
https://orcid.org/0000-0002-9966-5576
https://orcid.org/0000-0001-5285-8007
https://doi.org/10.3390/s22082905
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082905?type=check_update&version=2


Sensors 2022, 22, 2905 2 of 18

operations by unbalancing the water cycle, increasing the frequency of rainfall events, and
rising atmospheric temperatures. It is evident that the evaporation and other water cycle
components are affected by the predicted temperature change of 0.0164 °C annually [7].
Rainfall, on the other hand, is projected to increase in some countries while decreasing in
other countries, thereby impacting hydropower producing capacity [8].

If electricity output is dramatically curtailed due to the negative consequences of
climate change, the hydropower sector might become one of the most vulnerable busi-
nesses. In addition, water scarcity in the catchments and reduced hydropower generation
inputs due to landslides or soil erosion might exacerbate the problem. On the other hand,
construction of hydroelectric infrastructure is prohibitively expensive, presents substantial
dangers to the aquatic ecology, and produces socioeconomic concerns [9].

As a result, forecasting hydropower output is critical for maximizing renewable energy
consumption to meet growing the demand and control hydroelectric power management.
This would help to achieve environmental sustainability. Despite this, estimating future
hydropower output is challenging due to the nonlinearities of the input functions and
regional and temporal fluctuations in meteorological data, including temperature and
rainfall. As a result, the prediction output of a good model might provide a substantial
financial benefit by regulating renewable energy infrastructure development, such as
hydroelectric infrastructure [10].

2. Related Works

Several researchers have studied the impacts of climatic fluctuations on hydroelectric
output, primarily utilizing Global/Regional Climate Models (GCMs/RCMs), predictive
modeling, and conventional statistical methodologies (e.g., [11–13]).

Several methods to predict the future of hydropower plants using machine learning
techniques can be found in the literature, and ANN is one of the main algorithms that can
be used to carry out this task. A case study was carried out in Nigeria, Jebba, and Kainji,
employing ANN impartial input data [14]. In Uzlu et al. [15], the artificial bee colony
method was used to forecast future hydropower output throughout Turkey utilizing input
factors such as generation capacity, energy consumption, population, and temperatures.
According to the report, the power output of Turkey is not in accordance with the country’s
objective of producing 30% of its electricity through renewable means in 2023. Furthermore,
Patil [16] estimated future streamflow for the Ranganadi River, which is located in India,
up to 2040, to forecast hydropower output using three GCM models and ANN. When
using feed-forward back-propagation algorithms of ANN architecture, input parameter
characteristics substantially influence forecasting future power generation [17].

Furthermore, while projecting electricity output from various energy resources in the
United States, Khodaverdi [18] proposed an ANN–ARIMA hybrid model rather than ANN
to predict future renewable energy generation (e.g., hydroelectricity, solar, and wind). After
examining 66 studies that used ANN to improve reservoir operations, the study by Ajala et
al. [19] further reinforced the idea of combining ANN with supervised or unsupervised
learning algorithms to improve reservoir outflow prediction. Furthermore, the study by
Shaktawat and Vadhera [5] advised performing further research on risk management in
hydropower utilizing a fuzzy model mixed with ANN and genetic algorithm.

Some scientists insist that ANNs are important in hydropower predictions. Anuar
et al. showcased that the hidden layer neurons had a more significant impact on the
results of the ANN structure when forecasting streamflow at The Malaysian hydroelectric
dam [20]. Furthermore, Sessa et al. [21] discovered that ANN models are the most accurate
at predicting short-term and long-term hydropower generation after having conducted
research studies on run-of-the-river (ROR) hydroelectricity in France, Portugal, and Spain
using chronological weather information such as rainfall, snow, and temperature.

However, the related research in the context of Sri Lanka is minimal. In fact, per the
authors’ knowledge, only one such study was performed in Sri Lanka that used ANN to
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anticipate electricity output. Furthermore, the research by Karunathilake and Nagaha [22]
estimated daily electricity consumption but did not forecast power generation.

