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Abstract: Even though practicing sports has great health benefits, it also entails a risk of developing
overuse injuries, which can elicit a negative impact on physical, mental, and financial health. Being
able to predict the risk of an overuse injury arising is of widespread interest because this may play a
vital role in preventing its occurrence. In this paper, we present a machine learning model trained to
predict the occurrence of a lower-limb overuse injury (LLOI). This model was trained and evaluated
using data from a three-dimensional accelerometer on the lower back, collected during a Cooper
test performed by 161 first-year undergraduate students of a movement science program. In this
study, gender-specific models performed better than mixed-gender models. The estimated area
under the receiving operating characteristic curve of the best-performing male- and female-specific
models, trained according to the presented approach, was, respectively, 0.615 and 0.645. In addition,
the best-performing models were achieved by combining statistical and sports-specific features.
Overall, the results demonstrated that a machine learning injury prediction model is a promising, yet
challenging approach.

Keywords: running; machine learning; lower-limb overuse injury; accelerometery

1. Introduction

Physical activity is beneficial for both physical and mental health [1–3]. However,
it also carries the risk of becoming injured, which entails associated costs and negative
consequences [4]. The negative physical, psychological, and economic impact that injuries
can provoke highlights the importance of injury prevention [5–7]. Overuse injuries account
for the majority of injuries sustained during physical activities. For example, approximately
80% of running-related injuries are overuse injuries [8].

Overuse musculoskeletal injuries can result from a combination of intrinsic and extrin-
sic risk factors. Intrinsic factors are person-specific factors that influence the susceptibility
of an individual to an injury. Instances of intrinsic factors include age, gender, body compo-
sition (e.g., weight, fat mass, and BMI), injury history, and fitness level [9–12]. Extrinsic
factors are all factors externally acting on an individual that could be a contributing cause
of an injury, such as training errors, excessive load, running biomechanics, fatigue, and
inappropriate equipment [9,12,13]. It is the combined effect of intrinsic and extrinsic risk
factors and their complex interactions that renders individuals susceptible to an injury.
Some of these risk factors, such as training and running biomechanics, are modifiable and
therefore have large potential for injury prevention and injury prediction [9,14]. Predicting
a future overuse injury enables the performance of an intervention on modifiable factors in
a timely manner to help avoid the actual development of an overuse injury. Hence, overuse
injury prediction has attracted widespread interest because of its potential to help prevent
an injury from occurring [15].
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The nature of overuse injuries is multifactorial and the interactions between risk factors
play a more important role compared to acute injuries [13]. Previous studies investigating
injury risk factors disregarded the interactions between the injury risk factors or considered
only a small subset of possible predefined risk factors [16–19], which could be one of
the reasons for the limited success or consistency between these studies [20]. Overall,
the predictive power of these current studies is limited, as they usually consider only a
limited number of potential injury risk factors and focus on a linear association between a
potential risk factor and an injury [21]. In general, machine learning models have higher
predictive power compared to an explanatory analysis. As a result, machine learning
models have attracted attention for injury prediction tasks. An injury prediction machine
learning approach tries to learn automatically a model that predicts the future occurrence
of an injury from a set of input features describing the data. Therefore, it is crucial for a
machine learning model’s performance to have a set of features that describe informative
and relevant characteristics of the data concerning injuries.

The complexity of the risk factors for overuse injuries implies the need for a complex
feature representation. Crafting such a set by hand is a time-consuming and challenging
task for humans relying on domain knowledge [22]. Automatic feature construction
methods allow the extraction of information from acceleration time series automatically.
The main disadvantage of this approach is the limited interpretability of the extracted
features for the practitioner, as their construction is not driven by domain knowledge.
The informativeness of automatic acceleration-derived features, also denoted as statistical
features, was demonstrated by Op De Beéck et al. [23]. The automatically constructed
statistical features were helpful towards the prediction of fatigue with a machine learning
model. In contrast, the inclusion of sports-specific features did not improve the performance
of predicting the rating of perceived exertion compared to a model using only the statistical
features (i.e., ones not based on domain knowledge). However, no studies have investigated
if including statistical features of the raw acceleration signal could lead to better prediction
of overuse injuries. An automatic feature construction method generates a large quantity
of features with potential information regarding the prediction of overuse injuries. A
machine learning approach is therefore needed to identify in an automatic way which
combinations of factors are important out of a large set of potential injury risk factors and
surrogate indicators.

In recent years, multiple machine-learning-based injury prediction models have been
proposed to tackle the challenging injury prediction task [5,15,21,24–31]. In most machine-
learning-based injury prediction studies, the input data are collected by measuring a set
of tests performed by the participants or monitoring the participants on regular moments.
Furthermore, the current literature on machine-learning injury prediction models largely
focuses on elite athletes that excel in one particular sport, e.g., running [24], soccer [15,31],
or football [25–27]. As a result, the machine learning models and findings from these
studies might not be transferable to athletes practising different sports. Moreover, Winter
et al. [32] found preliminary evidence that injury-related factors of runners depend on
their skill levels of a long-distance overground run, suggesting that the results of the
elite-level injury prediction models might not be generalizable to athletes performing the
sport on a different level. In addition, several studies focus on injuries of male athletes
only [15,26,27,33]. As females and males demonstrate differences in kinematics during
physical activity such as running, and previous research indicated gender specificity in
factors related to an injury [19], it is important to explore if a model trained on exclusively
male data is applicable to female data.

The general aim of this study is to investigate the ability of a machine learning model to
predict the occurrence of an LLOI based on data collection using 3D accelerometers during
a 12 min sports event in a general active population. The second objective of this study is
to acquire insight into the meaningfulness of features for injury prediction. The role of the
directionality and the type of features (statistical or sports-specific) in the injury-predictive
capability of a machine learning model will be examined. We hypothesize that models
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using statistical features have higher performance than models using statistical features
based on the study of Op De Beéck et al. [23]. The third objective concerns the impact
of gender on injury prediction. We hypothesize that gender-specific models outperform
models suitable for both genders.

2. Materials and Methods
2.1. Participants

In total, 204 first-year undergraduate students (141 males, 63 females) from the move-
ment science program at KU Leuven in Belgium participated in the study. Data from
students in first-year cohorts in two academic years, 2019–2020 and 2020–2021, were col-
lected. Each participant engaged in this study on a fully voluntary basis. There were no
positive or negative consequences for the students of the academic program associated with
the willingness or refusal to participate. Because some students (partly) retake their first
year, it was ensured that no participants were recruited twice. Before the measurements, all
participants underwent medical screening and gave written consent in accordance with
the Declaration of Helsinki. In addition, the ethics committee of Gasthuisberg, University
Hospital Leuven, approved the study.

