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Abstract: Testing is an important part of the design flow in the semiconductor industry. Unfortunately,
it also consumes up to half of the production cost. On-silicon stimulus generators and response
analyzers can be integrated with the Device-Under-Test (DUT) to reduce production costs with a
minimum increment in power and area consumption. This practice is known as the Built-In Self-Test
(BIST). This work presents a single-tone generator for BIST applications that is based on the Harmonic-
Canceling (HC) technique. The main idea is to cancel or filter out the harmonics of a square-wave
signal in order to obtain a highly pure sine wave. The design challenges of this technique are the
precise implementation of irrational coefficients in silicon and the strong dependence of the output’s
linearity on the coefficients’ precision. In order to reduce this dependence, this work introduces an
irrational coefficient generator that is based on the recursive use of special matrices called skew-
circulant matrices (SCMs). A complete study of the SCM-based HC synthesizer, its properties, and
the proposed implementation in 180 nm CMOS technology are presented. The measured results
show that the proposed HC synthesizer is able to filter out up to the 47th harmonic of a given square
wave and to generate signals from 0.8 to 100 MHz with a maximum Spurious-Free Dynamic Range
(SFDR) of 66 dB.

Keywords: Built-In Self-Test; Harmonic-Canceling Filter; Skew-Circulant Matrix; CMOS; 180 nm

1. Introduction

The semiconductor industry has evolved significantly since its creation in the 1950s.
Nowadays, testing has proven to be a decisive stage of the production flow. However,
testing can consume as much as 55% of the production cost [1]. Consequently, adding on-
chip, self-testing capabilities to the Device-Under-Test (DUT), provided by signal generators
and response analyzers, has become a practical solution known as the Built-In Self-Test
(BIST) approach. In order to make this an efficient solution, the required circuitry must be
small in area and consume low power relative to the DUT. A block diagram of a BIST system
and the complementary optimization system is shown in Figure 1. The BIST system consists
of the stimulus generator, the response analyzer, and an Analog-to-Digital converter (ADC).
In order to characterize the DUT, several stimuli can be made available, such as sine
wave (single-tone) generators [2–15], two-tone generators [16,17], etc. Complementarily, in
order to study the DUT response, several on-chip analyzers have been proposed such as
spectrum analyzers [18–21], linearity analyzers [22–24], etc. Based on the BIST path output,
the optimization path is able to take a decision and feed back the corresponding tuning
signals into the BIST path.

This work focuses on the stimulus generator block, specifically, in the single-tone gen-
erator. In addition, it is an expanded version of a previous work [2]. For BIST applications,
besides the low-area and power requirements, this block’s output must present a high lin-
earity. For instance, in order to characterize a 10-bit ADC, a sinewave with Total Harmonic
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Distortion (THD) lower than −68 dB is required, which is challenging to obtain with a fully
integrated system. Furthermore, technology scaling increases the design complexity due to
the addition of nonlinearities and reduced voltage headroom.

Different approaches to tackle this challenge have been proposed. As presented in [3,4],
a low-distortion, single-tone signal can be synthesized by a band-pass filter (BPF) in positive
feedback with a multi-level comparator block, as shown in Figure 2a. Unfortunately, the
output’s THD is directly proportional to the quality factor of the BPF and complexity of
the comparator. This translates into a power hungry, large area filter. In addition, the BPF
suffers from a limited frequency tuning range. In addition, the multi-level comparator is
sensitive to process variations, introducing more distortion sources.

In order to expand the frequency tuning range, the Direct Digital Frequency Synthe-
sizer (DDFS) is proposed in [5–9]. It can produce a highly linear tone based on a clock
signal, and it usually is divided into a phase accumulator, a phase-to-amplitude mapping
(P2AM) block, and a DAC (Figure 2b). Its digital nature makes it robust to technology
scaling. However, this approach suffers from a high power consumption due to the P2AM
block, which is typically based on a Read-Only Memory (ROM).

On the other hand, Harmonic-Canceling (HC) synthesizers appear as a solution with
superior power consumption and tuning range capabilities compared to the previous
approaches [10–16]. It uses phase-shifted versions of a clock signal which are scaled by
coefficients that belong to a half-period sine function, i.e., irrational coefficients. It presents
a phase generator, a coefficient generator (CG), and a combiner, as shown in Figure 2c.
Previous works have integrated the required irrational coefficients in silicon by using ratios
of integer numbers [11–16]. The main drawback of this approach is the trade-off between
output linearity and process-variation sensitive coefficient precision. This imposes the use
of calibration techniques that add to the system’s complexity.

BIST path

Optimization path

Stimulus Generator

DC

Sine

Two-tone

Pulse
...

Response Analyzer

DC output

|H(jω)|, ̸ H(jω)

Linearity

h(t)
...

Device
Under Test

(DUT)
ADC

Programmable
Cost Function

Control/Optimization Engine

Figure 1. Simplified block diagram of a BIST and optimization systems.

Band-Pass
Filter

Comparator

(a)

Phase
Accumulator

Phase-to-Amplitude
Mapping

DAC

CLK
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Phase/Coefficient
Generator

Combiner

Low-Pass
Filter

CLK

(c)

Figure 2. Different single-tone generators: (a) BPF-based oscillator, (b) DDFS, and (c) Harmonic-
Canceling synthesizer.

This work proposes a programmable, high-order HC synthesizer that presents an
irrational coefficient generator that ideally produces high-precision coefficients with no
calibration scheme. This coefficient generator exploits the properties of a special family of
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matrices called skew-circulant matrices (SCMs) in a recursive approach. Its programma-
bility allows the user to select the position of the non-cancelable harmonics, which are
intrinsic to any HC synthesizer, in order to meet different linearity requirements. On the
other hand, its high order reduces the complexity of the required additional low-pass filter
(LPF) [12,13,15].

The document is organized as follows. Section 2 presents the mathematical back-
ground and classification of the HC synthesizer. Section 3 shows the relationship between
the HC synthesizer and the SCMs. In addition, it presents the proposed SCM-based
HCF and its properties. Next, a detailed circuit implementation is shown in Section 4.
Sections 5–7 show the measurement results of the fabricated synthesizer, discussion, and
conclusions, respectively.