Although numerous ANN-based machine learning algorithms have been found in the
literature for hydropower prediction, machine learning techniques that use fuzzy logic to
predict hydropower generation are handful. Some of the literature on fuzzy logic-based
predictions are listed in the following paragraphs.

The Grey wolf approach was combined with an adaptive neuro-fuzzy inference system
(ANFIS) to anticipate hydroelectricity generation in Dehghani et al. [23]. In addition,
hydropower output of Albania was analyzed by Konica and Staka [24] to establish the best
forecasting model for assessing hydro energy production for the years 2007–2016. They
have used the fuzzy time series approach to forecast Albania’s hydropower generation.

Moreover, some studies have been conducted to forecast the rainfall using fuzzy
logic-based algorithms. Rainfall forecasting was performed in a study by Suprapty et
al. [25] of the East Kalimantan area, which has 13 watersheds with the potential for a
micro-hydropower plant. To simulate rainfall time series data, the auto-regressive (AR)
model based on a fuzzy inference system (FIS) was utilized. The research work done by
Rahman et al. [26] showcased an improvement to forecast rainfall using a fuzzy rule-based
approach. Eight distinct equations were created using temperature, wind velocity, and
precipitation. The minimum content of the induction component in temperature and wind
velocity fuzzifications was investigated, as were fuzzy levels and membership functions.

Mostly, time-series predictions are purely non-linear, and fuzzy logic is the best of
artificial intelligence for tackling non-linear problems [27].

The majority of the earlier works share the following flaws.

1. Generally, artificial neural network-based algorithms are bulky in the complexity of
the calculations.

2. The methods are to use when the predictions depend on the uncertainty factors and
non-linear inputs.

3. The methods are not likely to generate the best possible predictions because the input
factors vary depending on the different environments.

4. The methods are require enormous amounts of computing power.

Therefore, while addressing the above-mentioned overall flaws, this study tries
presents a new algorithm called cascaded adaptive neuro-fuzzy inference system (Cascaded
ANFIS) to predict the hydropower generation [28]. The impacts of this research can be
pointed out as follows.

1. This system uses fuzzy logic approach along with a neural network to address the
uncertainty and the non-linearity of the inputs.

2. The base algorithm of this system is two-input one-output ANFIS, and the computa-
tional power reduces dramatically.

3. It is possible to generate a near-zero error in the prediction by increasing the number
of levels in the Cascaded ANFIS algorithm.

4. This study presents future power generation up to the year 2099 using two different
climate models.

5. The comparative study presented in this work provides a solid understanding of the
potential regarding the Cascaded ANFIS algorithm compared to that of the cutting-
edge time series prediction algorithms.

Hydropower in Sri Lanka

Sri Lanka has a hydroelectric power potential of 1719 megawatts (MW), and existing
hydropower growth pledges could contribute around 247 MW to the power grid in the
coming decades [4]. According to Gunasekara [29], the bulk of Sri Lanka’s hydroelectric
plants are more than 25 years old. Although hydropower plants have lifespans of about
50 years, if any of the older hydroelectric dams fail to operate, whether due to climate or
mechanical faults, Sri Lanka will have energy shortages, because it would be challenging
to replace defective hydroelectric dams in a brief period [30].



Sensors 2022, 22, 2905 4 of 18

As a result, in the Sri Lankan context, analyzing the power generating capabilities
of its hydroelectric projects is crucial. In doing so, one must consider this developing
country’s economic electrical demands, and the management of water supply infrastructure
development amid climatic factors. Several analyses in Sri Lanka, however, have looked
at potential energy production from current or planned hydroelectric dams. The study in
Udayakumara et al. [31] looked at ways to increase power output in hydroelectric dams by
preventing land degradation and reservoir floods in the Uma Oya valley, one of Sri Lanka’s
most crucial significant catchment areas.

The study in Chandrasekara et al. [2] studied inflows in the Kotmale reservoir until
2005 from 1960 using the El Nino Southern Oscillation (ENSO) phase indicator and discov-
ered that flow to the basin had decreased, impacting hydropower output and agricultural
plans. According to the research in Imbulana et al. [32], a rise in continuous rainfall events,
a decrease in continuous dry weather, and a gain in yearly rainfall series will improve the
future production capacity of the Mahaweli watershed’s hydropower plants.