The academic program of the participants included 10 h a week of physical exercise
for 26 weeks per academic year. The sports practised during these physical exercise classes
were dance, track and field, gymnastics, swimming, basketball, handball, soccer, and
volleyball. In addition, most participants participated in sports outside the program.

As a requirement of the academic program, all participants had to consult a sports
physician at the Sports Medical Advice Center (SMAC) of University Hospital Leuven in
the event of a (suspected) injury. After six months, the physicians communicated whether
an injury diagnosis was established for each participant, and if so, what the diagnosis
was. The physicians established an injury diagnosis when (1) a reduction in the amount of
physical activity was recommended, and (2) medical advice or treatment was needed [18].
Subsequently, the established injuries were classified as an LLOI or a non-LLOI injury. An
LLOI is defined as an injury on the lower limbs that is the consequence of a musculoskeletal
load exceeding the musculoskeletal capacity. The onset is gradual and the symptoms of the
injury are progressive [34]. When an injury diagnosis was established, but not consistent
with the above definition of LLOI (e.g., due to an onset matched to a single traumatic event,
or an injury to an upper limb and trunk), the injury was classified as a non-LLOI injury.

Participants satisfying at least one of the following exclusion criteria were eliminated
from the study. (1) The first exclusion criterion was the diagnosis of a non-LLOI injury. It
was assumed that a non-LLOI injury influenced the probability of developing an LLOI as a
non-LLOI injury might hinder the performance of physical activity. (2) Participants with
an unknown injury status were excluded. These participants probably dropped out of the
program. However, due to privacy rules, this could not be verified. (3) Participants with
missing values for one of the features were excluded from this study. Missing values were
the consequence of an incomplete questionnaire. (4) A fourth exclusion criterion was the
requirement of at least 10 min of running out of the 12 min. If there occurred more than
two minutes of non-running stages during the test, either there were problems with the
IMU or the subject rested too much during the test, leading to a different level of fatigue
compared to the other participants.

2.2. Data Collection

At the start of the academic year, all participants performed a Cooper test, which
entails running at a steady pace for as far as possible within 12 min. The test took place,
after a warm-up session, on an outdoor synthetic 400 m track. After the test, the total
distance covered during 12 min was recorded.

For each cohort, the measurement took place on two separate days, with four to six
different sessions on each day. At the start of each session, an inertial measurement unit
(IMU) in a custom-designed silicone pocket was positioned and tightly secured with a belt
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on the lower back, over the L3 to L5 spinal segments. The position of this sensor was based
on the results from a study by Schütte et al. [35]. The IMU (Byteflies, Antwerp, Belgium)
was used to measure tri-axial acceleration with a sampling range of 1000 Hz, a 16-bit
resolution, and a measuring range from −16 to +16 times the gravitational acceleration.

In addition to the running test, each participant filled in a questionnaire including
questions regarding their weight, height, gender, previous injuries, and whether they
wore insoles.

2.3. Data Preprocessing

The data preprocessing started by selecting the part of the acceleration signal that
corresponded to the Cooper test. The period of standing still after the warm-up and
before the Cooper test began enabled us to easily identify the appropriate part of the data.
Figure 1 provides a schematic overview of how the raw acceleration data of the Cooper test
were preprocessed prior to computing features. To account for the tilt of the runner and
ensure that the analysis focused on the dynamic component of the acceleration arising from
the runner, a tilt correction procedure proposed by Moe-Nilssen [36] was implemented.
This procedure was applied to the entire time series as the first step of the preprocessing
procedure. The tilt correction procedure assumes a constant tilt. Although this assumption
was anticipated to be violated over the entire trial, it was expected that the results would
be accurate enough to localize the running stages, which were defined as the portions of
the test where the participant was running (i.e., not walking). Non-running stages could
occur due to walking or a disturbance in the acceleration measurement. Since there was a
clear difference between running and walking in the acceleration signal, running stages
were detected by analysis of the peaks of the vertical acceleration of the tilt-corrected signal.
This localization information (red dashed line in Figure 1) was used to extract running
stages from the non-tilt-corrected data. Subsequently, the first minute and last ten seconds
of every running stage were removed to ensure that the signals corresponded to steady-
state running. The subjects performed the tests in groups of approximately 25, where all
subjects started the test simultaneously. Therefore, it took each subject a small amount of
time at the start to find their own place and pace. The last ten seconds were removed as
some participants either accelerated to improve the covered distance or decelerated as they
approached the end of the Cooper test or ended a running stage. The resulting cropped
time series were corrected for tilt and static gravity in non-overlapping windows of two
minutes. The smaller window size compared to step one minimized the violation of the
constant tilt assumption of the tilt correction procedure. The obtained acceleration signals
were suitable for feature extraction.

Figure 1. Diagram of the preprocessing procedure of the data. A blue arrow indicates the flow of
data. The red dashed arrow denotes the flow of information about the location of the running stages
within the entire time series.
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2.4. Feature Construction

From the preprocessed time series, two sets of features were calculated: statistical
features and sports-specific features. The statistical features were extracted automatically
from the time series and were selected irrespective of the context. The sports-specific
features were all features that were suggested and selected by domain experts for this
specific injury prediction setting.

The set of statistical features was calculated using the publicly available Python
package TSFuse, an automated feature construction system [22,37]. The setting fast was
used, and more details of the constructed features can be found in the article by De
Brabandere et al. [22]. The sports-specific features referred to surrogate measures for
dynamic stability, dynamic loading, and spatio-temporal measures. Computing some
sports-specific features first required the performance of step detection, which was done
using the automated step detection procedure proposed by Benson et al. [38]. For this
study, the set of sports-specific features included the root-mean-square ratio, step regularity,
stride regularity, sample entropy, impact, standard deviation of sample entropy, standard
deviation of impact, angle in medial–lateral direction during the first two minutes and the
last two minutes, angle in anterior–posterior direction during the first two minutes and
the last two minutes, and step time. This set of features was calculated for the resultant
signal and the signals in the medial–lateral, vertical, and anterior–posterior directions. The
selection of these features was motivated by a study that established a link between a part
of these features on the one hand, and fatigue and LLOI on the other hand [18].

Once all the features were calculated, a subject-based min-max normalization was
performed. The minimum and maximum values required for this normalization procedure
were calculated from the first six ten-second windows per subject and per feature [23]. The
medial–lateral and anterior–posterior angles were excluded from the min-max normaliza-
tion and only a centering was performed. The angle value of the first two-minute window
was subtracted from the angle value during the last two-minute window.

The time-series-calculated features were supplemented with the distance covered
during the Cooper test and features obtained from the questionnaire, which included
gender, weight, height, previous injuries, and whether the participant wore insoles. Any
feature that had the same value for all subjects was removed because such features have
no discriminative value. In total, 75 statistical features were removed. Table 1 gives the
number of remaining features per category.

