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Abstract: Moving object detection and tracking are technologies applied to wide research fields
including traffic monitoring and recognition of workers in surrounding heavy equipment environ-
ments. However, the conventional moving object detection methods have faced many problems
such as much computing time, image noises, and disappearance of targets due to obstacles. In this
paper, we introduce a new moving object detection and tracking algorithm based on the sparse
optical flow for reducing computing time, removing noises and estimating the target efficiently. The
developed algorithm maintains a variety of corner features with refreshed corner features, and the
moving window detector is proposed to determine the feature points for tracking, based on the
location history of the points. The performance of detecting moving objects is greatly improved
through the moving window detector and the continuous target estimation. The memory-based
estimator provides the capability to recall the location of corner features for a period of time, and it
has an effect of tracking targets obscured by obstacles. The suggested approach was applied to real
environments including various illumination (indoor and outdoor) conditions, a number of moving
objects and obstacles, and the performance was evaluated on an embedded board (Raspberry pi4).
The experimental results show that the proposed method maintains a high FPS (frame per seconds)
and improves the accuracy performance, compared with the conventional optical flow methods and
vision approaches such as Haar-like and Hog methods.

Keywords: moving object tracking; optical flow; moving window; target estimator

1. Introduction

Technologies to detect and track moving objects are of significance in many appli-
cations such as unmanned vehicles and surveillance cameras to detect and recognize
pedestrians and track workers in factory environments to ensure personnel safety. Conven-
tional algorithms to detect and track moving objects include frame difference algorithms,
background subtraction algorithms, optical flow-based algorithms, and static learning
algorithms. In addition, various deep-learning-based moving-object detection algorithms
based on deep convolution networks such as YOLOv5s and R-CNNs have been developed.
However, these methods are highly sensitive to changes in the background brightness,
which increases the probability of erroneous detection. Furthermore, deep-learning-based
algorithms are computationally complex, require sufficient training samples, and are not
suitable for real-time processing on a board without graphical processing units (GPUs). In
addition, conventional moving-object detection and tracking algorithms cannot effectively
detect and track targets obscured by obstacles within the images or when an image is
distorted by camera vibrations. These limitations are particularly concerning, especially
in applications aimed at ensuring the safety of workers operating near heavy equipment.
The Korea Occupational Safety and Health Agency (KOSHA) reports that among the
many causes of safety-related accidents, the most notable cause of collisions with objects
around heavy equipment in workplaces is the lack of visibility of equipment workers in
the environment.
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To address this problem, this paper proposes a moving-object detection and tracking
algorithm that can be applied to various safety-related applications. The proposed algo-
rithm can efficiently eliminate the camera vibration related noise in the image frames and
perform continuous tracking for moving objects obscured by obstacles. Specifically, the
conventional sparse optical flow algorithm (Lucas-Kanade, LK) is enhanced to detect and
track multiple moving objects at a low computational cost. Moreover, the corner extraction
algorithm (Shi–Tomasi) is used to track feature points to detect and track moving targets.
A moving window detector and memorized estimator are used to enhance the detection
performance, ensure the robustness of the algorithm to noise, and improve the worker
safety. In particular, the moving window detector uses the window memory at each feature
point as the window size and detects and tracks the moving target by evaluating whether
the feature point is noise or a moving object. The location history of the detected points is
memorized, and a halted or invisible target is identified from the location history of the
feature points. Subsequently, the estimator decides whether the target state is maintained.

1. The proposed moving-object detection algorithm is computationally effective, and the
performance of the sparse optical flow algorithm based on the LK method is enhanced
using the Shi–Tomasi corner extraction algorithm. Moreover, a novel moving window
detector and memorized estimator function are used.

2. The performance is enhanced by operating on a non-GPU platform and suing a low
computational power embedded system such as Raspberry Pi.

3. The moving window detector helps enhance the robustness of the proposed approach
against vibration related noise in surveillance system environments.

4. The memorized estimator function can prevent accidents of workers in fields with
hazards and obstacles.

Section 2 describes the existing studies related to moving-object detection and tracking
algorithms. Section 3 presents an overview of the three processes of the proposed algorithm
and describes the dataset. Section 4 describes the determination of the parameters of the
proposed algorithm and comparison of the experimental results with those obtained using
existing algorithms. Section 5 describes the limitations and scope for future work.

2. Related Works

In recent decades, methods to detect and track moving objects have been widely
applied. Before the development of learning-based algorithms, methods based on the
optical flow, frame difference, and background subtraction were typically used. In these
algorithms, the difference between frames was used to determine the movement of ob-
jects, and thus, the objects could be accurately detected. However, these algorithms were
computationally intensive and complex.

Certain researchers attempted to perform object recognition using the optical flow
based on a camera attached to a moving vehicle [1]. Several movements were captured
within the scene, and the ego motion was separated from the background. However, when
the scene moved instead of a fixed camera, many false positives occurred. The authors
attempted to relax the stationary cameras restriction by using traditional moving-object
detection methods and introducing additional steps before and after the detection. For
cameras to be attached to heavy equipment, a fisheye camera with a wide-angle range
can be used. Certain researchers developed an approach to track pedestrians and cars in
fisheye images [2], using low-cost sensors and four fisheye cameras with a wide range.
An unwarping technique is used to pre-process distorted images, followed by object
classification and tracking. A novel equipment design and sensing system (Safety 360) was
developed to provide equipment operators with a surround-view [3]. Moreover, various
optical flow techniques for moving-object detection have been proposed [4]. Moving-
object tracking was realized using optical flow and motion vector estimation [5,6], and
the approach was noted to exhibit a strong object tracking ability for the same scene in
various views. To perform real-time object detection and tracking, feature extraction was
conducted using the pyramid LK optical flow, as a sparse optical flow technique [7]. To
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enhance the tracking accuracy, the corners were detected for tracking, the subpixel corners
were determined, the video in each frame of the image layered in the image pyramid
was examined to calculate the optical flow at the top corner, and the next pyramid was
considered the starting point of the pyramid. This process was repeated until the bottom
pyramid image. Notably, object recognition can be supplemented in a moving camera
situation with technological advancements.

Moreover, the object detection performance for a complex background can be en-
hanced using the optical flow. Object detection may not be effective when the frame
difference technique is integrated with the optical flow technique. Certain researchers
developed algorithms to perform background modelling tasks, using edge detection to
solve problems [8]. Moreover, an object detection study was performed to clarify the
influence of images distorted in environments such as those involving movement of the
background, camera shaking, and rotation [9]. Moving-object detection was performed
using images recorded at large distances, such as top views [10]. Images with camera
equipment movement or shaking were pre-processed through background compensation,
YOLOv3-SOD deep learning, and object detection.