Khaniya et al. [12] used a multiyear rainfall trend study to demonstrate that changes
in climate will have no effect on Denawaka Ganga mini-hydropower, as in the Rathnapura
area. The study released in Perera and Rathnayake [33] additionally sought to analyze the
effect of climate change on the Erathna mini-hydropower station in the Rathnapura area.
They concluded that electricity generation will decline in the following years.

The study in Khaniya et al. [34] undertook a similar evaluation on the recently
operational Uma Oya watershed, and the researchers found that there will be no substantial
challenges to hydroelectric generation or the groundwater limits in the years ahead in the
watershed region.

As stated in the introduction, there seems to have been no comprehensive study on
hydroelectric forecasts in Sri Lanka for the coming decades. Consequently, this study has
a better possibility of attracting the attention of the Sri Lankan authorities than most, to
enhance the management and forecasting procedures in hydroelectric plants.

3. Study Area

The Samanalawewa Hydropower Project is located in the central portion of Sri Lanka,
in the Belihul Oya region of Rathnapura division, Sabaragamuwa province. The project was
completed in 1992, just downstream of the confluence of Belihul Oya to Walawe River. The
watershed region (359 km2) is midland, made of marble and quartz, and has an average
altitude of around 530 m [30]. The region is located inside the rainy region of the country
(wet zone), having a mean annual precipitation of around 2500 mm [35]. The southwest
monsoon provides the majority of the rainfall for the catchment, though there are minor
contributions from the northeast monsoon and inter-monsoon storms. The Samanalawewa
Hydroelectric Project includes a U-shaped rockfill dam which is around 110 m high from its
foundation. The power station is capable of producing 124 MW as per the design guidelines.
Figure 1 illustrates a detailed catchment map.

Samanalawewa hydroelectric is among Sri Lanka’s oldest and one of the largest
reservoir-type power stations, and has long played an essential part in maintaining power
distribution stability during peak times. It accounts for 8.69% of the total power gener-
ated by the larger hydroelectric plants. Since its start, this project has aroused significant
attention owing to the leakage problem discovered on the lake’s right bank due to poor geo-
logical characteristics [36]. Moreover, several environmental difficulties were noted during
the design stage; however, few precautions were taken because no stringent environmental
restrictions necessitated substantial development efforts [37].

Although the Environmental Impact Assessment (EIA) framework was established in
Sri Lanka in 1988, EIA during the building of Samanalawewa was primarily centered on
vegetation revascularization and habitat conservation.

Due to the apparent leak, phase 2 of the hydropower plant construction (120 MW
capacity) was suspended; therefore, a mini-hydropower facility was constructed that
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utilities the leaking water. Despite the Ceylon Electricity Board’s (CEB’s) valiant efforts to
halt the leak, stored water continues to flow at a pace of 2.1–2.8 m3/s [38].

Irrigated water from the dam is vital for agricultural usage in downstream settlements,
such as Kaltota, Madabadda, Welipotayaya, and Koongahamankada. Paddy yields down-
stream of the study area have been reduced by 11.5 percent due to a lack of water in the
reservoir [39]. Therefore, water management is highly important.

As a portion of the confiscated water is immediately delivered for irrigation with-
out going through the power station, analyzing the prospective availability of water in
the Samanalawewa dam for energy production is crucial. Another fraction (the leaking
component) is supplied by mini-hydropower plants that produce far less energy. Further-
more, with the rising availability of water from downstream agricultural districts, water
management at the Samanalawewa reservoir must be more carefully managed. Further-
more, climate variability may have an influence on CEB’s watershed management goals
at the Samanalawewa hydroelectric station, either positively or negatively. As a result,
the following study will be of interest to the many stakeholders of the Samanalawewa
Hydropower Project.