2. Harmonic-Canceling Filter

The main concept behind this type of filter is the rejection of the harmonics of a specific
input signal in order to obtain a highly pure sine wave at its output; hence, they can be
used as single-tone generators. Due to their frequency behavior, digital nature, and not
very complex implementation, square waves (SWs) are considered as the filter’s input in
this work. Figure 3a presents the operation of an ideal HCF when it is driven by a 50% duty
cycle SW with fundamental angular frequency ω0 = 2π f0. The ideal output corresponds
to a pure single-tone signal with period T = 1/ f0. Based on the Fourier series theory, any
periodic signal f (t) can be expressed as

f (t) =
A0

2
+

∞

∑
k=0

[Ak cos(kω0t) + Bk sin(kω0t)] (1)

where Ak and Bk are the Fourier coefficients, and ω0 is the fundamental angular frequency
of f (t).

If M periodic signals f (t) with weight αi, delay di = θi/ω0, and no DC component
are considered, the Fourier series of the resultant signal feq(t) is

feq(t) =
M−1

∑
i=0

[
αi f (t +

θi
ω0

)

]
=

M−1

∑
i=0

[Xk cos(kω0t) + Yk sin(kω0t)] (2)

where its Fourier coefficients are

Xk =
M−1

∑
i=0

αi[Ak cos(kθi) + Bk sin(kθi)] (3)

Yk =
M−1

∑
i=0

αi[Bk cos(kθi)− Ak sin(kθi)] (4)

The goal of an HCF is to eliminate Xk and Yk for k ≥ 2. In order to achieve this, from (3)
and (4), there are two available degrees of freedom: αi and θi. Depending on which one is
fixed, there are two approaches to implement an HCF, which are the constant-amplitude
HCF and the constant-delay HCF. Figure 3b shows a generic block diagram of an HCF
which resembles a Finite Impulse Response (FIR) filter.

f / f0|X
(

f)
|(

dB
)

1 3 5 7
f / f0|Y

(
f)
|(

dB
)

1 3 5 7

Harmonic
Canceling

Filter

T = 1/ f0

x(t)

T

y(t)

⇕ ⇕

(a)

α0

d1

α1

d2

α2

dn

αn

x(t)

y(t)

...

...

(b)

Figure 3. Harmonic-Canceling Filter: (a) Main concept and (b) a generic block diagram.
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2.1. Constant-Amplitude HCF

The basic implementation and transfer function |H( f )| of the constant-amplitude or
time-mode HCF are shown in Figure 4a,b, respectively. Its transfer function is equal to

|H( f )| = 2|cos(π f τD)| (5)

where f is the frequency in Hz. Interestingly, with only one delay element and a summer, the
filter’s transfer function presents nulls at odd multiples of 1/2τD. Therefore, considering
the input x(t) with period T, and setting τD = T/2k, it is possible to cancel the odd
multiples of the input’s k-th harmonic. Consequently, by adding several time delays in a
specific manner, more harmonics can be canceled. For example, if the 3rd and 5th harmonics
are to be suppressed, the corresponding HCF transfer function is

|H( f )| =
∣∣∣∣∣ ∏
k=3,5

cos
(

π f
T
2k

)∣∣∣∣∣ =
1
2

∣∣∣∣cos
(

π f
2T
30

)
+ cos

(
π f

8T
30

)∣∣∣∣ (6)

Figure 4c,d show the block diagram and transfer function of this HCF, respectively. As
expected, the odd multiples of the 3rd and 5th harmonics are canceled.

Unfortunately, the number of harmonics to be canceled is inversely proportional
to the size of the required delay unit. For instance, a delay unit of T/1890 is needed
to suppress the odd multiples of the 3rd, 5th, and 9th harmonics. This trade-off turns
the constant-amplitude HCFs into an impractical solution for high-speed applications.
Nonetheless, some solutions have combined constant-amplitude HCFs with passive filters
and optimization algorithms to tackle this problem [10].

h(t) for
most basic
general case

T
2kx(t)
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Figure 4. Constant–amplitude HCF: (a) Block diagram and (b) transfer function of most basic
implementation, and (c) block diagram and (d) transfer function of HCF with rejection of 3rd and 5th
harmonic and their odd multiples.

2.2. Constant-Delay HCF

This type of filter is based on the concept of half-sine impulse response filters, which
is shown in Figure 5a and was first proposed by [25]. Its transfer function is expressed as

H( f ) =
2
f0

cos
(

π
2

f
f0

)

1−
(

f
f0

)2 (7)

and is plotted in Figure 5b. This filter is able to suppress all the odd harmonics of the
fundamental frequency f0 = 1/T of the SW input x(t) with period T, providing a highly
pure tone as its output.

Recent publications have proposed practical implementations of this type of filters
that used sampled versions of the half-sine impulse response [11–16]. If n samples of
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the impulse response are taken every τd = T/2n, the filter is able to suppress all the
input’s odd harmonics except those located at (2ln± 1) fo for l = 1, 2, . . .. Every sample
corresponds to a tap coefficient αk expressed as

αk = h[k] = sin
(

kπ

n

)
, k = 0, 1, . . . , n− 1 (8)

This filter is also known as the n-tap HCF. Its transfer function is equal to

|H( f )| =
cos
(

π
2

f
f0

)
sin
(

π
n
)

cos
(

π
n

f
f0

)
− cos

(
π
n
) (9)

Figure 5c,d illustrate the sampled impulse response and the transfer function of the
4-tap HCF. It is clear that the transfer function is periodic with a period of 2n f0 = 8 f0.
Furthermore, Figure 5e shows its block diagram, SW input, and staircase sine-wave output.
Since α0 = 0, only three coefficients and two delay units are required. Note that an
irrational coefficient is used, and the 7th and 9th harmonics are non-cancelable due to the
sampling operation. If the non-cancelable harmonics are required to be pushed to higher
frequencies, it is necessary to increase the number of taps. At this point, a simple passive
filter can attenuate them.

t
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(c)
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(
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f)
|(

dB
)

1 3 5 7 9

T
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⇕

x(t)
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(e)

Figure 5. Constant–delay HCF: (a) Block diagram and (b) transfer function of the half-sine HCF;
(c) block diagram, (d) transfer function, and (e) implementation of the 4-tap sampled half-sine HCF.

As discussed in this section, the sampled half-sine or constant-delay HCFs present
advantages with respect to the constant-amplitude HCFs. For comparison purposes, an
HCF that suppresses the 3rd and 5th harmonics is considered. On the one hand, a constant-
delay 4-tap HCF requires a time step of T/8 and two unique coefficients. On the other
hand, a constant-amplitude HCF requires a time step of T/30. It is clear that the former
can achieve the same performance with a larger time delay. However, this comes with
the challenge of implementing irrational coefficients. Considering BIST applications that
use moderate to high frequency ranges in the order of MHz, this work focuses on the
constant-delay HCFs. In the next section, a recursive approach to implement this filter
is presented.
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3. Proposed SCM-Based HCF
3.1. Matrix Representation of the HCF

From this point, a sampled half-sine HCF or constant-delay HCF is simply referred
to as HCF. As presented in previous sections, an n-tap HCF requires n input SWs and n
tap coefficients. Considering a 50% duty-cycle SW φi(t) with period T, then the n-tap HCF
needs n versions of φi(t) with a delay of τD = T/2n with respect to each other. These are
referred to as the input phases and can be expressed as

φi,k = φi

(
t− kT

2n

)
, k = 0, 1, . . . , n− 1 (10)

Note that this set of SWs is periodic and odd symmetric. Hence, φi,k+2n = φi,k and
φi,k+n = −φi,k.