Machine learning techniques have also been used to detect and recognize objects. The
motion of Earth movement equipment was detected based on the vision at ground level [11].
Images were acquired from excavators or dump trucks, objects were tracked using the
convolutional neural network (CNN) deep learning model, and routes were extracted
using the hidden Markov model (HMM). Notably, the HMM leverages trajectories to train
a Gaussian mixture model, and the probability density function of each activity can be
determined using support vector machine (SVM) classifiers. For real-time vehicle detection
and tracking for gas station surveillance, an approach based on the Adaboost classifier and
optical flow tracking was proposed [12]. Specifically, the Adaboost algorithm was used to
train the classifier with Haar-like features extracted from positive and negative samples of
the gas station vehicles. Optical flow tracking method was performed to extract the corner
points of the vehicle areas and match the positions of these corners in the consecutive
frames in real-time.

Recently, many researchers developed approaches to detect moving objects by using
optical flow and deep learning. With the widespread application of unmanned aerial
vehicles (UAVs), moving objects have been attempted to be detected and tracked using
cameras within the UAV [13]. In this approach, the moving objects were detected by
subtracting a background changing in a complex manner from an image captured by a
moving camera. The algorithm extracted motion areas based on optical flow and removed
the background to perform clustering around moving objects. Noise was eliminated by
removing a false foreground based on time and space consistencies. A frame skip strategy
was used to accelerate the algorithm.

In addition, moving objects for UAVs were detected by obtaining images in real time.
A dense optical flow technique was used; however, the background was assumed to be
fixed. By obtaining top-view images in the aviation domain, the map for moving objects can
be extracted using background removal and mean shift segmentation techniques. Notably,
dense optical flow techniques are time intensive, and nearly 3.5 s are required per frame,
which limits the application of such techniques to heavy equipment such as microcontroller
units (MCUs) [14]. To address this limitation, we use a sparse optical flow technique.
For UAVs, certain researchers proposed a robust onboard visual algorithm based on the
reliable global-local object model for 2D and 3D object tracking to achieve a reasonable
computational time [9]. This approach is based on global matching and local tracking. The
algorithm initially identifies feature correspondences. An improved binary descriptor is
developed for global feature matching, and an iterative LK optical flow algorithm is used for
local feature tracking. Furthermore, an efficient local geometric filter is used to manage the
outlier feature correspondences based on a new forward–backward pairwise dissimilarity
measure, thereby ensuring pairwise geometric consistency. Section 3 in this paper describes
the algorithm for eliminating noise via feature extraction. In another study, objects on the
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ground were identified using the YOLOv3 deep learning model for UAVs [15]. The images
recorded by aircraft were transmitted to computers using in-flight communication systems,
and neural network models were implemented through the computers.

Certain researchers developed a deep-learning-based framework for tracking UAVs.
In this approach, moving objects (UAVs) were accurately detected at a high speed by
modifying and improving CNN models based on YOLOv3-tiny in a real-time measured
video stream [16]. The algorithm was characterized by multiple detection steps and tracking
steps between frames. In the multiple detection phase, the FastUAV-NET architecture used
five insertion units and a pyramid network. In the multi-tracking step, the detected
boundary box was tracked using the scale-adaptive kernelized correlation filter (sKCF).
Thus, algorithms to detect UAVs could be applied to every sixth frame, and efficient and
accurate tracking could be performed in intermediate frames through sKCF [17]. This
approach could effectively address the challenges associated with the high speed of UAVs,
changes in the UAV scale and aspect ratio, variations in the illumination condition and
camera viewpoint changes, and reflected light and shadows.

Certain researchers attempted to exploit consistent video frame information by directly
applying image object detection technology to videos [18]. Notably, the direct application
of image object detection models to video data is challenging owing to conditions such
as motion blurring, video defocusing, and partial covering. Therefore, an algorithm was
developed to accurately detect and track moving objects by readjusting the position of
the bounding box by using the feature map of the target object of the key frame obtained
based on YOLOv3 and the optical flow value of two adjacent frames obtained through
FlowNET 2.0.

Moving-object detection techniques can also be applied for safety evaluations. Certain
researchers used computer vision technologies to measure the vibration of buildings [19].
This approach could help evaluate the condition of the building, and minute movements
of the building were detected using several sensors. The efficiency of the existing motion
extraction methods was compared, using commercialized cameras and the LK optical flow
instruments as experimental equipment. In general, when heavy equipment is operated
and large vibrations and physical forces are applied to the ground at construction sites,
shaking occurs throughout the structure. After pre-processing the image, this shaking can
be monitored through monocular vision and detection of the obstacle around which the
shaking occurs [20].

Object tracking algorithms have also been applied for ensuring personnel safety
during the operation of heavy equipment such as unmanned excavators [21–23]. Motion
detection and object tracking were performed using Velodyne VLP-16 light detection and
ranging sensors. Moreover, motion predictions could be performed by analysing the
physical movements and estimating the activity areas. Section 3 in this paper presents the
proposed technique based on the optical flow [24–28]. Moreover, a stereo vision sensor-
based monitoring system using more than one image can help distinguish various objects
and represent them as three-dimensional information to ensure accurate monitoring [27,28].
Specifically, this technique can provide the three-dimensional geometry, high-resolution
image correction, and colour and textural information to enhance the monitoring accuracy.
However, for various lighting conditions, low resolution and high-performance camera
systems may be required. Another approach can recognize and track objects by analysing
the behaviour of workers at the construction site [29]. The moving objects are detected
based on the optical flow, the joint probability around the detected objects is calculated
using the naïve Bayesian model, and the workers’ actions are categorized to track and
recognize the objects.

3. Proposed Method

Figure 1 shows the process flow of the proposed real-time video-based algorithm. The
proposed algorithm is based on sparse optical flow, which receives each frame of the video
as the input and calculates the motion degree of the objects. Specifically, the algorithm
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calculates the motion information from all pixels of each frame, not as a dense optical flow
(Farneback) [30] but as a sparse optical flow (pyramid LK) [31]. In addition, we extract the
corner feature during LK optical flow calculation and estimate the moving object using only
the moving information of this feature. More accurate and efficient motion information can
be obtained by adding the regenerative function of the corner.

Camera Videos Extraction Detection Estimation

Input Videos Corner Feature Extraction Sparse OF Detection 

& Tracking
Output Videos

t

t + 100

t t + 1

Input Video

Moving Object 

Detection

Sparse OF 

Detection

Tracking Corner

Moving Window 

Detector

Memorized

Estimator

Corner 

Extraction

Shi & Tomasi

Algorithm

Corner Feature 

Reset

Figure 1. Overview of the proposed algorithm. We input videos with resolutions of 383 × 288 and
768 × 576. Every N frames, the corner feature points are generated with Shi-Tomasi algorithm [32].
The sparse optical flow algorithm calculates the moving information of feature points. The moving
window detector collects the feature points for optical flow. If the tracking moving object disappears
behind a wall, obstacles, or outside of a frame area, the memorized estimator checks the region
around the target. The green boxes show detection of moving objects.