To assess that, the monthly rainfall data were purchased from the Department of
Meteorology, Sri Lanka for the rainfall stations showcased in Figure 1. The data were
collected from 1992 to 2018 as per the availability. There are some missing data due to
various reasons, including instrumentation errors. Therefore, the data were screened
carefully before they were used. Balangoda, Alupola, Detanagalla, Belihuloya, Nonpareil
(Belehuloya), and Nagrak Estate are the six stations which were used in this study. The
descriptive statistics of the dataset are shown in Table 1.

Figure 1. Rainfall gauges at Samanalawewa catchment.
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Table 1. Descriptive statistics of the system.

Balangoda Alupola Detanagalla Belihuloya Nonpareil Nagrak
Estate Power

count 127.00 127.00 127.00 127.00 127.00 127.00 127.00

mean 377.88 190.57 221.81 240.77 183.42 187.65 22.86

std 224.50 161.46 215.17 218.55 156.57 183.21 14.69

min 27.40 7.50 0.00 2.70 0.00 0.67 1.10

25% 205.35 61.35 50.55 83.30 54.54 40.31 10.72

50% 348.10 136.60 144.50 160.20 132.20 124.95 21.04

75% 509.05 308.05 349.90 353.95 289.53 282.10 34.00

max 1159.90 734.70 926.10 1371.00 661.30 930.30 67.85

4. Methodology

The overall explanation of the method used in this study is presented in this section.
The development process is several steps. Initially, futuristic climate data were extracted
and corrected their biases using the linear bias correction technique. Then, the Cascaded
ANFIS algorithm was used to generate the outputs for each pair of inputs. This process is
explained in the algorithm usage subsection.

Furthermore, three state-of-the-art algorithms, namely, GRU, RNN, and LSTM, were
used to distinguish the efficiency of the algorithms.

4.1. Climate Data Extraction for Future

Global Climatic Models (GCMs) accommodate climatic data at vast ranges across
immensely different landscapes. In contrast, Regional Climatic Models (RCMs) are em-
ployed at more inadequate orders and can accommodate more specific data for adaptation
evaluation, and preparation [40]. As projecting instruments, GCMs forecast the climate
variance of the Earth in the future. They should, however, be investigated on a local or
even global scale to identify efficient correspondence procedures.

Future climatic data for various situations can be retrieved. Such scenarios are
known as Representative Concentration Pathways (RCP), in which weather data can be
obtained. RCPs can be expressed as trajectories on the Intergovernmental Panel on Climate
Change’s [41] greenhouse gas concentrations. RCP 2.6, 4.5, 6.0, and 8.5 are the four most
generally applied RCPs in the literature [41]. RCP4.5 is the intermediate emission scenario,
in which emissions begin to decline around 2045. RCP8.5 is the leading emission situation,
in which discharges proceed to rise during the 21st century.

It is generally known that RCMs have variable degrees of methodical bias [42,43]. The
causes of such preferences could be due to methodical model mistakes produced through
poor conceptualization, spatial averaging, and discretizations in grid cells. Some prejudice
improvement strategies have been employed in the literature to address these biases [44].
Linear scaling, local intensity scaling, power transformation, variance scaling, distribution
transfer, and delta change approach are some widely used techniques for removing biases
in climatic data.

The linear scaling (LS) approach [45] is employed extensively in various investigations
due to its simplicity and speed of application. LS can adjust all-climate elements to an
appropriate level; however, few examples of precipitation corrections can be found—see
Gimire et al., Lafon et al., Luo et al., and Mahmood et al. [46–49]. The bias correction
method for linear scaling can be implemented employing the two equations provided
here (Equations (1) and (2)), where his, cor, sim, obs, d, and P stand for raw RCM data,
bias-corrected data, raw RCM corrected data, observed data, daily, and precipitation,
respectively, and m is the long-term cyclical average of rainfall data:
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Pcor
his,d = Phis,d ∗

µm(Pobs,d)

µm(Phis,d)
(1)

Pcor
sim,d = Psim,d ∗

µm(Pobs,d)

µm(Psim,d)
(2)

LS technique was used to remove the biases in the RCP precipitation products, as
shown in the Equations (1) and (2). The ground measured monthly rainfalls were used to
remove these biases.