Table 1. Number of features per category.

Feature Category Number of Features

All 312
Sports-specific 24
Statistical 281
Questionnaire 7

In this table, the categories of sports-specific and statistical features do not include the features extracted from
the questionnaire. When discussing the performance of the models using sports-specific features or statistical
features, the questionnaire features are included.

2.5. Model Construction

The machine learning approach of LLOI prediction adopted in this study consisted of
several steps, executed within nested cross-validation (CV). A nested CV approach was
adopted as, in general, it allows the estimation of the method’s performance with a lower
bias compared to a k-fold CV [39–41]. As Figure 2 visualizes, an internal three-fold CV
procedure was run on the training data to select an appropriate set of hyperparameters.
Subsequently, the best configuration was evaluated on the held-aside test set of the fold.
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Figure 2. Visualization of a part of the model construction approach.

In each fold of the internal CV, four steps were performed on the training data to
train the method. The first step was one-hot encoding of the categorical features and
standardization of the numerical features. The standardization took place per feature over
all subjects. This is in contrast to the earlier performed min-max normalization, which was
subject-based and hence was performed per subject and per feature. In the second step,
a principal component analysis (PCA) reduced the dimensionality of the feature space.
Subsequently, an ANOVA F-value feature selection approach (the scikit-learn function
SelectKBest [42]) selected a subset of the obtained principal components. The last step
was the training of a machine learning model that aimed to predict the occurrence of an
LLOI based on the selected principal components. Three machine learning algorithms
were considered, specifically L1-regularized logistic regression (LR), random forest trees
(RFT), and support vector machines (SVM). These algorithms are commonly employed
for injury prediction modeling [15,21,25,27,30,43,44]. For these models, Figure 3 shows
a simplified diagram of the classification process of new or test instances. A grid search
was employed that repeated all four steps for each combination of hyperparameter values.
The best-performing hyperparameter setting, according to the internal CV, was selected.
The full training set was used to learn a model for this setting, which was then applied
to the test set to estimate the generalization ability. By repeating this entire procedure of
Figure 2 for each fold, the generalization performance of the method with a grid search
hyperparameter tuning could be estimated.

The following hyperparameters were tuned: the number of PCA components, the
number of selected PCA features, and the hyperparameters of the model. For all models,
the possible options for the number of PCA components were 10, 15, 20, 25, and 30 while
the number of selected PCA features ranged from two to six. For L1-regularized logistic
regression, the options for the solver were liblinear and saga. The range for the inverse
of regularization strength was case-dependent, as different datasets were used. Likewise,
the range of the inverse regularization strength for support vector machines was case-
dependent. All support vector machines did share the options of kernel (polynomial, radial
basis function, or sigmoid) and the possible range of degree (1, 2, or 3). For random forest
trees, 100 estimators were used; the maximum depth of each tree was 3 or 4, the minimum
number of samples required to split an internal node was 3 or 4, the split criterion was
gini or entropy, and the minimum impurity decrease was case-specific as different datasets
were used.

This study used the area under the receiver operating characteristic curve (AUC) for
hyperparameter tuning and model evaluation. In addition, the Brier score is reported. Platt
scaling was used to derive probabilities for the support vector machine [45].

To deal with the imbalance in the classes LLOI versus non-LLOI, weights were given to
the classes [46]. The assigned weight of a class is inversely proportional to the frequency of
the class. Models were trained on the entire dataset or a gender-specific subset of the data.
Because of the smaller amount of female data, compared to male-specific or mixed-gender
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data, a six-fold CV (with a 3-fold internal CV) was implemented and the option of 30 PCA
components was omitted for the female-specific models. Furthermore, models trained on
different subsets of the features (sports-specific set, statistical set, or their combination) will
be considered. The features derived from the questionnaire are included in both sets.

(a)
(b)

(c)
Figure 3. Simplified diagrams showing how the three used models classify instances. (a) In a
logistic regression model, a weighted sum of the feature values is mapped with a sigmoid function
onto the probability of a future occurrence of a lower-limb overuse injury (LLOI) (b) A support
vector machine learns a maximum margin hyperplane that separates LLOI from non LLOI. New
instances are classified by determining on what side of the learned hyperplane they lie. (c) A
random forest consists of multiple trees. For a new instance, a path from the root to a terminal node
(orange path) is determined according to the instance’s feature values. Each terminal node contains a
probability distribution over the classes, and the final prediction is determined by averaging these
probability distributions.

2.6. Importance Values of Features

Since a logistic regression model is interpretable, the importance value of different
features can be calculated and compared. The importance value of a feature indicates how
the natural logarithm of the logit transform

(
logit(p) = ln

[
p

1−p

])
of the probability of an

LLOI occurrence p changes in response to a change in the feature. The importance value
importance f of a feature f was calculated as follows:

importance f = abs

(
k

∑
i

wiPCi f

)

where PCi =
m

∑
j

PCij f j.
(1)

with k being the number of predictors of the logistic model, wi the coefficient of the logistic
model for predictor i, PCi a principal component that is the i-th predictor of the logistic
regression model, PCi f the coefficient of associated with feature f in the decomposition
of PCi, and m the number of features. In Equation (1), the absolute value of the sum is
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taken since the size of the influence is of interest and not the sign. Therefore, there is no
distinction made between overall positive and negative influences on logit(p).

Because of the large number of features, the importance values were analyzed per cate-
gory. There were three analyses performed, each time considering a different categorization
criterion to subdivide the entire set of features. The first category division criterion is the
directionality of the features. Features have been derived from the acceleration signal in the
medial–lateral, anterior–posterior, vertical, and resultant directions. The non-directional
category comprises all features that do not describe characteristics of the acceleration signal
in a specific direction. The non-directional features include the questionnaire-derived
features and step time (a sports-specific feature). The second division criterion was based
on the type of feature, i.e., sports-specific, statistical, or questionnaire-based. For the third
division criterion, the features are subdivided on both the directionality and type of the
features—for instance, all sport-specific features derived from the acceleration signal in the
vertical form for one category.

The importance values of all features belonging to the same category are combined
by taking an average. This operation accounts for the imbalance in the number of features
in each category. In addition, the importance values of the categories are expressed as a
proportion. Hence, the relative average importance of category c is calculated as

importancecategory
c =

∑kc
i importancei

kc

∑n
j

(
∑

kj
i importancei

kj

) (2)

with kc being the number of features belonging to category c, n the number of categories
considered in the analysis, and importancei the importance value of features i as defined in
Equation (1).

The described data preprocessing, feature construction, pipeline procedure, and im-
portance calculation were performed in Python 3.9.7.