The LK method uses feature points to track the optical flow, which may render object
detection over large distances challenging. In contrast to dense optical flow techniques,
which evaluate all the pixels on the frame and neighbouring pixels, LK optical flow cal-
culates feature points such as corners to facilitate tracking. Notably, if the moving objects
are at a large distance, they are difficult to distinguish from noise. In detecting the motion
information for each frame, a noise filtering function is introduced to alleviate the camera
vibrations and light spread phenomena. To detect and track the moving objects obtained
through feature extraction and LK optical flow, we introduce a memorized estimator to
estimate the position of moving objects by memorizing information regarding the last
missing position. This approach is expected to be effective in situations in which the object
stops moving or is obscured by certain obstacles in the video input.

Notably, the proposed algorithm is based on the pyramid LK method but incorporates
corner reset, noise filtering, and moving-object estimation (yellow box in Figure 1). More-
over, we aim to implement the proposed algorithm in embedded systems that can be used
in places such as construction sites to ensure personnel safety.

3.1. Corner Feature Reset

For sparse optical flows, corner features are detected, and a set of features is used for
optical flow calculation to decrease the computational time. The corner features are typically
generated for a given image snapshot by using the Shi–Tomasi algorithm. Although moving
objects can be tracked using optical flows, they may be hidden near obstacles or walls and
appear again, or a new object may be observed in the image. Thus, corner feature reset
must be performed to identify all the moving objects. Corner features are regenerated in
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regular period to prevent this problem. However, the process is not implemented for every
frame because corner feature algorithms are time intensive.

Figure 2 shows an example of corner features based on the corner feature reset. The
green box shows the detected moving object using proposed algorithm. The pedestrian
features are retained for continuous tracking. The red box shows the region that the moving
pedestrian traverses. This region may not be relevant for tracking anymore, but another
moving object may be present in the area. Corner feature reset is aimed at identifying the
corner features in the region for the optical flow of another moving object.

Corner Feature 

Reset

Figure 2. Example of the corner feature reset method. The red box shows that the corner feature
reset method regenerates the corner features in a period of time. The green boxes show detection of
moving objects.

3.2. Moving Window Detector

The original pyramid LK method is vulnerable to noise such as that pertaining to
light smudging in the input image and camera vibration. Even if no moving object is
present in the actual optical flow, false positives may be induced owing to even small
noises. To overcome these problems, we use a filtering function and enhance the detection
performance in Figure 3.

MWi,t = {Pi,t−n, Pi,t−n+1, · · · , Pi,t−1} (1)

The moving window function aims to memorize the feature points for optical flow
within each of n frames. The presence of noise is evaluated by determining if the movement
of the feature during an interval is less than or equal to the distance threshold. The window
memory container MWi,t in Equation (1) continually saves the location of feature point i
at time t over M points, Pi,t (i ∈ M). If t < n, the memory size is less than the n memory
capacity. In contrast, when t > n, window memory overflow occurs, the oldest memory
Pi,t−n is removed from the window memory container, and the recent memory Pi,t is pushed
to the end of the container. When corner reset is implemented and the point is tracked, the
window memory container of the point is maintained, not reset.

∆Pi,t =
t−1

∑
t′=t−n

∆Pi,t′ =
t−1

∑
t′=t−n

(Pi,t′+1 − Pi,t′). (2)

To enhance the detection performance, especially when capturing a distant moving
object, the moving window method changes the distances of the first and last locations
in the window memory, to determine whether the feature is a moving object. Instead of
the sum of moving distances within a period, the threshold measurement is based on the
varied distances of the points because the vibration related noise moves continuously in
a certain period. In contrast to the summed value, the change in location in the period
does not cumulate the moving distances, and only the changes in the initial and final point
locations are determined. Thus, we define the change in point locations in a constant time
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interval, ∆Pi,t, and use it instead of the sum of changes in the point locations P(x,y) from
time t− n to t− 1, as shown in Equation (2).

Li,t = dist(Pi,t−n, Pi,t), Di,t =

{
1, if Li,t ≥ α

0, if Li,t < α
. (3)

In Equation (3), Li,t is the movement distance, measured using the Euclidean distance
method, in units of pixels. Moreover, α is the distance threshold to determine whether the
point is a noise or moving object. Di,t is a flag that operates the moving window detector
function and identifies whether point Pi,t is a moving target or vibration noise, based on
Li,t. For example, if Di,t = 1, the green detection box is generated around point Pi,t. A
high distance threshold can block the sensor noise and obtain more definite movements,
demonstrating lower recall but higher precision performance. The performance metrics
must be adjusted based on the detection environments.

𝒕 𝒕 + 𝟏 𝒕 + 𝟐 𝒕 + 𝟑 𝒕 + 𝟒 𝒕 + 𝟓 𝒕 + 𝟔

Figure 3. Example of the moving window detector method. The moving window method memorizes
the feature points for optical flow within each of n frames. The green boxes show detection of a
moving object.

3.3. Memorized Estimator

We propose a function to estimate the location of the tracking object, even if it is
temporarily stopped or hidden behind obstacles, by estimating the feature points pertaining
to the target in Figure 4.

Ei,t =

{
τ, if Di,t = 1
Ei,t−1 − 1, if Di,t = 0 and Ei,t > 0.

(4)

In Equation (4), τ is the estimation time. Ei,t represents the estimator for the feature
point i at time t and is reset to τ when feature point i has a detection state of Di,t = 1,
determined using Equation (3). If the moving window detector Di,t is set as zero and
the detector Ei,t is more than 0, the memorized detector Ei,t is reduced to Ei,t − 1 in each
time step.

The non-zero estimator (Ei,t > 0) attempts to detect hidden targets. For example, if
certain feature points lose the tracking target or the target is hidden because it is beyond
the camera frame or behind walls or obstacles, the memorized estimator continues to track
the feature points of the target. The green detected box is maintained on the feature point
while estimation time Ei,t. In addition to the effect of the moving window detector, a higher
τ increases the recall and decreases the precision performance.
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Memorized 

Estimator

Figure 4. Example of the memorized estimator method. The green boxes show detection of moving
objects. The green detected box is maintained on the target over a given time span.