4.1.1. Implementation of the Cascaded ANFIS Algorithm

ANFIS is a hybrid algorithm that incorporates two different methods, a neural network
(NN) and fuzzy logic (FL). As a result, in ML, ANFIS has both the benefits of NN and
FL [28]. ANFIS is a six-layer structure, the first layer being the input and the final layer
being the output. The membership functions are constructed in the second layer using FL.
The third layer generates the cumulative product of the previously generated membership
function. The following layer defuzzifies the outputs from the third and fourth levels before
feeding them to the final layer, which generates the output.

ANFIS, on the other hand, takes absolute values as inputs and transforms them into
fuzzy values. The fuzzy reasoning is then generated based on the membership functions
and rules. After that, the fuzzy values are transformed to crisp values [50]. The Cascaded
ANFIS algorithm is a repeatable ANFIS implementation with two primary inputs and
one output. Figure 2 depicts the creation of this algorithm. This approach can be used in
conjunction with ANFIS because iterations can route the answer to be more accurate than
the ANFIS algorithm with five layers.

Figure 2. Flowchart of the Cascaded ANFIS.

The critical difference between the Cascaded ANFIS algorithm and the conventional
ANFIS algorithm is that the product of the standard ANFIS algorithm fits the input of
the conventional ANFIS method’s subsequent usage. However, fuzzy is applied as the
fuzzification process within the ANFIS model’s internal layers, just as in the traditional
ANFIS technique. The usage of membership functions, which change numerical values
into fuzzy members, is used to achieve fuzzification. The pair selection technique and the
training method are the two main components of the Cascaded ANFIS algorithm.

The pair selection module tackles the first significant issue with ANFIS. The usual
method is to decrease the input dimensions before applying an algorithm. On the other
hand, the unique approach applies every feature to construct a sturdy model, which may
be helpful for noisy datasets. The revolutionary Cascaded ANFIS algorithm’s training
module deals with computational complexity. The combination selection method employs
sequential feature selection (SFS). This approach is unusual because it identifies the most
suitable match for individual input variables using a 2-input, 1-output ANFIS structure.
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In the training method, the 2-input ANFIS structure is again employed. As the input
variables are linked to the most suitable match from the former method, they can be
immediately fed into the ANFIS module, which will generate current outputs and RMSE
for specific data combinations. There is also a pre-determined goal error at this time, and
the RMSE is then compared to the anticipated error as a result. The procedure can be
terminated if the target error is fulfilled. If not, the algorithm moves on to the next iteration.
This document for implementation [28] has a detailed description of the Cascaded ANFIS
algorithm, including pseudo-code.

As mentioned in the above sections on dataset generation for future rainfall, six data
points were generated for every month from the year 2021 to the year 2099 using RCP 4.5
and RCP 8.5 climate models. Accordingly, these four data points were used as the inputs to
the Cascaded ANFIS algorithm. As shown in Figure 3, Balangoda, Alupola, Detanagalla,
Belihuloya, Nonpareil, and Nagrak Estate were the inputs to the first level of the Cascaded
ANFIS algorithm. Each input was coupled with the best pair because the ANFIS structure is
a two-input one-output configuration. The process of the paring of each input is discussed
in detail in the pair selection section of this paper [28]. ANFIS1

2 is a two-input one-output
ANFIS module. As shown in the figure, at each iteration level, individual six ANFIS1

2
modules are used to generate separate outputs from the pairs.

Figure 3. Hydropower prediction Cascaded ANFIS structure.

As pointed out in the figure, there are six outputs from level one. Then, the second
level will initialize by applying those outputs as inputs to the second level. Again, the pair
selection process is performed to select the best pair for each ANFIS in the second level.
This process continues until the pre-defined maximum level is reached. In the end, the
outputs are averaged to find the final value f (Equation (3)). Here, On,j is the output of the
jth ANFIS module at level n.

f =
∑6

j=1 On,j

6
(3)

Furthermore, the dataset was divided in to training and testing as 70% and 30% in this
study, and we used the same data piles for all the algorithms.