On the other hand, the tap coefficients αk are given by (8). For an even n, it holds that
α0 = 0, αn/2 = 1 and αk = αn−k. In other words, the HCF is a linear phase FIR filter; i.e., it
provides a constant input-to-output group delay of τD · (n/2). For this specific case, the
HCF’s output φo,n/2 can be defined as

φo, n
2
=

n−1

∑
k=0

φi,kαk (11)

Assuming that n outputs with a group delay ranging from 0 to (n− 1) are required,
the system can be expressed in matrix form as



φo,0
...

φo,n/2−1
φo,n/2

φo,n/2+1
...

φo,n−1




=




1 αn/2−1 · · · 0 · · · −αn/2−2 −αn/2−1
...

...
...

...
...

...
...

α1 α2 · · · αn/2+1 · · · α1 0
0 α1 · · · 1 · · · α2 α1
−α1 0 · · · αn/2−1 · · · α3 α2

...
...

...
...

...
...

...
−αn/2−1 −αn/2−2 · · · 0 · · · αn/2−1 1




×




φi,0
...

φi,n/2−1
φi,n/2

φi,n/2+1
...

φi,n−1




(12)

or in compact notation,
Φo = AiΦi (13)

where Φi, Φo, and Ai are the input phase vector, output phase vector, and the coefficients
matrix, respectively. Interestingly, Ai corresponds to a special matrix type called Skew-
Circulant Matrix (SCM).

A n × n SCM Sn is a matrix that presents a right cyclic shift between each consecutive
row and the sub-diagonal elements change of sign [26]. Consequently, it is completely
defined by the elements of its first row as Sn = scirc(so, s1, . . . , sn−1). Another feature of
the SCMs is that their eigenvectors ym only depend on their order n and can be expressed as

ym =

[
1, e

jπ(1+2m)
n , . . . , e

jπ(1+2m)(n−1)
n

]T
, m = 0, 1, . . . , n− 1 (14)

where j is the unit imaginary number and T is the transpose operator. In addition, the
eigenvalues λm of Sn are

λm =
n−1

∑
k=0

ske
jkπ(1+2m)

n , m = 0, 1, . . . , n− 1 (15)

Considering the eigenvalues and eigenvectors of Sn, its eigen decomposition is ex-
pressed as Sn = UΛU∗, where U = [y0|y1| . . . |yn−1], Λ = diag(λ0, λ1, . . . , λn−1) and U∗
is the conjugate transpose of U. Based on these properties, all SCMs of the same order n
share the same eigenvectors; hence, the same matrix U.
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3.2. HCF with Multi-Stage Open-Loop SCM-Based Coefficient Generator

As shown in (13), an n-tap HCF can be represented by an SCM Ai such that

Ai = scirc(s0, s1, . . . , sn−1) (16)

where sk = cos(kπ/n) for k = 0, 1, . . . , n− 1. For this case, it is proven in Appendix A
that the eigenvalues of Ai are equal to

λm =

{
n/2 , m = 0, n− 1
0 , otherwise

(17)

Consider the normalized, even-order n SCM [Ai], and its eigen decomposition

[Ai] =
Ai

‖Ai‖
= UΛiU∗ (18)

where ‖Ai‖ is the Euclidean norm of Ai. Furthermore, from (17), it follows that matrix
Λi = diag(1, 0, . . . , 0, 1).

For practical implementations, the main drawback of [Ai] is that its elements po-
tentially can be irrational numbers. In order to avoid this, matrix A is defined such that

A = scirc(s′0, s′1, . . . , s′n−1) (19)

where s′k = sgn(sk), and sgn(x) is the sign function. In this fashion, A is an integer-
coefficient SCM. In Appendix B, it is proven that the eigenvalues of A are given by

λ′m = (−1)m cot
(

π(1 + 2m)

2n

)
, m = 0, 1, . . . , n− 1 (20)

Its normalized version [A] presents an eigen decomposition equal to

[A] =
A
‖A‖ = UΛU∗ (21)

Interestingly, using (20), Λ = diag(1, ε1, . . . , εn−2, 1) where εm = λ′m/ max(|λ′m|)<
1. Based on this property, and recalling that all SCMs of the same order n share the same
eigenvectors, if M replicas of [A] are cascaded, then

[A]M =

(
A
‖A‖

)M
= UΛMU∗ (22)

where ΛM = diag(1, εM
1 , . . . , εM

n−2, 1). Then

lim
M→∞

[A]M = UΛiU∗ = [Ai] (23)

Therefore, a cascade of M normalized, even-order n, integer-coefficient SCMs [A]
can be used to approximate an irrational-coefficient SCM [Ai], as shown in Figure 6a. In
addition, Figure 6b shows the eigenvalues of the resultant SCM for different values of M
and n = 6. Note that the intermediate eigenvalues decrease as M increases. In other words,
these intermediate eigenvalues can be considered as the error of the integer-coefficient SCM.
It is important to note that the reason for using normalized matrices is that the outputs are
bounded to the absolute magnitude of the input phases.

Since only one HCF’s output is required, the system architecture can be modified as
shown in Figure 6c where the coefficients and phases generation processes are independent
from each other. This improved approach allows that coefficients can be generated from
a vector of DC signals C0 = [1, 0, . . . , 0]T and the phases present a faster path to the
output, reducing potential phase errors. Nonetheless, this comes with the need for a
combiner block.
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Note that even if the challenge of using an irrational-coefficient-based SCM is met,
it appears to be moved to the norm ‖A‖ since now, it can be an irrational number. It
can be proven that ‖An‖−1 = tan(π/2n). However, since this value affects the complete
matrix A, it does not affect the coefficients’ relative ratio between each other; i.e., it can be
considered as a gain error. In this work, the approximation ‖An‖−1 ≈ 8/5n is used.