4. Experiments and Results
4.1. Experimental Environment

The proposed method is influenced by feature point characteristics such as the corners
for calculating the optical flow and tracking the next point. Experiments are performed
to identify an effective feature generating algorithm by comparing several algorithms.
First, we specify the control parameters for all algorithms: corner reset interval, maxi-
mum number of corners and corner distance, semi-metric parameters, number of missing
boxes (non-existent feature points in the label box), and number of real-generated fea-
tures. To select the optimal parameters for each algorithm, we investigate the semi-metric
comparison results, apply the selected parameters to the algorithms and evaluate the per-
formance. The follow subsections describe the semi-metric parameters of each algorithm
and performance evaluation.

4.1.1. Dataset

We conduct an experiment by applying the proposed algorithm to two large datasets
and perform a comparative analysis with other existing algorithms, as shown in Figure 5.
Figure 5a–c show the first dataset: Videos 1, 2, and 3 correspond to walk data for a person
walking in a straight line in a hallway, flow data for back and forth movement, and waiting
data for a person pausing in the middle and then continuing to walk back and forth,
respectively. The dataset has a resolution of 384 × 288, and the number of video frames
are 790, 1042, and 610. The proposed algorithm is compared with dense and sparse optical
flow algorithms. In the second dataset, video 4 shows the surroundings, containing more
individuals than those in the first set. The resolution is 768× 576, and the number of frames
is 794. The proposed algorithm is compared with pedestrian detection algorithms (dense
and sparse optical flow algorithms and Hog and Haar-like methods).

(a) (b) (c) (d)

Figure 5. Examples of datasets (CAVIAR and PETS2009). (a): one person walks in a straight line
(Walk). (b): people are browsing back and forth (Browse). (c): people are browsing while waiting
(Browse_Whilewaiting). (d) Multiple pedestrians (pedestrian). The red boxes show the ground truth
contained in the datasets.
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The first dataset focuses on the recognition and evaluation performance of moving
objects instead of pedestrian shapes, and the second dataset is aimed at comparatively
analysing the proposed algorithm with algorithms that can estimate shapes and moving
objects. The two datasets are significantly different: The first dataset contains slowly
walking people, whereas the second dataset contains rapidly walking people. In the
first dataset, the moving targets are more difficult to detect because of the presence of
fewer people and people who are walking slowly. Because the two datasets have different
resolutions, we consider the resolutions of 384 × 288 and 768 × 576 as small scale and
large scale, respectively, to ensure a fair comparison. In the comparison of the optical
flow methods, video 4 is resized to the small scale (video 4S, resolution 384 × 288). When
comparing machine learning methods, videos 1–3 are resized to the large scale (videos 1–3L,
resolution 768 × 576).

4.1.2. Missing Box of Corner Parameters

In the proposed method, to detect moving objects, we calculate the optical flows of
each feature point, determine the next point movement location, and detect moving objects
by inspecting the moving window memories of the points. Therefore, the feature points for
calculating the optical flow and next movement are essential and important components
of the proposed method. The feature points are typically spotted around existing moving
objects and those that recently appeared in the frame. The feature points tracked on the
moving objects remain on the target objects.

To observe this situation and enhance the performance of the corner generation al-
gorithm, we define a parameter, that is, the number of missing boxes, which counts the
label boxes of non-existent feature points to determine the optimized values. In Figure 6,
a higher number of missing boxes means that the feature point generation algorithm does
not generate feature points to calculate optical flows. A lower number of missing boxes
corresponds to a higher detection rate. When both number of generating corners and
distance between corners low, corner features are generated densely, and it causes a lot of
missing boxes.

We specify the real generated corner numbers for the abovementioned experiment
environments to examine the influence of the corner features on the number of corners, as
shown in Figure 7. If the number of corners is large, the frames per second (FPS) for the
processing is high. In contrast, if the number of corners is small, the accuracy of feature
tracking to determine the optical flow are high. Certain feature point generating algorithms
have dependent parameters such as the corner distance versus corner number. In the case
of corner-generating algorithms, setting the corner distance limits the maximum number of
generation points, depending on the inter-corner distance, maximum number of corners,
and presence of corners in the frame. If the corner distance is excessively high, the number
of corners is low at a given frame size. We examine the number of real generated corners or
feature points for each feature generating method (Shi–Tomasi and Harris corner extraction
algorithms and random grid point methods).

Considering the corner feature extraction results based on the number of missing
boxes, the parameters of the corner-generating algorithms are determined to optimize the
performance. To specify the best corner generation framework, we inspect the number of
missing boxes in 10 frames of three typical public datasets. Figure 8 shows that the missing
boxes are exposed at first, as indicated by the black solid line when the moving objects
appear or disappear, and disposed off. This observation indicates that the feature points to
track the moving objects are effective and appropriate.
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Figure 6. Number of missing boxes with various corner detection methods. The corner detection
methods control the number of corner features and the pixel distance between corners. Test dataset
is video 1, ‘Browse_WhileWaiting1.mpg’ from CAVIAR dataset. (a–d): Shi-Tomasi corner extraction
(a pixel distance of 5, 10, 15, and 20 between corners). (e–h): Harris corner extraction (a pixel distance
of 5, 10, 15, and 20 between corners). (i–l): Random grid point method (a pixel distance of 5, 10, 15,
and 20 between corners).
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Figure 7. Generated features with various corner detection methods. Test dataset is video 1.
(a): Shi-Tomasi corner extraction. (b): Harris corner extraction. (c): Random grid point method.
Shi-Tomasi corner extraction tends to make more feature points than Harris corner extraction.
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Figure 8. Number of missing boxes in every 10 frames with Shi-Tomasi corner detection method. Test
datasets are videos 1, 2, 3. (a): Video 1 (Browse_Whilewaiting). (b): Video 2 (Browse). (c): Video 3 (Walk).
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4.1.3. Evaluation of Corner Parameters

To evaluate the influence of the corner generation on the performance, we measure the
recall and precision for the corner generation algorithms. The Shi–Tomasi and Harris corner
extraction algorithms and randomly located point method are compared in terms of the
LK optical flow tracking feature points. The variance in the corner generation parameters
is the same as that in the previous subsection. In this section, the results of only one test
dataset (Browse_WhileWaiting1.mpg) is presented owing to the limited space. The recall,
precision, and number of missing boxes, and number of generated features are presented
in the following figures.

The following metrics are typically used in object detection experiments: True positive
(TP) means successful detection of the ground truth labels, false positive (FP) means
detection failure, and false negative (FN) indicates the number of non-detected labels.
The precision, recall, and F-score are determined as TP/(TP + FP), TP/(TP + FN), and
2× (Precision× Recall)/(Precision + Recall), respectively. In this case, β is 1. Precision
indicates the detecting accuracy rate, recall represents the proportion of detected true labels,
and the F-score is a generalized measurement considering both the recall and precision.
These typical evaluation measurements are used in the following analyses.