3. Results

Of the 204 subjects, 100 subjects participated in September 2019 and 104 participated
in 2020. There were five subjects with a total running time of fewer than 10 min. In total,
27 participents experienced a non-LLOI injury. Twenty-five of the non-LLOI injuries were a
consequence of a traumatic event: 17 ankle distortion or inversion injuries, three injuries
on the upper limbs, two fibula fractures, two foot injuries (traumatic injury at calcaneus
or peroneus), and one knee injury. In addition, two overuse injuries at the upper limbs or
lower back were observed. In addition, the injury status of six participants was unknown
and five participants had a missing value for at least one of the features. Hence, these
43 participants were excluded from the analysis. There were 161 subjects left for model
training and evaluation (109 males and 52 females), of which 41 subjects had an LLOI.
Table 2 shows the types and the incidence of LLOI among the participants during the
six-month follow-up period. Table 3 summarizes the descriptive characteristics of the
participants included in the analysis. The male participants had a mean body mass of
71.38 (±7.56) kilogram and a mean height of 179.86 (±6.33) centimeters. For the female
participants, a mean mass of 62.51 (±6.63) kilogram and a mean height of 167.19 (±5.99)
centimeters was observed.
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Table 2. Type and incidence of lower-limb overuse injuries diagnosed during the six-month follow-
up period.

Type of Injury Number of Participants

Medial Tibial Stress Syndrome 26
Muscle overuse injury 5
Knee or hip overuse injury 4
Patellofemoral pain 3
Iliotibial band syndrome 2
Bone overuse 1

Table 3. Descriptive characteristics of all participants included in the analysis. Values of continuous
variables are expressed as mean ± standard deviation. Discrete variables are expressed as the number
of participants with the characteristic.

Male Female
Characteristics All LLOI No Injury LLOI No Injury

Number 161 26 81 13 39
Mass (kg) 68.52 ± 8.37 70.85 ± 6.35 71.57 ± 7.93 62.86 ± 7.65 62.40 ± 6.25
Height (cm) 175.8 ± 8.6 180.4 ± 5.5 179.7 ± 6.6 166.6 ± 6.8 167.3 ± 5.7
Distance test (m) 2746 ± 431 2916 ± 485 2948 ± 315 2254 ± 195 2373 ± 233
Previously injured 61 14 25 7 15
Insoles 22 6 11 2 3

3.1. Model Performance

Table 4 summarizes the mean test scores for the all-data models, which are applicable
to both considered genders. These results estimate the generalization performance of the
algorithm with grid-search-CV hyperparameter tuning. To indicate the uncertainty in this
performance estimate, the standard deviation of the AUC values is provided. The highest
mean AUC score (0.557 ± 0.091) was obtained with a support vector machine (SVM) that
used the entire set of features. The average Brier score of this model was 0.193± 0.022. Since
the AUC is only slightly greater than 0.5, the classification performance is only slightly
better than random guessing.

Table 4. Results for the models trained using only the entire dataset for different sets of features and
algorithms. Either all features (All), only the sports-specific features (Sport), or only the statistical
features (Stat) are used. The reported values are a mean across the scores obtained for each of the five
CV folds.

Mean CV Results
Features Model AUC (±Std) Brier Score

1 All LR 0.526 (±0.144) 0.249 (±0.010)
2 All RFT 0.512 (±0.036) 0.248 (±0.002)
3 All SVM 0.557 (±0.091) 0.193 (±0.022)
4 Sport LR 0.475 (±0.109) 0.254 (±0.003)
5 Sport RFT 0.483 (±0.033) 0.248 (±0.001)
6 Sport SVM 0.492 (±0.092) 0.196 (±0.005)
7 Stat LR 0.453 (±0.067) 0.257 (±0.007)
8 Stat RFT 0.518 (±0.036) 0.246 (±0.003)
9 Stat SVM 0.512 (±0.096) 0.191 (±0.008)

LR: logistic regression; RFT: random forest tree; SVM: support vector machine; std: standard deviation. The model
with the highest AUC score across all models is printed in bold.

Gender-specific models have been trained and evaluated on a gender-specific subset
of the data. Table 5 reports the performance estimates for models trained only on data from
female subjects. The best-performing model in terms of AUC score is a logistic regression
(LR) model using the entire set of features. This model achieves a mean AUC score of
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0.645 ± 0.056 and a mean Brier score of 0.190 ± 0.021. The second place is for the models
using solely the statistical features. The lowest-performing models in terms of AUC are the
models that only use sports-specific features.

Table 5. Results for the models trained using only the data from females for different sets of features
and algorithms. Either all features (All), only the sports-specific features (Sport), or only the statistical
features (Stat) are used. The reported values are a mean across the scores obtained for each of the six
CV folds.

Mean CV Results
Features Model AUC (±Std) Brier Score

1 All LR 0.645 (±0.056) 0.190 (±0.028)
2 All RFT 0.520 (±0.134) 0.244 (±0.004)
3 All SVM 0.560 (±0.105) 0.185 (±0.028)
4 Sport LR 0.464 (±0.097) 0.256 (±0.010)
5 Sport RFT 0.502 (±0.100) 0.246 (±0.006)
6 Sport SVM 0.415 (±0.158) 0.220 (±0.062)
7 Stat LR 0.645 (±0.110) 0.229 (±0.066)
8 Stat RFT 0.518 (±0.040) 0.246 (±0.002)
9 Stat SVM 0.603 (±0.057) 0.190 (±0.021)

LR: logistic regression; RFT: random forest tree; SVM: support vector machine; std: standard deviation. The model
with the highest AUC score across all models is printed in bold.

Table 6 reports the performance of the models trained only on data from male subjects.
In this setting, a logistic regression model outperformed all other models in terms of AUC.
This model obtained a mean AUC of 0.615 ± 0.063.

Table 6. Results for the models trained using only the data from males for different sets of features
and algorithms. Either all features (All), only the sports-specific features (Sport), or only the statistical
features (Stat) are used. The reported values are a mean across the scores obtained for each of the five
CV folds.

Mean CV Results
Features Model AUC (±Std) Brier Score

1 All LR 0.615 (±0.063) 0.245 (±0.005)
2 All RFT 0.533 (±0.067) 0.247 (±0.001)
3 All SVM 0.531 (±0.047) 0.197 (±0.027)
4 Sport LR 0.495 (±0.064) 0.253 (±0.003)
5 Sport RFT 0.475 (±0.050) 0.247 (±0.001)
6 Sport SVM 0.451 (±0.031) 0.190 (±0.009)
7 Stat LR 0.576 (±0.061) 0.241 (±0.007)
8 Stat RFT 0.485 (±0.029) 0.248 (±0.002)
9 Stat SVM 0.509 (±0.076) 0.205 (±0.028)

LR: logistic regression; RFT: random forest tree; SVM: support vector machine; std: standard deviation. The model
with the highest AUC score across all models is printed in bold.