4.1.2. Parameter Settings for Each Algorithm

This study was conducted to investigate the best prediction algorithm among ours
and the state-of-the-art algorithms in hydropower forecasting. Hence, we used several
algorithms, and each algorithm was created with the optimum parameters. The following
is the complete list of algorithms used in this study.
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1. Multilayer Perception (MLP)
2. K-Nearest Neighbors (KNN)
3. Adaptive Network-based Fuzzy Inference System (ANFIS)
4. Particle Swarm Optimization with ANFIS (ANFIS-PSO (Hybrid))
5. Genetic algorithms with ANFIS (ANFIS-GA (Hybrid))
6. Linear regression
7. Lasso regression
8. Ridge regression
9. Recurrent neural network (RNN)
10. Long short-term memory (LSTM)
11. Gated recurrent unit (GRU)
12. Cascaded ANFIS

Here, two types of algorithms were used: general machine learning algorithms and
regression machine learning algorithms. MLP, KNN, and ANFIS methods can be considered
as the general machine learning algorithms; and linear, lasso, ridge, LSTM, GRU, and RNN
can be introduced as regression models.

Each algorithm was separately coded and run during the study to generate the outputs.
Most of the algorithms’ parameters were manually adjusted, and some of the algorithms
were adjusted under the considerations of other literature. Each parameter for each algo-
rithm is shown in Table 2.

Table 2. Parameter settings for each algorithm.

Algorithm Parameters

MLP

Hidden layer size 50, 50, 50

Activation tanh

Solver adam

alpha 0.05

learning rate constant

KNN
Weights Uniform

n_neighbors 1

ANFIS

Iteration 100

Membership Functions 3

Step Size 0.1

Decrease rate 0.9

Increase rate 1.1

ANFIS-PSO

Inertia Weight 1

Inertia weight damping ratio 0.99

Personal Learning Coefficient 1

Global Learning Coefficient 2

ANFIS-GA

Crossover Percentage 0.7

Mutation Percentage 0.5

Mutation Rate 0.1

Selection Pressure 8

Gamma 0.2
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Table 2. Cont.

Algorithm Parameters

RNN/LSTM/GRU

Optimizer adam

Learning rate 0.0001

Activation relu

batch size 30

epochs 100

Cascaded ANFIS

Iteration 100

Membership Functions 3

Step Size 0.1

Decrease rate 0.9

Increase rate 1.1

The experiment was carried out for the hydropower generation dataset. Nine different
algorithms were tested, and the best algorithm was chosen based upon the Root Mean
Square Error (RMSE) and the Coefficient of Determination (R2) of each algorithm. The
RMSE and R2 can be calculated as shown in Equations (4) and (5).

RMSE =

√√√√1
q

q

∑
t=1

(ū(t)− û(t))2 (4)

R2 = 1 − RSS
TSS

(5)

where, in Equation (4), ū(t) is the prediction and û(t) is the real output. q is the size of the
population. In Equation (5), the sum of the squares of the prediction is RSS, and the sum of
squares of real values is TSS.

5. Results and Discussion

This section includes two main subsections. First, the algorithm comparison is in-
troduced, since selecting the best algorithm was one of the main objectives of this study.
Second, the future power generation is explained alongside the results.

5.1. Comparison of the Algorithms

Table 3 presents the RMSE for each algorithm at the training and the testing phases.
The smallest errors of 1.01 in the training and 1.80 in the testing were obtained by Cascaded
ANFIS. As mentioned in the introduction of Cascaded ANFIS, the error reduces while
propagating through levels. Hence, a higher level of structure generates more accurate
results at the cost of computation. The results shown here are for Cascaded ANFIS at
level 20.

Moreover, the second, third, and fourth best accuracies were achieved by LSTM, GRU,
and RNN. They obtained 6.03, 6.50, and 7.85 errors in the training, sequentially. It is
also worth remarking that the other ANFIS algorithms, such as ANFIS, ANFIS-PSO, and
ANFIS-GA, presented higher error rates when compared with the other algorithms.