Figure 9 shows the recall results for various corner parameters of the Shi–Tomasi
corner extraction algorithm (first row), Harris corner extraction algorithm (second row),
and randomly generated features (third row). With the increase in the maximum number
of corners, the recall performance steadily increases and becomes convergent and stable.
The Shi–Tomasi corner extraction algorithm outperforms the other algorithms in terms of
the recall. As shown in Figure 10, the Shi–Tomasi and Harris corner extraction algorithms
exhibit similar precision performances and the values converge, although the Shi–Tomasi
algorithm is slightly superior. Thus, the most effective feature generating method is the
Shi–Tomasi corner extraction algorithm with the maximum number of generated corners
being 150–200. Corner reset interval parameters exhibit similar results over 60 frames.
The corner distance parameters results are similar in four columns. We select the corner
distance parameter as 10 pixels (second column), which corresponds to a stable and high
performance in terms of the recall and precision. In the following analyses, we choose the
best parameter values for the considered methods.

Moreover, we evaluate the grid located point results. The randomly located point
method exhibits an unstable performance, likely because of the stochastically generated
point locations. Thus, well-distributed tracking point must be used when implementing a
limited number of generation corner number. Distance between corner refers the parameter
using in the corner extraction algorithm, which determines the distance between extracted
corners. In the case shown in Figure 11, setting a maximum corner number is meaningless
because the points are generated according to the grid of the constant corner distance.
Therefore, we investigate the corner distance and corner reset interval parameters in terms
of the number of missing boxes, number of real generated features, recall, and precision.
The grid generated point method exhibits a large number of missing boxes, but the recall
and precision are low. Moreover, the second plot in Figure 11 shows that the generation of
excessively many tracking points decreases the computational speed.
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Figure 9. Recall performance with various corner detection methods. (a–d): Shi-Tomasi corner
extraction (a pixel distance of 5, 10, 15, and 20 between corners), (e–h): Harris corner extraction (a
pixel distance of 5, 10, 15, and 20 between corners) and (i–l): Random grid point method (a pixel
distance of 5, 10, 15, and 20 between corners). Test dataset is video 1.
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Figure 10. Precision performance with various corner-generating algorithms. (a–d): Shi-Tomasi
corner extraction (a pixel distance of 5, 10, 15, and 20 between corners), (e–h): Harris corner extraction
(a pixel distance of 5, 10, 15, and 20 between corners) and (i–l): Random grid point method (a pixel
distance of 5, 10, 15, and 20 between corners). Test dataset is video 1.



Sensors 2022, 22, 2878 13 of 22

5 10 15 20

Distance between Corners

0

100

200

300

N
o
. 
o
f 
B

o
x
e
s

Reset Interval : 20

Reset Interval : 40

Reset Interval : 60

Reset Interval : 80

Reset Interval : 100

(a)

5 10 15 20

Distance between Corners

0

1000

2000

3000

4000

5000

G
e
n
e
ra

te
d
 F

e
a
tu

re
s

Reset Interval : 20

Reset Interval : 40

Reset Interval : 60

Reset Interval : 80

Reset Interval : 100

(b)

5 10 15 20

Distance between Corners

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Reset Interval : 20

Reset Interval : 40

Reset Interval : 60

Reset Interval : 80

Reset Interval : 100

(c)

5 10 15 20

Distance between Corners

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

Reset Interval : 20

Reset Interval : 40

Reset Interval : 60

Reset Interval : 80

Reset Interval : 100

(d)

Figure 11. Performance with a regularly-spaced grid of sampling points. Test dataset is video 1.
(a): Number of missing boxes. (b): Number of generated features. (c): Recall. (d): Precision.

4.2. Experimental Results and Comparisons

The proposed method differs from other moving-object detection algorithms owing
to the implementation of the moving window and estimator method on the LK optical
flow algorithm, which enhances the object detection performance and helps overcome the
limitations of sparse optical flow techniques. The estimator operates synergistically with
the moving window method by preventing the failure of determining the sparse optical
flow. Specifically, when the moving window tracking for the change in the location of the
feature points fails, the estimator is activated. The estimator remembers the last location
of the tracking object and predicts the presence of the disappeared object on the spot.
Therefore, we conduct experiments to examine the detection performance with changes
in the parameters of the window and estimator: window sizes, distance thresholds, and
estimation times.

We test four datasets: Browse_WhileWaiting1.mpg, Browse1.mpg, and Walk1.mpg
from the CAVIAR dataset for comparing moving-object detection algorithms using typ-
ical sparse and dense optical flow; and PETS09-S2L1.webm from the ETS2009 dataset
for comparing pedestrian detection algorithms with Hog and Haar-like SVM detection
models [33,34]. The experiments for recall and precision are independent of the accuracy
because this parameter is influenced by the algorithm parameter settings. Notably, FPS is
influenced by the electric power stability of the device. Raspberry Pi 4 is used, and thus,
20 experiments are conducted, and the average and standard deviation of the 20 values are
considered. We examine the effects of the moving window and estimator and compare the
performance of other object detection algorithms.

4.2.1. Results with Changes in Window Size

The window size is a key parameter of the moving window function in the proposed
method. The function contains the locations of all tracking points (x,y) in the moving
window memory from time t− window size to t, and thus, each window memory has a
specific size. When the window memory is full, the last location memory is eliminated, and
the recent location memory is pushed to the end of the list. Therefore, a constant window
memory size is maintained. The window tracks the change in the location of each point
and decides whether it is a moving object or noise by considering the moving distance
threshold. The influence of the change in the window size is reflected in terms of the true
number of detection boxes, recall, and precision. The total number of alarms is the total
number of predictions obtained using the proposed detection method, and this value is
compared with the true number of detection boxes.

In the case of a small window size, the history of the tracking point is limited, and the
change in the points’ locations is observed. The probability of the point being identified
as a noise instead of a moving object is higher. In contrast, for a large window size, the
history of the tracking point is adequate, and the point location can be tracked to examine
if it is moving object. However, the detection of true target boxes may be missed because
considerable time is required for the evaluation, and the window may fail to track the point
when the moving object disappears. For example, if the window size is 40 and the object
is moving in 50 frames, the detection box has less than 10 frames. Therefore, the window
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size must be properly selected. We conduct experiments with different window sizes and
examine their influence on the number of detected boxes and accuracy.