Comparing the mean Brier score obtained for the different ML algorithms reveals that
the support vector machine models attained the lowest and thus the best results. This holds
for the female-specific, male-specific, and all-data models, irrespective of the (sub)set of
features employed.

Figure 4 shows a pooled receiver operating characteristic (ROC) curve for the best-
performing models for the mixed-gender and gender-specific models, i.e., an all-feature
logistic regression model for the male- and female-specific models and an all-feature sup-
port vector machine model for the mixed-gender model. The ROC curves are constructed
based on the combined test-set predictions of the five or six models generated during the
cross-validation approach.
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Figure 4. Pooled ROC curve for the best-performing mixed-gender, male-specific, and female-
specific model.

3.2. Importance of Feature Categories

The best-performing gender-specific models are logistic regression models and there-
fore have an interpretable character. Relative average importance values have been calcu-
lated to provide insight on the importance of each category of feature on logit(p). Figure 5
shows these relative average importance values. One plot is shown for each division
criterion described in Section 2.6, i.e., the directionality of the feature, the type of feature,
and the combination of directionality and type of the features. Note that the range of the
vertical axes differs for the three plots.

Figure 5a compares the relative average importance of the features, subdivided ac-
cording to the direction of the acceleration signal used to derive the features. An extra
category (non-directional) is provided to cover the features that are not associated with a
specific direction. For the male model, changes in the features derived from the vertical
acceleration signal are, on average, most influential on logit(p). For the female model,
features derived from the medial–lateral direction are most influential. For both genders,
the anterior–posterior-directed features come in second place, and the non-directional
features are least influential on logit(p). Overall, Figure 5a shows that, except for the
female non-directional category, the differences between the relative importance of feature
categories of different directions are only limited.

Figure 5b shows the relative average importance for sports-specific, statistical, and
questionnaire features. For the male-specific case, the importance of the sports-specific and
statistical features is similar. In the female-specific model, the statistical features are, on
average, more important compared to the sports-specific features. For both genders, the
questionnaire-based features have the lowest average importance.

Figure 5c visualizes the relative average importance for categories based on both
directionality and the type of the feature. This shows that, irrespective of gender, the
sports-specific features derived from an acceleration signal in the horizontal plane are more
influential compared to the non-directional or vertical sports-specific features. Further-
more, the highest relative average importance for the male- and female-specific model is,
respectively, the statistical features in the vertical direction and the statistical features in the
medial–lateral direction.
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(a) (b)

(c)
Figure 5. Relative average importance of several feature categories for the male- and female-specific
logistic regression model. Two different criteria for subdividing the features into categories are
considered: (a) directionality of feature, i.e., medial–lateral (ML), anterior–posterior (AP), vertical
(VT), and resultant direction (Res), or non-directional (ND), (b) the type of feature, i.e., sports-specific
(Sport), statistical (Stat), or questionnaire-based (Quest), and (c) both the type of feature (before
underscore; Sports specific (Sp); Statistical (St); Questionnaire (Q)) and the directionality of the feature
(after underscore).

4. Discussion

Injury prediction remains a challenging task. In this study, we trained a model
with the purpose of predicting the occurrence of an LLOI up to six months after data
collection. The available information consisted of features extracted from time series of
tri-axial accelerations collected during a single Cooper test, supplemented with participants’
intrinsic characteristics from a questionnaire. The best-performing model with an AUC of
0.645 is gender-specific, including statistical as well as sports-specific features.

4.1. Role of Gender Subdivision on Model

Gender-specific models delivered the best results regarding our injury prediction
goal. The highest mean AUC scores observed for the female- and male-specific models
are, respectively, 0.645 ± 0.056 and 0.615 ± 0.063. These results are in line with previously
reported injury prediction models using machine learning techniques, where the AUC score
ranged between 0.52 and 0.87 [5]. However, compared to the study by López-Valenciano
et al. [33], our AUC results are considerably lower as they obtained an AUC of 0.747
for a machine learning model predicting lower-extremity muscle injuries in 132 male
professional soccer and handball players. This model takes as input a 120 min testing
session assessing the individual characteristics, physiological measures, and neurological
measures of the athlete. The testing in the current study is less elaborate and requires
only 10% of the testing duration of the study of López-Valenciano et al. [33]. Furthermore,
less homogeneity in skill level is expected for our participants compared to a group of
professionals. Moreover, the injury-related factors might be different for different skill
levels [32], which might explain the inferior results of our study. The results obtained in
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our study approach closely the AUC performance of the models presented in a paper by
Jauhiainen and coworkers [21]. They reported an AUC of 0.65 for predicting knee and
ankle injuries in 314 young basketball and football players based on data from a set of
physical tests in a laboratory setting.

The performance of the all-data models is inadequate regarding the injury prediction
objective of this study. The mean AUC score of the best-AUC-performing models is
0.542 ± 0.075. The all-data models perform only marginally better compared to a random
guesser. The superior estimated performance of gender-specific injury prediction models
is in accordance with previous research that demonstrated gender specificity in injury-
related factors [19,32]. Gender-specific models allow us to account for differences in
injury-related factors to a greater extent compared to the all-data models where the PCA
features incorporate gender.

4.2. Sports-Specific and Statistical Features

To analyze the injury-predictive informative capability and complementarity of sports-
specific features and statistical features, different models have been trained, each exploiting
a different set of features. Overall, the model utilizing all available features outperformed
the corresponding models using only a subset of the features. Only the all-data random
forest tree model is an exception to this. Furthermore, for the majority of the results, models
using the statistical features scored better compared to the corresponding models with the
sports-specific features. This indicates that, in terms of an LLOI prediction, the combination
of sports-specific and statistical features is more informative than either set of features
alone. Hence, the statistical features and sports-specific features are partly complementary.
Furthermore, the results denote that the statistical features are more informative than the
sports-specific features. Previous studies mainly utilized a combination of intrinsic and
sports-specific features to predict the injuries in machine learning. Although the features
are extracted from a different kind of data, as no other injury prediction study was found
that used a single Cooper test for input data, it is expected that the models presented in the
literature could benefit from the inclusion of statistical features.

The male-specific models based on sports-specific features achieve higher performance
for AUC compared to either the female-specific or the all-data models. There are two
possible explanations for this result. A first possible explanation is that the sports-specific
features are more explanatory regarding injury prediction for males compared to females.
Alternatively, the larger sample size of the male dataset compared to the female sample
set could also explain this observation. Despite the larger male dataset, the mean AUC
score for the models exploiting the combination of statistical features and sports-specific
features is consistently lower for male-specific models compared to female-specific models.
This observation could suggest that the statistical and sports-specific features are more
complementary for females compared to males.