Furthermore, the Coefficient of Determination (R2) was calculated for each algorithm,
as shown in Figures 4 and 5. Figure 4 shows the performances of general machine learning
algorithms, and Figure 5 shows regression machine learning algorithms’ performances. R2

is used to examine how variations in one variable may be explained by changes in another.
R2 shows the percentage variance in y explained by x-variables. The measure runs

from 0 to 1 (the x-variables can explain 0% to 100% of the variation in y).
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The best R2 was given by Cascaded ANFIS, 0.929. GRU, LSTM, and RNN had R2 of
0.711, 0.701, and 0.634, respectively.

However, LR and Lasso Regression show a similar R2 which is 0.061 as in Figure 5.
Here, the training and the testing of these algorithms were conducted using the same
experimental conditions. The calculation of the difference between the real value and the
prediction was conducted up to eight decimals. LR and Lasso Regression calculation results
were almost the same except for the last few decimals. When presenting the results in this
paper, the accuracies were rounded up to two decimals points, and it caused the plots of
LR and Lasso Regression to be the same in this analysis.

The increase in R2 of the Cascaded ANFIS by level can be seen in Figure 6. For level
1, R2 is 0.422 because only two variables are considered the input to ANFIS modules at
the first level. Then, at level 10, the R2 value increases by almost 50%. Finally, at level 20,
the value reaches almost 1 (0.929). Therefore, this result explains that Cascaded ANFIS
outperforms all other algorithms used here, including regression models. Hence, Cascaded
ANFIS was used to forecast hydropower generation up to the year 2099.
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Figure 4. Coefficient of Determination (R2) of Rain Fall Test dataset for (a) KNN, (b) MLP, (c) ANFIS
(d) PSO-ANFIS and (e) GA-ANFIS

Figure 4. Coefficients of Determination (R2) of Rain Fall Test dataset for (a) KNN, (b) MLP, (c) ANFIS
(d) PSO-ANFIS, and (e) GA-ANFIS.
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Figure 5. Coefficient of Determination (R2) of Rain Fall Test dataset for (a) Linear Regression, (b)
Lasso Regression, (c) Ridge regression (d) RNN, (e) LSTM and (f) GRU

Figure 5. Coefficients of Determination (R2) of Rain Fall Test dataset for (a) linear regression,
(b) lasso regression, (c) ridge regression (d) RNN, (e) LSTM, and (f) GRU.

Table 3. RMSE for training and testing data.

Algorithm RMSE (Train) RMSE (Test)

MLP 7.52 25.26

KNN 9.73 19.33

ANFIS 10.47 18.06

ANFIS-PSO 10.99 16.61

ANFIS-GA 11.88 16.87

Linear Regression 13.74 14.85

Lasso Regression 13.72 14.82

Ridge Regression 13.70 14.88

RNN 7.85 11.62

GRU 6.50 8.33

LSTM 6.03 6.88

Cascaded ANFIS 1.01 1.80
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5.2. Forecasting of Hydropower Generation in the Future

Figure 7 showcases the projected power generation for the near future under the
RCP4.5 and RCP8.5 climate scenarios. It can be seen herein that both climate scenarios have
projected significant declination of power generation by Samanalawewa Hydropower Plant.
The declination is monotonic except for a couple of years’ slight inclinations. However,
interestingly, the power generation in RCP4.5 is lower than that of RCP8.5. Many develop-
ment projects are expected in Sri Lanka, and they will require significant amounts of power.
Around a 1000 MW power demand is projected for Sri Lanka in the future. In addition,
Sri Lanka has proposed to generate more than 70% of its power demand using renewable
resources by the 2030s. However, the Samanalawewa power plant’s results for the near
future do not support the requirements in the near future. This is critical, as this power
plant significantly contributes to Sri Lanka’s power demand via a renewable resource.
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Figure 6. Cascaded ANFIS behavior for different levels.(a) Level 1, (b)Level 10, (c) Level 20
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Figure 8 presents the projected power generation for mid-future years from both RCP
scenarios. Unlike in the near future, the projected power generation patterns have zig-zag
patterns for both climatic scenarios, but they still showcase overall declining trends. In
addition, the significant differentiation in the projected power generation from RCP4.5 and
RCP8.5 for the near future cannot be seen in the mid-future, and instead, an overlap of the
climatic scenarios can be seen.Version April 1, 2022 submitted to Sensors 15 of 18
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Figure 9. Power generation prediction from year 2041 to 2099