As shown in Figure 12, the number of detected moving object boxes increases with
the window size, and the difference in the ratio of the total predicted detections and true
detections increases. This gap signifies that as the window size increases, the proposed
method tends to erroneously indicate that moving objects exist. In other words, extremely
high window sizes deteriorate the detection performance because more time is required
to decide whether the target is in a moving state. However, at larger window sizes, the
number of true detected moving objects stabilizes but the number of prediction alarms
increases. This aspect indicates that the abovementioned phenomenon likely has another
explanation. When the algorithm examines a longer history of the tracking point and
location changes (when the window size is larger), it is more likely to identify the target
point as moving object even when it is stationary state. If the tracking point movement
distance exceeds the moving window distance threshold, the moving window detection
algorithm judges the object to be moving when the change in the location exceeds the
threshold. Therefore, the object is likely to be predicted as a moving object even when the
target tracking point stops. Sparse optical flow cannot easily track fast-moving objects and
thus an object may be considered to be moving even when the tracking point does not lie
on the moving object.
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Figure 12. Number of boxes and accuracy performance of the moving window method with various
window size parameters. Test datasets are video 1 for (a,d), video 2 for (b,e), and video 3 for (c,f).
(a–c): Number of total predicted detections (total alarm) and true detections. (d–f): Recall and
precision performance.

With the change in the window size, there occurs a crossing-over point at which the
recall and precision curves intersect. This point is likely an optimal value to ensure a stable
performance between the recall and precision as well as the F-score (F1). The total true
detection number steadily increases and adversely influences the recall performance. Thus,
longer tracking of the change in the point location leads to the detection of more true
moving objects because the moving window detector obtains the interpretation based on
a longer history at each point. The precision decreases as the recall increases because the
optic flow tracking points that remain at and depart from moving object are considered
to be in the moving state by the moving window memory. We validate this analysis by
investigating the output detection labelled video. The red labelled box is the ground truth
box, the green labelled box is the detection result of the moving-object detector algorithm,
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and the blue labelled box pertains to false detections. The findings indicate that the optimal
window size is 10 frames.

4.2.2. Results with Changes in Distance Thresholds

Figure 13 shows the number of false detections to validate the noise filtering effect
based on the distance threshold in the moving window method. A high distance threshold
prevents the detection of the noises from vibrating cameras in locations such as construction
fields. In contrast, a low distance threshold enables the detection of minute noisy vibrations
and small moving objects. A lower distance threshold corresponds to a higher recall and
lower precision. The black line shows that high threshold distance filters the noises and
tiny movements. The green line shows that noise filtering in the moving window distance
threshold method helps achieve more precise results.
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Figure 13. Number of false detections and accuracy performance of the moving window method with
various distance threshold parameters. (a): Number of false detections for videos 1, 2, 3. (b): Recall
and precision performance for video 1. (c): Recall and precision for video 2. (d): Recall and precision
for video 3.

4.2.3. Results with Changes in Estimation Time

The memorized estimator remembers the last position at which the calculation was
stopped for a certain period (frames) and continues prediction even when the moving
object stops or disappears from the video. To evaluate and select optimal parameters for
this function, we determine the number of detections according to the estimation time and
existence of the estimation function. The performance indicators of recall and precision are
determined.

Figure 14 shows the results of the number of detections, detection elapsed time, recall,
and precision. When the proposed detector uses the estimator, the non-estimated detection
number refers to the number of successful detections of the moving object. When the
proposed detector uses only the moving window and distance threshold method, the
estimated detection number means the detection counts when the detector estimates the
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target. The detection time is the elapsed time until the proposed detector identifies a
moving object when working on an estimated or non-estimated tracking target. As shown
in the first row of Figure 14, a larger tracking estimating time corresponds to a decreased
probability of detecting moving objects than that pertaining to non-estimated tracking.
When the estimation time is longer, the estimator spends more time on the moving targets
and less time on the non-estimated targets because the detector for the moving objects
implements the estimation more frequently. Moreover, the elapsed time until a moving
object is detected is less than that for the non-estimated detection tracking. This finding
shows that the estimator works faster when detecting moving objects if they temporarily
stop, by carefully observing the movement.
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Figure 14. Estimation time of the memorized estimator method. Test datasets are video 1 for (a,d,g),
video 2 for (b,e,h), and video 3 for (c,f,i). (a–c): Number of detections. (d–f): Tracking time with the
memorized estimator. (g–i): Recall and precision performance.

The memorized estimator influences the detection accuracy. When the object is not
sensitively detected, the detector misses the moving target and the estimator supplements
the insufficient information of the moving target by memorizing the target’s last location
information such as the moving window memory. As shown in the last row in Figure 14,
the recall is stable as the estimation time increases higher; however, the precision decreases
because the estimator remains activated when the moving target stops or moves behind
obstacles such as walls, trees, or roofs, when observed through a top-view camera.

The proposed algorithm has three key parameters. Based on the experimental results,
we determine the optimal parameters for the corner features (generation method, maximum
corner number, and corner distance), memorized moving window (window size and
distance threshold), and memorized estimator (estimation time).
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In Figure 15, LK method corresponds to the sparse optical flow, which is the basis of the
proposed algorithm, MV corresponds to the proposed moving window detector without the
memorized estimator, and MW + Est pertains to framework with the memorized moving
window and memorized estimator. The recall and precision of the proposed algorithms
(MV and MW + Est) are comparable to the existing algorithm. Thus, the proposed model
exhibits a high accuracy and reproducibility for actual moving objects. Figure 15 shows the
influence of the proposed methods (moving window detector and memorized estimator)
on the recall and precision for three input videos.
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Figure 15. Performance (precision, recall, F-score) of proposed methods. Lucas–Kanade method is
the original sparse optical flow, MW is the moving window without memorized estimator, and the
moving window with memorized estimator. (a): Recall. (b): Precision. (c): F-score.

The white bar corresponds to a low recall and high precision accuracy, which is not
suitable for detection and may increase the possibilities of accidents pertaining to missing
moving objects such as workers in the industrial field. The proposed moving window
detector and memorized estimator can help enhance the safety and detection performance.
Both methods exhibit higher recall and precision. Moreover, the estimator enhances the
true detection rate, and the estimator influences the false detection rate for disappeared or
stationary tracking objects. As shown in Figure 15c, the F-score slightly increases. In the
industrial field, the safety of workers from dangers is more important than the false alarm
rate. In particular, misdetections of workers operating near heavy equipment may lead to
fatalities, whereas false alarms may simply be considered cautionary.

4.2.4. Comparisons with Various Detection Algorithms

We halve or double the resolutions of the input videos according to the object detection
algorithm. Machine learning detection algorithms such as Hog and Haar-like algorithms
typically learn objects with resolutions of 64 × 128. The resolution of videos 1, 2, and 3 is
384 × 288 and that of video 4 is 768 × 576. The resolution of videos 1, 2, and 3 is converted
to 768 × 576 and compared with video 4 in terms of machine learning object detection
algorithms; the videos are named videos 1L, 2L and 3L. Moreover, the resolution of video
4 is converted to 384 × 288 for optical flow object detection algorithms, and it is named
video video 4S.