[Ai]Φi Φo

⇕

M → ∞

[A] [A] [A]· · ·Φi Φo

(a)

0 1 2 3 4 5
10−5

10−4

10−3

10−2

10−1

100

k

N
or

m
al

iz
ed

λ
k

of
[A

6]
M

M = 1
M = 2
M = 3
M = 4

(b)

M

[A] [A]· · ·




1
0
...
0


C0= ϕo,0

Φi

CM

n n
n

(c)

Figure 6. (a) Implementation of ideal HCF based on cascade of non-ideal SCMs, and (b) normalized
eigenvalues of M SCMs [A6] in cascade, and (c) improved implementation.

3.3. HCF with Single-Stage Closed-Loop SCM-Based Coefficient Generator

From (23), it is implied that if M→∞, the outputs of [Ai] and the cascade of [A]M

are similar. This suggests the concept of the closed-loop SCM-based coefficient generator,
which is presented in Figure 7a. Using the improved approach and at steady-state, the
output vector Ccl of the closed-loop coefficient generator is expressed as:

Ccl =
(

I + [A]A f b
)−1

[A]C0 (24)

where A f b = diag(0, 1, 1, . . . , 1), and C0 = [1, 0, . . . , 0]T . This is correct only if the ideal
matrix norm ‖A‖ is used. The use of the approximation ‖An‖−1 ≈ 8/5n affects the
coefficients’ relative ratio between each other; hence, it generates a systematic error.

[A]

A f b

C0
Ccl

ϕo,0
−

+

Φi

n n
n

(a)
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Figure 7. (a) Block diagram of the closed-loop CG, and (b) THD versus CG’s order n, for different
M-stages open-loop CGs and single-stage closed-loop CG, with ‖A‖−1 = 8/5n.

In order to compare the performance of the multi-stage open-loop and single-stage
closed-loop approaches, the spurious-free dynamic range (SFDR) of the filter’s output is
evaluated using a system-level model. The SFDR is calculated as the ratio of the power
of the fundamental frequency and the strongest cancelable harmonic up to the (2n−1)-th
harmonic. Figure 7b shows the values of SFDR for different n-tap SCM-based HCFs using
M open-stages and the closed-loop approach. It is observed that the closed-loop coefficient
generator with ‖A‖−1 = 8/5n is capable of achieving similar SFDR values as a 5-stage
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open-loop CG for n > 6. Thus, the closed-loop CG with a non-ideal norm represents a less
complex solution in comparison with the straightforward M-stage open-loop CG approach.

3.4. High-Order HCF

As introduced in [16], a high-order n-tap HCF can be implemented by cascading
lower-order n1-tap and n2-tap HCFs (Figure 8). A formal proof is shown in this section.

In order to use both HCFs, n input phases equally spaced by π/n are required such
that n = lcm(n1, n2), where lcm(.) is the least common multiple operator. For the first
stage to properly operate, n/n1 parallel n1-tap HCFs are needed. The phases are distributed
based on a perfect shuffle permutation Pn/n1

n1 such that

Ps
r =




In(1 : s : n, :)
In(2 : s : n, :)

...
In(s : s : n, :)


 (25)

where n = s × r and In is the n × n identity matrix. The MATLAB colon notation
to designate submatrices is used. At the output of the n1-tap HCFs, a perfect shuffle
permutator Pn1

n/n1
is required to reorganize the output phases back to their original order. A

similar process is done for the n2-tap HCF. For each stage, these operations can be expressed
as

Φa = Pn1
n/n1

(In/n1 ⊗ An1×n1)P
n/n1
n1 Φi

Φo = Pn2
n/n2

(In/n2 ⊗ An2×n2)P
n/n2
n2 Φa

(26)

where ⊗ is the Kronecker product operator. For Xm×n =
(
xij
)

i=1,...,m;j=1,...,n and
Yp×q = (yhk)h=1,...,p;k=1,...,q, their Kronecker product is the mp×nq matrix given by

X ⊗ Y =




x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY


 (27)

Based on the properties of the Kronecker product, (26) can be simplified to:

Φo = (An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1)Φi (28)

As derived in Appendix C, matrix (An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1) is simply a scaled
version of An×n if and only if gcd(n1, n2) > 1, and it is equal to

An×n =
2

gcd(n1, n2)
× (An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1) (29)

where gcd(.) is the greatest common divisor operator. Hence, the cascade of the n1-tap
and n2-tap HCFs is equivalent to an HCF of order n = lcm(n1, n2) if and only if n1 and
n2 have a common factor; i.e., gcd(n1, n2) > 1.
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Figure 8. Implementation of a high-order HCF based on the cascade of two low-order HCFs.

3.5. Band-Pass HCF

As shown in Section 2, the objective of the half-sine HCF is to filter out all the harmonics
of the input SW except its fundamental frequency. Nonetheless, it is possible to select the
input’s m-th harmonic, which gives place to the band-pass HCF. Its impulse response hm(t)
is given by

hm(t) = sin
(

2πm
T

t
)

, 0 ≤ t ≤ T
2

(30)

Figure 9a shows a comparison between the basic and band-pass HCFs. If the m-th
harmonic is to be bypassed to the output, then the HCF’s impulse response presents m
half-sine segments.

For practical implementation, the impulse response is sampled at T/2n, where n > m
to satisfy the Nyquist sampling theorem. Thus, for a given n-tap HCF, several band-pass
HCFs can be obtained. Moreover, the sampled values hm[0, 1, . . . , n/2] are all different if
m and 2n are relatively prime, i.e., their greatest common divisor is 1. Figure 9b shows
several band-pass HCFs for n = 8. Note that hm[k] = sin(mkπ/n) is symmetric around
k = n/2, and that the coefficients are similar for all the filters except that they present
different orders and signs. Hence, assuming that the tap coefficients are available, it
is possible to implement different band-pass HCFs by rearranging the tap coefficients
accordingly.

t

h1(t)

0
T/2

t

hm(t)

0
· · ·

T/2

T/2m

T = 1/ f0

x(t)
T

y1(t)

· · ·

T

ym(t)

(a)
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−α4
−α3

−α2

−α1

α0=0

α1

α2

α3
α4=1

k

h1[k]
h3[k]
h5[k]

(b)

Figure 9. (a) Comparison between impulse responses of the basic and band-pass HCFs, and (b) im-
pulse response of several band-pass HCFs for n = 8.
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4. Circuit Implementation
4.1. System Architecture

In this work, a reconfigurable, SCM-based, 24-tap HCF is implemented. This filter
is able to cancel up to the 47th harmonic of the SW signal φ(t) with frequency fCLK/48.
In other words, this HCF is used as a single-tone generator that produces a stepwise sine-
wave differential current signal with frequency fo = max( fCLK)/48. Figure 10a shows
its impulse response h(t), which corresponds to a cosine function cos(πk/24). It is noted
that the coefficients related to φ2r−2, r = 1, 2, . . . , 12 and φ4r−4, r = 1, 2, . . . , 6 correspond
to the 12-tap, and 6-tap HCFs, respectively. Thus, by selecting specific phases, the 24-tap,
12-tap, and 6-tap HCFs are available. This feature allows to extend the maximum frequency
of the output signal to fo = max( fCLK)/12.