Although the interpretability of the statistical features is limited, they do improve
the practicality of the models by improving the predictive performance. The prediction
model as a whole can be used as guidance for indicating subjects at risk for developing an
LLOI. This knowledge allows a focus on preventive measures for the susceptible subjects.
Nevertheless, further research is recommended to be able to translate the statistical features
into interventions that could improve the value of these statistical features.

4.3. Importance of Feature Categories

The importance of sports-specific and statistical features is similar in the male-specific
model, while, in the female-specific models, the statistical features are clearly more impor-
tant. This is in line with the observation of the performance of each of the gender-specific
models using only the subset of the features.

The non-directional features are, especially for the female-specific model, of low
relative importance concerning LLOI prediction. Since the non-directional features are
mainly composed of questionnaire-based features, this observation suggests that monitor-
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ing acceleration during a fatiguing run is crucial for good performance in the prediction
of LLOIs.

Looking at the combination of type and directionality of the features, the sports-
specific features derived from the acceleration in the horizontal plane are most influential,
among the sports-specific features, with respect to the prediction of LLOI for either gen-
der. Previous research has demonstrated that running-induced fatigue mainly affects the
variability of the sports-specific features derived from the acceleration signals of the hori-
zontal plane [47]. As a result, one of the possible speculations is that response to fatigue is
indicative for LLOI prediction.

It should be noted that the specific feature importance values are solely indicative and
should be interpreted with care. Each feature is considered separately for the calculation
of its importance value under the assumption that all other feature values are constant.
However, this is not a realistic case. Some features are related and changing one of them
results in a change in the other one (e.g., weight and BMI, or acceleration in the medial–
lateral direction and the resultant acceleration). Moreover, even if features are not related,
a change in only one of the features while keeping the other features constant might
be unrealistic.

4.4. Strengths and Limitations

The obtained results (mean AUC of 0.645 and 0.615) are comparable to the performance
of models described in the literature of injury prediction models [21,27]. In this study, a
nested CV approach was used, in contrast to most studies, which use a k-fold CV. As a
result, it is presumed that the presented results are a less biased estimate of the true error.
Furthermore, our models only require information of a single Cooper test measured by a
single tri-axial accelerometer. As there is no need for regular testing or a laboratory setting,
the practicality of this model is high. Moreover, the study is characterized by a relatively
large number of participants. In addition, no or only a small minority are elite athletes,
which potentially makes the model more applicable to the wider public.

We are aware that our research has several limitations. Subjects with missing values
for at least one of the features or with a non-LLOI injury were excluded from the analysis.
Although missing values for features are believed not to be missing completely at random,
it was assumed that the bias introduced by removing the subjects from the study is minimal.
The same assumption was supposed for the removal of subjects with a non-LLOI injury.
All the participants were physically active, of similar age (approximately 18 years old),
and undergoing approximately the same training load due to the academic program. As a
consequence, the generalization capability of these results and models to a wider population
is limited. Although we have similar results to previous studies [5,21,27,43], the models
are not high-performing and could be improved. More risk factors, such as previous sports
participation, anthropometric characteristics, running shoes, etc., could be included in the
model and be a potential step towards enhancing the performance. In addition, as the
measurements were performed at the beginning of a six-month investigation period, which
coincided with the start of the academic program, some information might be missing. It is
expected that follow-up measurements could provide complementary information and, as
a result, have the potential to improve performance. Future studies on the topic of injury
prediction with machine learning are recommended to be concerned with aspects such as
the transferability of the model or approach to new settings, or the expansion of the feature
set to cover more intrinsic and extrinsic injury-related factors.

5. Conclusions

The purpose of the present study was to examine the ability of a machine learning
model to predict the occurrence of an LLOI. The outcomes from this study make two main
contributions to the current literature. The first main finding to emerge from this study
is that the model’s performance considerably improved by splitting the data according
to gender and training gender-specific models. The generalization performance, mea-
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sured by a mean AUC score, of the best-performing method, fitted with a grid-search CV
hyperparameter tuning, was 0.645 and 0.615 for, respectively, female- and male-specific
models. A second finding of this research is that the statistical and sports-specific features
are partly complementary as the combination of both sets resulted in the best-performing
models. On average, models using only statistical features deserve a second place, while
models with sports-specific features come in last. Additionally, it was observed that the
medial–lateral-acceleration-derived features were the most influential feature category in
the female logistic regression model. For the male model, the features derived from the
vertical acceleration came out on top.

In recent years, machine learning techniques have demonstrated potential regarding
the growing field of sports injury prediction. The findings of the presented study may
contribute to this field and be valuable for future studies as the results demonstrate the
importance of considering gender specificity and a suitable feature set.

Author Contributions: Conceptualization, B.V., J.D. and S.B.; methodology, B.V., J.D. and S.B.;
software, S.B.; formal analysis, S.B.; resources, B.V.; data curation, S.B.; writing—original draft prepa-
ration, S.B.; writing—review and editing, B.V., J.D., S.B. and S.V.R.; visualization, S.B.; supervision,
B.V. and J.D.; funding acquisition, B.V. and J.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Interreg V program Vlaanderen-Nederland and by Research
Council KU Leuven (C3/20/125).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of UZ Leuven (Belgium) (protocol
code: S60810, date of approval: 25 October 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to express their appreciation to all individuals who
participated in the study. In addition, special thanks go to all colleagues who helped with the
data collection. The authors would like to thank Kurt Schütte and Gerard Aristizábal Pla for their
contributions to the code.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity.

Curr. Opin. Psychiatry 2005, 18, 189–193. [CrossRef] [PubMed]
2. Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ Can. Med Assoc. J. 2006,

174, 801–809. [CrossRef] [PubMed]
3. Warburton, D.E.; Bredin, S.S. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin.

Cardiol. 2017, 32, 541–556. [CrossRef] [PubMed]
4. Melzer, K.; Kayser, B.; Pichard, C. Physical activity: The health benefits outweigh the risks. Curr. Opin. Clin. Nutr. Metab. Care

2004, 7, 641–647. [CrossRef]
5. Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine learning methods in sport injury prediction and prevention:

A systematic review. J. Exp. Orthop. 2021, 8, 27. [CrossRef]
6. Walker, N.; Thatcher, J.; Lavallee, D. Review: Psychological responses to injury in competitive sport: A critical review. J. R. Soc.

Promot. Health 2007, 127, 174–180. [CrossRef]
7. Emery, C.A.; Pasanen, K. Current trends in sport injury prevention. Best Pract. Res. Clin. Rheumatol. 2019, 33, 3–15. [CrossRef]
8. Lopes, A.D.; Hespanhol, L.C.; Yeung, S.S.; Costa, L.O.P. What are the Main Running-Related Musculoskeletal Injuries? Sport.