The LK optical flow method using in the comparison experiment is a typical moving
object detection algorithm based on sparse optical flow, and a simple noise filtering function
of the moving distance threshold is applied between the locations of the previous and
present pixel. The Farneback method is also a typical moving object detection algorithm
based on dense optical flow and simple noise filtering function of the optical flow magni-
tude threshold for pixels. The Hog and Haar-like object detection algorithms are famous
machine learning classification methods based on the learning weights of pedestrian. All
the algorithm codes are sourced from the official OpenCV community site .

Our method consists of the moving window system and the target estimator. Although
the computational speed of the proposed algorithm is similar to that of typical sparse
optical flow in Table 1, as indicated by the FPS in the embedded system (Raspberry Pi 4), it
achieves a higher recall and precision. Even at a slightly lower FPS, the proposed method
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outperforms the existing algorithm in terms of the recall, precision, and F-core. The dense
method exhibits a low FPS but recall, precision, and F-score are similar to the proposed
method, which performs extensive calculations for the optical flow vector and magnitude
of all pixels. This finding indicates that the proposed method can optimize the costs of
the applied functions (moving window detector and memorized estimator) and achieve
a higher performance than the existing moving object detection algorithms based on the
optical flow. In experiments on video 4S, a lower FPS than other videos is achieved, and
there are more moving objects in terms of the TP. The results for video 4 corresponds
to a slightly increased recall but comparable precision. As mentioned, videos 1–3 have
slow walking people, whereas video 4 has many people who walk rapidly. The proposed
method exhibits a reasonable prediction performance in the presence of vibration noise. In
the case of videos 1–3, the proposed method can effectively distinguish the slowly moving
target and vibration noises. In contrast, the LK method evaluates slowly moving targets
as vibration noises and thus cannot detect moving targets. In video 4, many pedestrians
move rapidly, and thus, the LK method can effectively detect targets. In other words, the
proposed method can robustly distinguish vibration noises and moving targets.

Table 1. Comparison results of the proposed method with object detection methods using optical
flow; video 4S indicates a small scale of images from video 4.

Methods Input TP FP FN Precision Recall F-score FPS

Proposed
Method

video 1 653 123 277 0.84 0.70 0.77 48.02 (±0.70)
video 2 1038 207 303 0.83 0.77 0.80 45.31 (±0.50)
video 3 595 156 258 0.79 0.70 0.74 46.36 (±0.93)
video 4S 4028 609 622 0.88 0.86 0.87 30.96 (±1.71)

Lucas–Kanade
Method [31]

video 1 185 20 745 0.90 0.20 0.33 51.70 (±1.56)
video 2 583 24 758 0.96 0.43 0.60 50.75 (±1.28)
video 3 249 29 604 0.90 0.29 0.44 50.51 (±1.13)
video 4S 3736 476 914 0.89 0.80 0.84 36.62 (±1.49)

Farneback
Method [30]

video 1 654 159 276 0.80 0.70 0.75 4.27 (±0.06)
video 2 1041 264 300 0.80 0.78 0.79 4.29 (±0.05)
video 3 563 112 290 0.83 0.66 0.74 4.23 (±0.05)
video 4S 3442 417 1208 0.89 0.74 0.81 4.23 (±0.06)

Table 2 indicates that the recall, precision, and FPS for the proposed algorithm are
higher than the typical pedestrian classifiers, Hog and Haar-like methods. The Hog and
Haar-like detection algorithms incur high calculation costs because they calculate the masks
of the pixels and classify whether the pixels are objects from prebuilt learning weights.
Notably, machine learning models cannot effectively detect objects that are distorted or
rotated from those in the learning model. In the case of videos 1–3L, the proposed method
detects many moving objects, but the Hog and Haar-like methods miss the objects owing
to distortion. In video 4, which is typically used for machine learning detection algorithm,
the proposed method exhibits a comparable precision and higher recall than the compared
algorithms. The findings indicate that different sizes and distortions of pedestrian objects
affects the detection accuracy of Hog and Haar-like methods. In other words, the proposed
method can outperform the machine learning algorithms in moving object detection.

Table 3 summarizes results for noisy video frames (blurred, poisson, gaussian, and
salt-pepper noise in four videos), obtained using the proposed method and other methods.
The considered noises are representative types of image noise. In the case of blurred noise,
pixels in the blurred frame are filtered and averaged with five neighbouring pixels. Poisson
noise is a type of electronic noise generated with the averaged distribution of extended
scaling to the input pixel values. Gaussian noise is generated with gaussian distribution of
zero mean and 0.01 variance. Salt-pepper noise is generated with a noise density of 0.05,
which affects 5% of the pixels. Blurred and poisson datasets correspond to weak noise,
and gaussian and salt-pepper datasets correspond to strong noise. Table 3 is presented
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in two parts: The upper table corresponds to weak noise, and bottom table corresponds
to strong noise. The datasets include original noises from camera vibrations and image
quality, and we add more intense noises to the datasets to verify the robustness of the
methods against noise.

Table 2. Comparison results of the proposed method with other pedestrian detection methods (Hog
and Haar-like); video 1L, 2L, 3L indicate a large scale of images from videos 1, 2, 3.

Methods Input TP FP FN Precision Recall F-score FPS

Proposed
Method

video 1L 708 118 222 0.86 0.76 0.81 16.58 (±0.40)
video 2L 1076 208 265 0.84 0.80 0.82 16.43 (±0.28)
video 3L 645 119 208 0.84 0.76 0.80 16.61 (±0.29)
video 4 4117 440 533 0.90 0.89 0.89 12.20 (±0.09)

Pedestrian
Detector (HOG) [33]

video 1L 5 2 925 0.71 0.01 0.01 1.29 (±0.01)
video 2L 40 37 1301 0.52 0.03 0.06 1.29 (±0.01)
video 3L 2 2 851 0.50 0.001 0.001 1.28 (±0.02)
video 4 2886 63 1764 0.98 0.62 0.76 1.29 (±0.01)

Pedestrian
Detector (Haar-like) [34]

video 1L 6 1 924 0.86 0.01 0.01 2.04 (±0.02)
video 2L 22 0 1319 1.00 0.02 0.03 2.00 (±0.02)
video 3L 1 10 852 0.09 0.001 0.001 1.96 (±0.03)
video 4 2912 341 1738 0.90 0.63 0.74 1.83 (±0.02)

Table 3. Test results with blurred, poisson, gaussian and salt-pepper noises.