Figure 10b shows the block diagram of the complete system, which is divided in four
main blocks: the frequency divider, the phase scrambler, the retimer and buffer, and the 24-
tap HCF core. The frequency divider generates the 24 equally-spaced phases φd[0:23] from
a clock signal CLK with programmable frequency division ratios in order to select between
the 24-tap, 12-tap, and 6-tap HCFs. The phase scrambler allows for the rearrangement
of the phases such that it can bypass the fundamental or the 5th input’s harmonic to its
output. The 24-tap HCF core is divided in the CG and combiner. In order to achieve the
required SCM order, 8-tap and 5-tap SCM-based CGs are used in cascade. All the required
coefficients are generated using only one input DC current Iin. By means of a combiner, the
system produces the differential output current Io, which is converted to voltage by the
load resistors RL. Each block is presented in detail in the next subsections.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

−1
−0.5

0
0.5

1

t/(T/48)

h(
t)

24-tap HCF
12-tap HCF
6-tap HCF

(a)

System On-Chip

Frequency
Divider
(÷2n)

Phase
Scrambler

Retimer
+

Buffer

24-tap HCF coreIin

RL

RL

Io+

Io−

Vout
+

−

Φd

24

Φs

24

Φ 48

DIV H

CLK

(b)

Figure 10. (a) Impulse response and (b) block diagram of system architecture.

4.2. Frequency Divider

The frequency divider (FD) is shown in Figure 11a. The 24 equally spaced phases are
generated from the input clock signal CLK by a variable-length ring counter, which is based
on a cascade of D flip-flops (DFFs). The outputs of this counter are Qk, for k = 0, 1, . . . , 23.
Depending on the value of the input DIV ∈ {1, 2, 3}, the outputs Q5, Q11, or Q23 are fed
back to the input of the first DFF by an inverting feedback multiplexer, providing with a
frequency division ratio of 12, 24, or 48, respectively.
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The bus signal Q is connected to a phase selector with output Φd. Depending on the
value of DIV, each signal φd[k] is connected to Qbk/4c, Qbk/2c, or Qbkc. Figure 11b shows
the FD’s output phases pattern for each value of DIV. For example, for DIV = 2, every
two consecutive phases are connected; i.e., the corresponding coefficients are connected
in parallel. In this fashion, the number of tap coefficients is kept constant for all available
HCFs; hence, all the HCFs present the same output peak-to-peak amplitude.
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D Q

Q0 DFF
D Q

Q1 DFF
D Q
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D Q
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D Q
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3
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CLK · · · · · · · · ·

DIV

Q0 Q0 Q0

ϕd[0]

1 2 3

Q0 Q0 Q1
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≈
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≈
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...
...
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≈
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≈
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≈
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≈

12-tap HCF (DIV=2)

T0 = 24TCLK

...
...

CLK · · · · · ·
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≈

T0/48

ϕd[1] ≈

≈
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≈

ϕd[23] ≈

≈

24-tap HCF (DIV=3)

T0 = 48TCLK

...
...

(b)

Figure 11. (a) Implementation and (b) output signals of the frequency divider.

4.3. Phase Scrambler

As shown in Section 3.5, the proposed HCF can be configured to bypass an input
signal’s harmonic different from the fundamental frequency by rearranging its coefficients
or phases. The latter approach is chosen due to its lower implementation complexity based
on digital multiplexers.

Figure 12a shows the implementation of the phase scrambler (PS). Depending on the
value of H ∈ {0, 1}, the fundamental frequency or the 5th harmonic of φd[k] are bypassed
to the filter’s output, respectively. Note that 5 is coprime with 2n for the three available
HCFs. Then, it is true that the tap coefficients of the bandpass HCF h5[k] = cos(5kπ/n)
are similar to those of the low-pass HCF h1[k] = cos(kπ/n) but with a different order and
sign. Figure 12b presents the input-to-output connections.
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Figure 12. (a) Implementation and (b) input-to-output connections of the phase scrambler.

4.4. Retimer and Buffer

The required routing and operation of the phase selector and phase scrambler intro-
duce phase errors. These are reduced by sampling the phase scrambler outputs φs[k] at
the rising edge of the input clock CLK. This is done by an array of DFFs. Each of them
provides an inverted version of each phase. The output of the retimer and buffer (R&B) is
the bus Φ, where each signal φ[k] = − φ[k + 24] for k = 0, 1, . . . , 23. This work does not
present any additional phase calibration scheme.

4.5. 24-Tap HCF Core

The required tap coefficients of the 24-tap HCF are generated by cascading the 8-
tap and 6-tap CGs. Once these coefficients are available, they need to be combined with
the phases accordingly in order to produce the system’s output. These operations are
performed by the 24-tap HCF core.

The quarter-wave symmetry of the cosine function is used to reduce the implementa-
tion complexity of the CGs. In other words, by taking advantage of the SMC’s symmetry
around αn/2 = 1, any given even-order n× n SCM [An] can be expressed as an n/2× n/2
SCM [Anr] such that

[Anr] = ‖An‖−1




1 2 2 · · · 2 2
1 2 2 · · · 2 1
...

...
. . . . . . . . . 0

1 2 2 1
. . .

...
1 2 1 0 · · · 0
1 1 0 0 · · · 0




(31)

This reduced matrix contains the information related to only one quadrant of the
cosine function. Using this property, matrix [A8] = ‖A8‖−1scirc(1, 1, 1, 1, 0,−1,−1,−1)
can be reduced to

[A8r] =
A8r

‖A8‖
=

1
5




1 2 2 2
1 2 2 1
1 2 1 0
1 1 0 0


 (32)
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In addition, [A6] = ‖A6‖−1scirc(1, 1, 1, 0,−1,−1) can be reduced even further, con-
sidering that it produces the coefficients 0.5 and 1(=0.5× 2). Then

[A6r] =
A6r

‖A6‖
=

4
15

[
2 2

1.5 2

]
(33)

Figure 13a shows the 24-tap HCF core block diagram. Based on the improved imple-
mentation presented in Section 3.3, input vector C0 = (1, 0, . . . , 0) is used; i.e., a single
input current Iin is required to generate all the current-mode coefficients. The 8-tap CG
implements the reduced SCM [A8r]. It produces four output currents whose relative ratios
with respect to each other correspond to the coefficients 0.5, 0.923, 0.707, and 0.382. Each of
these outputs is connected to four 6-tap CGs, which in turn implement the SCM [Ar6] and
produce eight replicas of the currents Ia and Ib such that Ia:Ib = 1:0.866.