Med. 2012, 42, 891–905. [CrossRef]
9. Johnson, J.H. Overuse injuries in young athletes: Cause and prevention. Strength Cond. J. 2008, 30, 27–31. [CrossRef]
10. Olivier, B.; Taljaard, T.; Burger, E.; Brukner, P.; Orchard, J.; Gray, J.; Botha, N.; Stewart, A.; Mckinon, W. Which Extrinsic and

Intrinsic Factors are Associated with Non-Contact Injuries in Adult Cricket Fast Bowlers? Sport. Med. 2016, 46, 79–101. [CrossRef]

http://doi.org/10.1097/00001504-200503000-00013
http://www.ncbi.nlm.nih.gov/pubmed/16639173
http://dx.doi.org/10.1503/cmaj.051351
http://www.ncbi.nlm.nih.gov/pubmed/16534088
http://dx.doi.org/10.1097/HCO.0000000000000437
http://www.ncbi.nlm.nih.gov/pubmed/28708630
http://dx.doi.org/10.1097/00075197-200411000-00009
http://dx.doi.org/10.1186/s40634-021-00346-x
http://dx.doi.org/10.1177/1466424007079494
http://dx.doi.org/10.1016/j.berh.2019.02.009
http://dx.doi.org/10.1007/BF03262301
http://dx.doi.org/10.1519/SSC.0b013e31816a21cb
http://dx.doi.org/10.1007/s40279-015-0383-y


Sensors 2022, 22, 2860 16 of 17

11. Bahr, R.; Krosshaug, T. Understanding injury mechanisms: A key component of preventing injuries in sport. Br. J. Sport. Med.
2005, 39, 324–329. [CrossRef] [PubMed]

12. Rolf, C. Overuse injuries of the lower extremity in runners. Scand. J. Med. Sci. Sport. 1995, 5, 181–190. [CrossRef] [PubMed]
13. Kannus, P.; Natri, A. Etiology and pathophysiology of tendon ruptures in sports. Scand. J. Med. Sci. Sport. 1997, 7, 107–112.

[CrossRef] [PubMed]
14. Hreljac, A. Impact and Overuse Injuries in Runners. Med. Sci. Sport. Exerc. 2004, 36, 845–849. [CrossRef] [PubMed]
15. Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernàndez, J.; Medina, D. Effective injury forecasting in soccer with GPS training

data and machine learning. PLoS ONE 2018, 13, e0201264. [CrossRef] [PubMed]
16. Nielsen, R.O.; Buist, I.; Parner, E.T.; Nohr, E.A.; Sørensen, H.; Lind, M.; Rasmussen, S. Predictors of running-related injuries

among 930 novice runners: A 1-year prospective follow-up study. Orthop. J. Sport. Med. 2013, 1, 2325967113487316. [CrossRef]
17. Kluitenberg, B.; van Middelkoop, M.; Smits, D.W.; Verhagen, E.; Hartgens, F.; Diercks, R.; van der Worp, H. The NLstart2run

study: Incidence and risk factors of running-related injuries in novice runners. Scand. J. Med. Sci. Sport. 2015, 25, e515–e523.
[CrossRef]

18. Aristizábal Pla, G.; Hollville, E.; Schütte, K.; Vanwanseele, B. The Use of a Single Trunk-Mounted Accelerometer to Detect
Changes in Center of Mass Motion Linked to Lower-Leg Overuse Injuries: A Prospective Study. Sensors 2021, 21, 7385. [CrossRef]

19. Winter, S.C.; Gordon, S.; Brice, S.M.; Lindsay, D.; Barrs, S. A Multifactorial Approach to Overuse Running Injuries: A 1-Year
Prospective Study. Sport. Health 2020, 12, 296–303. [CrossRef]

20. Ceyssens, L.; Vanelderen, R.; Barton, C.; Malliaras, P.; Dingenen, B. Biomechanical Risk Factors Associated with Running-Related
Injuries: A Systematic Review. Sport. Med. 2019, 49, 1095–1115. [CrossRef]

21. Jauhiainen, S.; Kauppi, J.P.; Leppänen, M.; Pasanen, K.; Parkkari, J.; Vasankari, T.; Kannus, P.; Ayramo, S. New Machine Learning
Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. Int. J. Sport. Med. 2021, 42, 175–182. [CrossRef]
[PubMed]

22. De Brabandere, A.; Robberechts, P.; Op De Beeck, T.; Davis, J. Automating Feature Construction for Multi-View Time Series Data.
In Proceedings of the ECML/PKDD Workshop on Automating Data Science, Würzburg, Germany, 16–20 September 2019; Part I.
2019, pp. 1–16.

23. De Beéck, T.O.; Meert, W.; Schütte, K.; Vanwanseele, B.; Davis, J. Fatigue prediction in outdoor runners via machine learning
and sensor fusion. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
London, UK, 19–23 August 2018; pp. 606–615. [CrossRef]

24. Lövdal, S.S.; Den Hartigh, R.J.; Azzopardi, G. Injury prediction in competitive runners with machine learning. Int. J. Sport.
Physiol. Perform. 2021, 16, 1522–1531. [CrossRef] [PubMed]

25. Carey, D.L.; Ong, K.; Whiteley, R.; Crossley, K.M.; Crow, J.; Morris, M.E. Predictive modelling of training loads and injury in
Australian football. Int. J. Comput. Sci. Sport 2018, 17, 49–66. [CrossRef]

26. Rommers, N.; Rössler, R.; Verhagen, E.; Vandecasteele, F.; Verstockt, S.; Vaeyens, R.; Lenoir, M.; D’Hondt, E.; Witvrouw, E. A
Machine Learning Approach to Assess Injury Risk in Elite Youth Football Players. Med. Sci. Sport. Exerc. 2020, 52, 1745–1751.
[CrossRef]

27. Oliver, J.L.; Ayala, F.; De Ste Croix, M.B.; Lloyd, R.S.; Myer, G.D.; Read, P.J. Using machine learning to improve our understanding
of injury risk and prediction in elite male youth football players. J. Sci. Med. Sport 2020, 23, 1044–1048. [CrossRef]

28. Kampakis, S. Predictive Modelling of Football Injuries. Ph.D. Thesis, University College London, London, UK, 2016.
29. Huang, C.; Jiang, L. Data monitoring and sports injury prediction model based on embedded system and machine learning

algorithm. Microprocess. Microsyst. 2021, 81, 103654. [CrossRef]
30. Naglah, A.; Khalifa, F.; Mahmoud, A.; Ghazal, M.; Jones, P.; Murray, T.; Elmaghraby, A.S.; El-Baz, A. Athlete-Customized

Injury Prediction using Training Load Statistical Records and Machine Learning. In Proceedings of the 2018 IEEE International
Symposium on Signal Processing and Information Technology, ISSPIT 2018, Louisville, KY, USA, 6–8 December 2018; pp. 459–464.
[CrossRef]