Methods Input
Blurred Poisson

Precision Recall F-score FPS Precision Recall F-score FPS

Proposed
Method

video 1 0.68 0.65 0.67 48.54 0.80 0.59 0.68 47.81
video 2 0.83 0.75 0.79 45.34 0.80 0.72 0.76 45.37
video 3 0.78 0.57 0.66 45.76 0.72 0.64 0.68 45.10
video 4S 0.86 0.88 0.87 31.43 0.89 0.85 0.87 31.27

Lucas–Kanade
Method [31]

video 1 0.55 0.14 0.23 51.12 0.74 0.17 0.27 51.09
video 2 0.82 0.33 0.47 51.34 0.75 0.36 0.49 50.51
video 3 0.64 0.26 0.37 50.87 0.59 0.28 0.38 49.96
video 4S 0.92 0.58 0.71 36.49 0.90 0.52 0.66 35.88

Farneback
Method [30]

video 1 0.86 0.65 0.74 4.27 0.63 0.64 0.64 4.26
video 2 0.86 0.73 0.79 4.30 0.86 0.70 0.77 4.29
video 3 0.96 0.58 0.73 4.22 0.89 0.52 0.65 4.21
video 4S 0.90 0.74 0.81 4.21 0.86 0.70 0.77 4.21

Methods Input
Gaussian Salt & Pepper

Precision Recall F-score FPS Precision Recall F-score FPS

Proposed
Method

video 1 0.59 0.52 0.55 47.29 0.63 0.43 0.51 46.18
video 2 0.68 0.69 0.68 44.65 0.64 0.54 0.58 43.46
video 3 0.65 0.54 0.59 44.76 0.52 0.53 0.52 44.20
video 4S 0.88 0.77 0.82 30.21 0.86 0.69 0.77 29.43

Lucas–Kanade
Method [31]

video 1 0.40 0.13 0.20 50.13 0.29 0.07 0.11 48.56
video 2 0.72 0.25 0.37 49.87 0.33 0.14 0.20 46.93
video 3 0.57 0.22 0.32 49.01 0.30 0.12 0.17 47.04
video 4S 0.91 0.47 0.62 35.19 0.80 0.37 0.50 33.85

Farneback
Method [30]

video 1 0.70 0.32 0.44 4.18 0.51 0.31 0.38 3.63
video 2 0.88 0.49 0.63 4.19 0.78 0.48 0.60 3.74
video 3 0.83 0.35 0.49 4.17 0.56 0.35 0.43 3.60
video 4S 0.76 0.63 0.69 4.04 0.73 0.63 0.68 3.37

The Hog and Haar-like methods exhibit inferior detection performance and low
robustness in various environments because of the fixed pretrained filter weight, distortions,
and various sizes of the moving targets in the frame. We compare the LK and Farneback
methods (as sparse and dense optical flow methods, respectively). The parameters of the
compared methods is optimized to ensure a fair comparison. For the LK method, the
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corner quality parameter ranges from 0.01 to 0.1 to avoid a large number of corners being
generated on the noise. For the Farneback method, we set the mean N parameter from
3 to 30 to normalize the baseline of decisions between noises and moving targets, which
smoothens the generated optical flows. The precision, recall, F-score, and FPS results are
compared.

The results presented in Table 3 are considered to evaluate the robustness of the
proposed method. The precision, recall and F-score of the proposed method for videos
1, 2, 3, and 4S is slightly deteriorated. The performance of the LK method is significantly
deteriorated on the noisy datasets, especially in the case of salt-pepper noise. The LK
method cannot effectively decide whether the feature points are noise or moving target
owing to a large number of features generated on the noise. For the Farneback method,
the recall is significantly decreased in the case of gaussian and salt-pepper noise videos.
Because the Farneback optical flow is calculated on all pixels including noises, it can
eliminate the noise effects, but loses the sensitivity of moving target detection. in the case
of blurred noise, the Farneback method calculates the optical flow that is lower than that
for normal datasets, resulting in slightly lower recall and higher precision. In contrast, the
proposed and LK methods lose precision owing to the ambiguous generated corners on the
blurred spot. The result of video 4S are similar for all methods in Table 1; however, in the
cases shown in Table 3, the performance of the LK and Farneback methods are considerably
different. This video has fast moving and many pedestrians without noises. However, the
addition of blurred, gaussian, and salt-pepper noise renders video 4S challenging, more
moving objects are detected as noise and vice versa.

The proposed method memorizes the location history of each feature point in the
moving window and tracks the target in the window. The proposed method can effectively
distinguish the additional noise and moving targets because each feature point has its own
window memory. The proposed method outperforms the LK method and achieves a higher
FPS than the Farneback method. Therefore, Table 3 demonstrates the robustness of the
proposed method in noisy environments.

5. Conclusions

In this paper, a new approach to moving object detection and tracking is proposed. One
of the major attributes is to improve the accuracy performance and reduce the computation
time of responding to moving objects or moving pedestrians. The proposed method is
based on the sparse optical flow approach, that is, a coarse-grained optical flow, but it
includes the corner feature reset with a moving window. A sequence of images effectively
finds the flow of moving objects and thus the moving window of image frames easily
captures moving targets without wasting much time.

The moving window detector improves the noise filtering and the detection rate,
by looking at a history of optical flows. In a hazardous environment, such as the construc-
tion sector, there may be the risk of meeting many obstacles including walls and trees,
and various optical flow patterns are often observed, when pedestrians should be detected.
The memory-based target estimator plays the role of monitoring the targets or pedestrians
without missing when the targets move around or stagger at some positions. Even if a
moving target is initially recognized, the target may move continuously with occasional
pause. With this estimator, the last position of a moving targets is estimated and this
improves the performance of detecting moving objects in a row.

We adapt this detection algorithm in the embedded board system, Raspberry Pi4,
for real application. The experimental results demonstrate that the suggested approach
is effective for preserving the detection performance even with a low computing power
of the embedded device. According to the experimental results, our proposed method
shows similar or higher accuracy performance, compared to the conventional algorithms
for moving object detection using optical flows or vision processing algorithms: Lukas–
Kanade’s method and Farneback’s method in addition to Hog and Haar-like methods.
It also provides a more efficient computing time than dense optical flows and vision
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processing algorithms. The approach works well even for distorted views from a top-
viewed camera and also for blurred images or noisy image frames, and thus it can be
robustly applied to various environments. For future work, we consider the optical flow
approach with the identification of targets. Deep learning approaches have been popular
for identifying pedestrians or objects, but they need much computing time. The suggested
approach helps to detect moving objects easily and then the objects could be identified with
a small size of neural network to reduce the computing time.
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