The connection between the phases and coefficients is shown in Figure 13b. The
absolute value and sign of the coefficients related to the 6-tap CG are color-coded. Each
of them are scaled in the shown order by the 8-tap CG coefficients associated with each
row. Moreover, each row shows the order of the phases connected to each 6-tap combiner
unit. It is important to mention that the time delay between two consecutive combiner
subcells of each row is 4T/48 = T/12 , that is, the unit delay of the 6-tap HCF, whereas
the time delay between each row and the one below is 3T/48 = T/16, which is the unit
delay of the 8-tap HCF. In this way, all the phases present the same load, which reduces
the systematic phase mismatch that limits the filter’s performance. Next, the resultant
coefficient αk corresponding to the sum of elements of the k-th column is multiplied by the
corresponding phase. Finally, the output Io is equal to the sum of all αkφk products.
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Figure 13. (a) Block diagram of the 24-tap HCF core and (b) phase-to-coefficient distribution.

The circuit-level implementation of the 6-tap CG is shown in Figure 14a. It implements
a cascade of three stages of matrix [A6r] along with its norm ‖A6‖ based on NMOS current
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mirrors (CMs). As presented in Section 3.3, the first stage is connected in a closed loop in
order to achieve a filter’s output with SFDR > 70 dB. In this work, the number of SCM
stages is set to three due to a trade-off between the coefficient accuracy and area overhead.
The PMOS CMs are used to transport the currents from stage to stage. The last PMOS CM
provides eight copies of currents Ia and Ib. The same approach is used to implement the
8-tap CG, as shown in Figure 14b. The implementation of the combiner unit is shown in
Figure 14c. It is divided in twelve differential pairs and uses four copies of Ia and Ib that
are connected as tail currents. In addition, six phases CK0:5, each with its corresponding
inverted version, are used to steer the input currents accordingly to the pattern presented
in Figure 13b. If a negative sign is required, the differential clock is connected in opposite
polarity. In this way, each section of the combiner inside the colored rectangles corresponds
to each 6-tap coefficients; i.e., 0.5, 0.866, 1, 0.866, 0.5, and 0.
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Figure 14. Circuit-level implementation of (a) 6-tap CG, (b) 8-tap CG, and (c) 6-tap combiner unit.
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5. Measurement Results

The proposed single-tone generator is fabricated in 180 nm CMOS technology, operates
with a supply voltage of 1.8 V, and occupies an area of 0.505 mm2. Its micrograph is shown
in Figure 15 along with the area occupied by each sector and its corresponding percentage
with respect to the total area. The CGs occupy around 70% of the total area, since they
are composed of a large amount of CMs. Furthermore, these CMs use large transistors in
order to reduce their current–ratio mismatch, i.e., to improve the coefficients’ precision. In
a CMOS process, the mismatch between two nominally identical transistors is inversely
proportional to their channel length. Furthermore, recall that due to the recursive nature
of the proposed solution, several identical blocks are required in order to obtain a specific
SFDR, increasing the occupied area even further. In addition, the uncoupling of the phase
generator from the coefficient generator contributes to the area cost.

1

2

2
2

3

4

Block Active Area

8-tap CG 0.087mm2 (17.22%)

6-tap CGs 0.265mm2 (52.47%)

Combiners + R&B 0.126mm2 (24.95%)

FD + PS 0.027mm2 (5.36%)

+ + + 0.505mm2 (100%)

Supply
Voltage 1.8V

Technology 180nm CMOS

1

2

3

4

1 2 3 4

Figure 15. Micrograph of the fabricated single-tone generator.

As presented in Section 4, the system incorporates six HCFs, which are selectable based
on the value of the inputs n ∈ {6, 12, 24} and H ∈ {0, 1}. The former selects between
the 6-tap, 12-tap, or 24-tap HCFs, and the latter selects between the fundamental or 5th
harmonic of the SW signal φ(t) with frequency fCLK/2n. Figure 16 shows the measurement
setup. The clock signal CLK with frequency fCLK is provided by an Agilent E8267D
vector signal generator. The input current Iin is set by a variable resistor. The differential
output current Io is converted to voltage by the off-chip load resistors RL. Next, this signal
is buffered and converted to single-ended by the LTC6417 and TC1-1TX+, respectively.
Finally, the resulting signal is analyzed using the Agilent DSA91304A Infiniium digital
signal analyzer.

24-tap
HCF

Agilent E8267D

CLK

Iin RL

RL

Io+

Io−

−

+ −
+

LTC6417
TC1-1TX+

Agilent DSA91304A

Figure 16. Measurement setup.
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Figure 17a shows the measured power consumption of each block versus the output
frequency fo of the 24-tap HCF when the fundamental frequency of φ(t), fCLK/48, is
of interest or H = 0. Since the CGs only carry DC currents, its power consumption is
independent of frequency. Furthermore, these currents are fed to the unit combiners, which
steer them according to the pattern shown in Figure 13; hence, the combiner’s power
consumption is also constant. Due to their digital nature, the FD, PS, and R&B blocks
consume power proportional to the output frequency. In addition, Figure 17b shows the
total power consumption of the 6-tap, 12-tap, and 24-tap HCFs versus the output frequency
when H = 0. These results show that the slopes of the curves are proportional to the
filter’s order. This difference is mainly dictated by the fully digital blocks FD, PS, and R&B,
especially the former, which enables only the required n DFFs.
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Figure 17. (a) Measured total power consumption of HCFs, (b) power consumption per block of
24-tap HCF for H = 0, and simulated (s) and measured (m) SFDR for (c) H = 0 and (d) H = 1.

The SFDR versus output frequency is shown in Figure 17c,d, for H = 0 and H = 1,
respectively. It is noted that the SFDR decreases as the output frequency increases. This is
due to the increasing phase error from the FD that causes even harmonics to show at the
output [14]. Only the waveforms that present even harmonics with lower power than the
odd cancelable harmonics are considered. Since the working frequency of the FD is greater
for H = 0 than for H = 1, smaller SFDR values are obtained for H = 1.