31. Ayala, F.; López-Valenciano, A.; Gámez Martín, J.A.; De Ste Croix, M.; Vera-Garcia, F.J.; García-Vaquero, M.D.P.; Ruiz-Pérez, I.;
Myer, G.D. A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int. J. Sport. Med. 2019,
40, 344–353. [CrossRef] [PubMed]

32. Winter, S.C.; Gordon, S.; Brice, S.M.; Lindsay, D.; Barrs, S. Overuse injuries in runners of different abilities—A one-year prospective
study. Res. Sport. Med. 2021, 29, 196–212. [CrossRef]

33. López-Valenciano, A.; Ayala, F.; Puerta, J.M.; De Ste Croix, M.B.A.; Vera-Garcia, F.J.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Myer,
G.D. A Preventive Model for Muscle Injuries: A Novel Approach based on Learning Algorithms. Med. Sci. Sport. Exerc. 2018,
50, 915–927. [CrossRef]

34. Nesterovica, D. Definition of the lower extremity overuse: A review. SHS Web Conf. 2020, 85, 02006. [CrossRef]
35. Schütte, K.H.; Seerden, S.; Venter, R.; Vanwanseele, B. Influence of outdoor running fatigue and medial tibial stress syndrome on

accelerometer-based loading and stability. Gait Posture 2018, 59, 222–228. [CrossRef] [PubMed]
36. Moe-Nilssen, R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis.

Clin. Biomech. 1998, 13, 328–335. [CrossRef]
37. Brabandere, A.D.; Op De Beeck, T.; Hendrickx, K.; Meert, W. TSFuse: Automated feature construction for multiple time series

data. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2021; p. 54.

http://dx.doi.org/10.1136/bjsm.2005.018341
http://www.ncbi.nlm.nih.gov/pubmed/15911600
http://dx.doi.org/10.1111/j.1600-0838.1995.tb00034.x
http://www.ncbi.nlm.nih.gov/pubmed/7552763
http://dx.doi.org/10.1111/j.1600-0838.1997.tb00126.x
http://www.ncbi.nlm.nih.gov/pubmed/9211611
http://dx.doi.org/10.1249/01.MSS.0000126803.66636.DD
http://www.ncbi.nlm.nih.gov/pubmed/15126720
http://dx.doi.org/10.1371/journal.pone.0201264
http://www.ncbi.nlm.nih.gov/pubmed/30044858
http://dx.doi.org/10.1177/2325967113487316
http://dx.doi.org/10.1111/sms.12346
http://dx.doi.org/10.3390/s21217385
http://dx.doi.org/10.1177/1941738119888504
http://dx.doi.org/10.1007/s40279-019-01110-z
http://dx.doi.org/10.1055/a-1231-5304
http://www.ncbi.nlm.nih.gov/pubmed/32920800
http://dx.doi.org/10.1145/3219819.3219864
http://dx.doi.org/10.1123/ijspp.2020-0518
http://www.ncbi.nlm.nih.gov/pubmed/33931574
http://dx.doi.org/10.2478/ijcss-2018-0002
http://dx.doi.org/10.1249/MSS.0000000000002305
http://dx.doi.org/10.1016/j.jsams.2020.04.021
http://dx.doi.org/10.1016/j.micpro.2020.103654
http://dx.doi.org/10.1109/ISSPIT.2018.8642739
http://dx.doi.org/10.1055/a-0826-1955
http://www.ncbi.nlm.nih.gov/pubmed/30873572
http://dx.doi.org/10.1080/15438627.2019.1616548
http://dx.doi.org/10.1249/MSS.0000000000001535
http://dx.doi.org/10.1051/shsconf/20208502006
http://dx.doi.org/10.1016/j.gaitpost.2017.10.021
http://www.ncbi.nlm.nih.gov/pubmed/29080511
http://dx.doi.org/10.1016/S0268-0033(98)00090-4


Sensors 2022, 22, 2860 17 of 17

38. Benson, L.C.; Clermont, C.A.; Watari, R.; Exley, T.; Ferber, R. Automated accelerometer-based gait event detection during multiple
running conditions. Sensors 2019, 19, 1483. [CrossRef] [PubMed]

39. Wainer, J.; Cawley, G. Nested cross-validation when selecting classifiers is overzealous for most practical applications. Expert
Syst. Appl. 2021, 182, 115222. [CrossRef]

40. Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91.
[CrossRef]

41. Raschka, S. Model Evaluation , Model Selection , and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808.
42. Michel, V.; Thirion, B.; Varoquaux, G.; Gramfort, A.; Duchesnay, E.; Buitinck, L.; Joly, A. Sklearn.Feature_Selection.SelectKBest—

Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.feature_
selection.SelectKBest.html (accessed on 16 January 2022).

43. Ruddy, J.D.; Shield, A.J.; Maniar, N.; Williams, M.D.; Duhig, S.; Timmins, R.G.; Hickey, J.; Bourne, M.N.; Opar, D.A. Predictive
Modeling of Hamstring Strain Injuries in Elite Australian Footballers. Med. Sci. Sport. Exerc. 2018, 50, 906–914. [CrossRef]

44. Rodas, G.; Osaba, L.; Arteta, D.; Pruna, R.; Fernández, D.; Lucia, A. Genomic prediction of tendinopathy risk in elite team sports.
Int. J. Sport. Physiol. Perform. 2020, 15, 489–495. [CrossRef]

45. Platt, J.C. Platt Scaling; MIT Press: Cambridge, MA, USA, 1999.
46. Ling, C.X.; Sheng, V.S. Cost-Sensitive Learning and the Class Imbalance Problem. Encycl. Mach. Learn. 2008, 2011, 231–235.
47. Schütte, K.H.; Maas, E.A.; Exadaktylos, V.; Berckmans, D.; Venter, R.E.; Vanwanseele, B. Wireless tri-axial trunk accelerometry

detects deviations in dynamic center of mass motion due to running-induced fatigue. PLoS ONE 2015, 10, e0141957. [CrossRef]

http://dx.doi.org/10.3390/s19071483
http://www.ncbi.nlm.nih.gov/pubmed/30934672
http://dx.doi.org/10.1016/j.eswa.2021.115222
http://dx.doi.org/10.1186/1471-2105-7-91
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
http://dx.doi.org/10.1249/MSS.0000000000001527
http://dx.doi.org/10.1123/ijspp.2019-0431
http://dx.doi.org/10.1371/journal.pone.0141957

	Introduction
	Materials and Methods
	Participants
	Data Collection
	Data Preprocessing
	Feature Construction
	Model Construction
	Importance Values of Features

	Results
	Model Performance
	Importance of Feature Categories

	Discussion
	Role of Gender Subdivision on Model
	Sports-Specific and Statistical Features
	Importance of Feature Categories
	Strengths and Limitations

	Conclusions
	References