Table 3. RMSE for training and testing

Algorithm RMSE (Train) RMSE (Test)
MLP 7.52 25.26
KNN 9.73 19.33
ANFIS 10.47 18.06
ANFIS-PSO 10.99 16.61
ANFIS-GA 11.88 16.87
Linear Regression 13.74 14.85
Lasso Regression 13.72 14.82
Ridge Regression 13.70 14.88
RNN 7.85 11.62
GRU 6.50 8.33
LSTM 6.03 6.88
Cascaded ANFIS 1.01 1.80
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Figure 8. Power generation predictions from 2041 to 2099.

Nevertheless, the projected power generation under RCP4.5 and RCP8.5 climatic
scenarios showcases the impact of climate change on the hydropower generation in a
healthy hydropower plant in Sri Lanka. Even though Figures 7 and 8 present the annual
power generation, seasonal impacts can also be seen at higher resolution scales, such as
monthly power generation. According to such results, climate change will adversely impact
Samanalawewa Hydropower Plant in the near future and mid-future, even though Sri
Lanka’s power demand is in escalating phase. Therefore, the findings of this research can
be used for critical discussions by the stakeholders and then enhance the countermeasures.

Clear differences can be seen for the power generation predictions with the two
different techniques (Figures 7 and 9). Khaniya et al. (2020) [12] have used frequently
used ML algorithms via ANNs. Significant reductions can be seen for RCP4.5 using the
Cascaded ANFIS algorithm. Therefore, the results have to be carefully assessed with time.
The analysis can be restructured in the short-term.

Figure 8 illustrates the projected power generation from 2041 to 2099. A similar
illustration to mid-future (2041–2070) power generation can be seen for the far future
(2071–2099) too. However, the projections overall do not showcase declining or inclining
trends, even though they have peaks and troughs. Nevertheless, as per the authors’
understanding, it is too early to comment on power generation in the far future. RCP
scenarios have projections for the far future; however, the high variability of climate and its
relationship to greenhouse gas emissions might change the future patterns. In addition, the
world’s green energy plans, such as electric vehicles, should positively impact the changing
climate in the long run. Even though we have projected power generation for the far future,
quick conclusions may not be feasible.
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Figure 9. Hydropower predictions from Khaniya et al. (2020) [12].

6. Conclusions

Hydropower generation for Samanalawewa Hydropower Plant was forecasted using
a novel Cascaded ANFIS algorithm under RCP4.5 and RCP8.5 for future years. The
accuracy of the newly utilized algorithms is higher compared to other frequently used
algorithms. It has shown lower RMSEs and higher R2. The authorities would be interested
in the prediction model due to it’s robustness for the practical applications. However, the
algorithm takes some significant time to train the forecasting model. The future projection
is interesting. The projection was considered for the near future and mid future cases
based on the design life of a hydropower station. Therefore, the suggestions for future
forecasting should align with the design life of the hydropower plant. Replacement of
various important instrumentation like turbines can significantly influence the efficiency of
the power generation. Therefore, the results presented herein are based on the system which
is currently available. Based on these, the model can successfully be utilized to forecast
power generation for future years. Thus, the authorities and planners can learn the future
generation and then to matches the required demand. In addition, the authorities can make
decisions regarding replacements of various instrumentation to enhance the efficiency of the
Samanalawewa hydropower station. Nevertheless, the results are somewhat contrasting to
the results presented by Khaniya et al. (2020) [12]. Therefore, a detailed analysis should be
carried out with time to state sound conclusions.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
ANFIS Adaptive Network Based Fuzzy Inference System
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
RCP Representative Concentration Pathway
SDG Sustainable Development Goals
GCMs/RCMs Global/Regional Climate Models
ANN Artificial Neural Network
ARIMA Auto Regressive Integrated Moving Average
FIS Fuzzy Infererence System
FL Fuzzy Logic
ML Machine Learning
PSO Particle Swarm Optimization
GA Genetic Algorithms
RMSE Root Mean Square Error
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