Figure 18a,b show the output’s waveform and power spectral density (PSD) of the 24-
tap HCF, respectively, when H = 0. The obtained staircase sine-wave waveform presents
the first pair of non-cancelable harmonics at 47 fo and 49 fo, which can be suppresed with a
low-order passive LPF [12,13,15]. In addition, Figure 18c,d show the output’s waveform
and PSD of the 24-tap HCF, respectively, when H = 1. The first pair of non-cancelable
harmonics is located at 43 fo and 52 fo. Note that the carrier is located at 5 fo.
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Figure 18. (a) Transient waveform and (b) PSD of HCF’s output for H = 0, and (c) Transient
waveform and (d) PSD of HCF’s output for H = 1.

Table 1 summarizes the performance of the six HCFs proposed in this work and
compares them to previous works. The Figure of Merit (FoM) used in this work is given by

FoM =
fo,max(MHz) · 2

SFDRbest(dB)
6 ·AF · FNCH

Ptotal(µW) · A(mm2)
(34)

where fo,max is the maximum output frequency, SFDRbest is the highest measured SFDR,
AF is the number of available filters, FNCH is the first non-cancelable harmonic, Ptotal
is the maximum total power consumption, and A is the area. This FoM is based on the
one used by [13,14] with the addition that it accounts for the programmability and the
harmonic-canceling range of the system. In this fashion, the number of implemented HCFs
in the same area, i.e., the system’s area efficiency, is included in the FoM. On the other hand,
recall that an external LPF is still required at the output of the HC-based generators due to
the presence of the non-cancelable harmonics at (2n± 1) fo. The order (and therefore, the
complexity and power consumption) of the required external LPF is inversely proportional
to the order n of the HCF. For this reason, it is relevant to include the FNCH in the FoM.

In summary, this work presents the only programmable HCF and the highest-order
HCF. The 24-tap HCF allows the cancellation up to the 47th harmonic of the SW signal
φ(t), which is the highest FNCH reported to the best knowledge of the authors. It also
implements the first band-pass HCF. The proposed SCM-based HCFs provide SFDR and
power consumption values comparable to previous works that use calibration techniques.
For this work, the calculated FoM only includes the three HCFs when H = 0. Considering
the FoM values, this work performs better than most of the previous works except [13] only
after it uses calibration.
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Table 1. Performance comparison.

Year Tech. VDD (V) Area
(mm2)

Coefficient
Generation

HCF
Order

Bypassed
Harmonic

fo
(MHz)

SFDR/-THD* (dBc) Power (mW) FoM@ fo (MHz) @ fo (MHz)

This
Work 2022 180 nm

CMOS 1.8 0.505 SCM-based

6-tap
1st 0.8–60 66.4 @ 0.8 6.8 @ 0.8

1797

52.9 @ 60 19.1 @ 60

5th 33–100 46.5 @ 33 6.1 @ 33
38.4 @ 100 8.7 @ 100

12-tap
1st 0.8–32 64 @ 0.8 6.8 @ 0.8

53 @ 32 15.3 @ 32

5th 8.3–75 43.7 @ 8.3 5.3 @ 8.3
38.8 @ 75 8.7 @ 75

24-tap
1st 0.8–12.5 63.7 @ 0.8 6.9 @ 0.8

54.6 @ 12.5 13.3 @ 12.5

5th 2–50 53.6 @ 2 5.1 @ 2
46.2 @ 50 10.2 @ 50

[15] 2019 28 nm
FDSOI NR 0.011 VCCS + calib. +

LPF 6-tap 1st 1–333 41.5 † @ 166.67 NR -
52 ‡ @ 166.67

[16] 2017 130 nm
CMOS 1.2–1.5 0.056 CM ratios 12-tap 1st 0.01–1 NR 4 (single-tone) -

[14] 2017 130 nm
CMOS 1.2–1.5 0.066 Unit-current

switches + DEM 4-tap 1st 2 69 ‡ 0.94 840

[13] 2015 180 nm
CMOS 1.0–1.8 0.08

Resistor-ratios
+ calibration +

LPF
6-tap 1st 150–850

50.5 † @ 150
60.3 ‡ @ 150 9.1 @ 150 698 †

47 † @ 750 57.2 @ 850 6642 ‡

70 ‡ @ 750

[12] 2015 180 nm
CMOS 1.8 0.04 Capacitor

ratios + LPF 8-tap 1st 1.11 77 * 3.24 938

[10] 2010 130 nm
CMOS 1.2 0.186 N/A N/A 1st 10 72 * 4 716

NR: Not reported, †: without calibration or DEM, ‡: with calibration or DEM, *: -THD. VCCS: Voltage-controlled
current source, DEM: Dynamic element matching.

6. Discussion

In the presented analysis, only ideal SCM elements and equally spaced SWs are
considered. Therefore, it does not include non-idealities such as coefficients mismatch due
to variations during fabrication or phase errors produced by the FD, PS, and R&B blocks.
Under ideal conditions, as shown in Figure 7, the SFDR of the output signal increases as the
number of SCM stages, M, increases, for a given HCF order n. Unfortunately, as presented
in [16], non-idealities set a maximum limit for the output linearity. In other words, it is
expected that the SFDR saturates and remains constant regardless of the number of SCM
stages. This is reflected in the measured SFDR values, which are lower than expected from
the ideal analysis. For this reason, an statistical analysis is required to optimize the HCF
design in a future work. For instance, a model of the proposed HCF that considers the
standard deviation of the CMs and the phase errors can be used to evaluate the trade-off
between phase error, coefficient precision, and SFDR.

The use of a first-order approximation of the matrix norm ‖A‖−1 = 8/5n is another
source of SFDR limitation. Nonetheless, a better approximation requires the ratio of
higher-integer numbers. For instance, consider the HCF of order n = 6. Its ideal norm
‖Ai‖−1 = tan(π/12) ≈ 0.2679 is approximated as ‖A‖−1 = 0.2666. The next set of
integer numbers, the ratio of which is closer to ‖Ai‖−1, is 15/56 ≈ 0.2678. The use of 15
and 56 in the matrix norm implementation implies the use of more unit transistors and a
more complex device layout, i.e., more error sources that affect the SFDR.

In order to increase the output frequency range, the phase error produced by the
FD, PS, and R&B blocks must be reduced. Note that these blocks operate at 2n fo. This is
the main reason for the difference between the frequency ranges of the 6-tap, 12-tap, and
24-tap HCFs. In order to reduce the phase error in a future work, a delay error correction
mechanism would be required. This can be provided by a Delay-Locked Loop (DLL) that
generates the required phases with a negative feedback loop.
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7. Conclusions

In this work, a harmonic-canceling single-tone synthesizer that uses an SCM-based
coefficient generator for BIST applications is proposed. This coefficient generator produces
irrational coefficients from integer numbers in a recursive approach with no calibration
scheme. Measured SFDR values prove the effectiveness of the proposed SCM-based
coefficient generator architecture, since they are comparable with those of previous works
that use calibration. The selectable 24-tap, 12-tap, and 6-tap HCFs are implemented along
with their band-pass versions. They cover a frequency range from 0.8 to 100 MHz and
provide the highest number of operation modes and the highest first non-cancellable
harmonic reported.
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ADC Analog-to-Digital Converter
THD Total Harmonic Distortion
BPF Band-Pass Filter
DDFS Direct Digital Frequency Synthesizer
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Appendix A. Eigenvalues of the Even-Order SCM with Ideal (Irrational)
HCF Coefficients

Consider the even-order SCM Ai = scirc(s0, s1, . . . , sn−1), where sk = cos(kπ/n)
for k = 0, 1, . . . , n− 1. From (15), the eigenvalues λm of Ai are

λm =
n−1

∑
k=0

cos
(

kπ

n

)
e

jkπ(2m+1)
n , m = 0, 1, . . . , n− 1 (A1)

Then

λm =
n−1

∑
k=0

[
e

jkπ
n + e

−jkπ
n

2

]
e

jkπ(2m+1)
n =

1
2

n−1

∑
k=0

[
e

jk2π(m+1)
n + e

jk2πm
n

]
(A2)

The two geometric series in (A2) can be expressed in closed form as

n−1

∑
k=0

e
jk2πm

n =
1− ej2πm

1− e
j2πm

n

=

{
n , m = 0,±n,±2n, . . .
0 , otherwise

(A3)

and

n−1

∑
k=0

e
jk2π(m+1)

n =

{
n , m = −1,±(n− 1),±2(n− 1), . . .
0 , otherwise

(A4)

Consequently, the eigenvalues of the even-order SCM Ai are given by

λm =

{
n/2 , m = 0, n− 1
0 , otherwise

(A5)

Appendix B. Eigenvalues of the Even-Order SCM with Non-Ideal (Integer)
HCF Coefficients

Consider the even-order SCM A = scirc(s′0, s′1, . . . , s′n−1), where s′k = sgn(cos(kπ/n))
for k = 0, 1, . . . , n− 1, and sgn(·) is the sign function. From (15), the eigenvalues λ′m of A are

λ′m =
n−1

∑
k=0

sgn
(

cos
(

kπ

n

))
e

jkπ(2m+1)
n , m = 0, 1, . . . , n− 1 (A6)

Then

λ′m =

n
2−1

∑
k=0

e
jπk(2m+1)

n −
n−1

∑
k= n

2 +1
e

jπk(2m+1)
n =

n
2−1

∑
k=0

e
jπk(2m+1)

n −



n−1

∑
k=0

e
jπk(2m+1)

n −
n
2

∑
k=0

e
jπk(2m+1)

n


 (A7)

From (A7), the geometric series can be further reduced using their closed form. It
follows that

λ′m =
1− e

jπ(2m+1)
n ( n

2 )

1− e
jπ(2m+1)

n

−

1− e

jπ(2m+1)
n (n)

1− e
jπ(2m+1)

n

− 1− e
jπ(2m+1)

n ( n
2 +1)

1− e
jπ(2m+1)

n


 (A8)

Simplifying

λ′m = e
jπ(2m+1)

2


 e

jπ(2m+1)
n + 1

e
jπ(2m+1)

n − 1


 (A9)

Therefore, the eigenvalues of the even-order SCM A are

λ′m = (−1)m cot
(

π(2m + 1)
n

)
, m = 0, 1, . . . , n− 1 (A10)
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Appendix C. Equivalence between a Cascade of Lower Order HCFs and a Higher
Order HCF

Consider Equation (28), which describes the cascade of two SCM-based HCFs of order
n1 and n2. Since matrix An1×n1 is an SCM, it is true that An1×n1 ⊗ In/n1 is also an SCM
with its first row elements upsampled by n/n1. The same holds for An2 × n2 ⊗ In/n2 . Their
eigenvalues are given by (A1) and are equal to

λ[An1×n1 ⊗ In/n1 ] = {λ0, λ1, . . . , λn−1}
λ[An2×n2 ⊗ In/n2 ] = {µ0, µ1, . . . , µn−1}

, (A11)

where

λm =





n1/2 , if m ∈ S11
n1/2 , if m ∈ S12

0 , otherwise
(A12)

µm =





n2/2 , if m ∈ S21
n2/2 , if m ∈ S22

0 , otherwise
(A13)

where

S11 =

{
kn1 : k ∈ Z, 0 ≤ k ≤ n

n1
− 1
}

(A14)

S12 =

{
kn1 + (n1 − 1) : k ∈ Z, 0 ≤ k ≤ n

n1
− 1
}

(A15)

S21 =

{
kn2 : k ∈ Z, 0 ≤ k ≤ n

n2
− 1
}

(A16)

S22 =

{
kn2 + (n2 − 1) : k ∈ Z, 0 ≤ k ≤ n

n2
− 1
}

(A17)

Since matrices (An1×n1 ⊗ In/n1) and (An2×n2 ⊗ In/n2) are SCMs, their product is also
an SCM. Furthermore, since all of them present the same size n×n, they all share the
same eigenvectors. The eigenvalues λmµm, m = 0, 1, . . . , n− 1 of the resultant matrix are
expressed as

λmµm =





n1n2/4 , if m ∈ S11
⋂

S21
n1n2/4 , if m ∈ S12

⋂
S22

n1n2/4 , if m ∈ S11
⋂

S22
n1n2/4 , if m ∈ S12

⋂
S21

0 , otherwise

, (A18)

where S11
⋂

S21 = {0}, S12
⋂

S22 = {n− 1}, and S11
⋂

S22 = S12
⋂

S21 = ∅ if and only
if gcd(n1, n2)>1. It follows that

λ[(An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1)] =

{
n1n2/4 , if m = 0, n− 1

0 , otherwise
(A19)

Equation (A19) implies that the resultant SCM matrix is a scaled version of matrix
An×n such that

n1n2

4
An×n =

n
2
(An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1) (A20)

An×n =
2n

n1n2
(An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1) (A21)
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Since n phases equally spaced by π/n are required, such that n = lcm(n1, n2), and
considering that lcm(n1, n2) = n1n2/ gcd(n1, n2), An×n can be expressed as

An×n =
2

gcd(n1, n2)
(An2×n2 ⊗ In/n2)(An1×n1 ⊗ In/n1) (A22)
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