ﬁ Sensors

Article

NIR-Based Intelligent Sensing of Product Yield Stress for
High-Value Bioresorbable Polymer Processing

Konrad Mulrennan 1%t

and Marion McAfee 12t

check for
updates

Citation: Mulrennan, K.; Munir, N.;
Creedon, L.; Donovan, J.; Lyons, ].G.;
McAfee, M. NIR-Based Intelligent
Sensing of Product Yield Stress for
High-Value Bioresorbable Polymer
Processing. Sensors 2022, 22, 2835.
https:/ /doi.org/10.3390/522082835

Academic Editors: Ashutosh Tiwari,
Michael Farnsworth, Geraint Jewell

and Divya Tiwari

Received: 14 February 2022
Accepted: 4 April 2022
Published: 7 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Nimra Munir

12t 2

, Leo Creedon *1, John Donovan 2@, John G. Lyons 3

Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE),
Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland;
mulrennan.konrad@itsligo.ie (K.M.); nimra.munir@mail.itsligo.ie (N.M.); creedon.leo@itsligo.ie (L.C.);
donovan.john@itsligo.ie (J.D.)
Centre for Precision Engineering, Materials and Manufacturing (PEM Centre),
Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland
3 Faculty of Engineering and Informatics, Technological University of the Shannon, Dublin Road,

N37 HD68 Athlone, Ireland; sean.lyons@tus.ie
*  Correspondence: mcafee.marion@itsligo.ie
1t These authors contributed equally to this work.

Abstract: PLA (polylactide) is a bioresorbable polymer used in implantable medical and drug
delivery devices. Like other bioresorbable polymers, PLA needs to be processed carefully to avoid
degradation. In this work we combine in-process temperature, pressure, and NIR spectroscopy
measurements with multivariate regression methods for prediction of the mechanical strength of
an extruded PLA product. The potential to use such a method as an intelligent sensor for real-time
quality analysis is evaluated based on regulatory guidelines for the medical device industry. It is
shown that for the predictions to be robust to processing at different times and to slight changes in
the processing conditions, the fusion of both NIR and conventional process sensor data is required.
Partial least squares (PLS), which is the established "soft sensing’ method in the industry, performs
the best of the linear methods but demonstrates poor reliability over the full range of processing
conditions. Conversely, both random forest (RF) and support vector regression (SVR) show excellent
performance for all criteria when used with a prior principal component (PC) dimension reduction
step. While linear methods currently dominate for soft sensing of mixture concentrations in highly
conservative, regulated industries such as the medical device industry, this work indicates that
nonlinear methods may outperform them in the prediction of mechanical properties from complex
physicochemical sensor data. The nonlinear methods show the potential to meet industrial standards
for robustness, despite the relatively small amount of training data typically available in high-value
material processing.

Keywords: PLA; NIR spectroscopy; soft sensor; bioresorbable polymer; PLS; random forest; support
vector regression; chemometrics; extrusion

1. Introduction

Polylactide (PLA) is a bioresorbable polymer derived from plant sources, which breaks
down in vivo to HyO and CO, over time. PLA undergoes biodegradation due to the pres-
ence of a hydrolysable backbone, which is subject to chemical hydrolysis in the presence of
water at elevated temperature [1]. The biodegradation of PLA has made it an attractive
material for packaging, textile, and medical applications. In medical applications, PLA has
been used in temporary implantable devices such as bone fixation or local drug-delivery
devices. PLA is one of the strongest FDA (Food and Drug Administration) approved biore-
sorbable polymers and so is of particular interest in applications where initial mechanical
support is needed. The implant then degrades safely over time, possibly also releasing a
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drug such as an antibiotic or anti-inflammatory, as the host tissue heals. However, the in-
dustry faces issues regarding the processing of these polymers and their quality assurance
once processed. The high temperatures and pressures required for forming the product
also tend to degrade the material, which can lead to quality issues such as insufficient
mechanical properties [2]. Identification and control of suitable manufacturing process con-
ditions is extremely challenging, and can vary from batch to batch of raw material [3]. For
applications requiring mechanical strength, the yield stress (0y) of the product is viewed as
a critical quality characteristic. The laboratory characterisation of yield stress is a protracted,
destructive test, and typically deficiencies in strength cannot be detected until several hours
post-production, resulting in high scrap rates. Typical costs of medical or pharmaceutical
grade PLA can be in the region of thousands of euros per kilogram, so this slow feedback
on product quality results in an expensive process with limited production rates and risks
in the reliability of supply.

Pressure and temperature sensors are routinely applied for continuous real-time moni-
toring of extrusion processes, but these provide limited information on physicochemical
changes such as polymer degradation, which may occur during the manufacturing process.
Over the last decade, many researchers have exploited the development of robust fibre-optic
probes to apply vibrational spectroscopy techniques such as near-infrared (NIR), Raman,
and UV-Vis, which are sensitive to changes in the molecular bonds present in polymeric
materials while they are being extruded [4-7]. NIR is particularly attractive, as it is available
at a lower cost than Raman but has greater sensitivity and specificity to molecular changes
than UV-Vis. NIR spectra, however, have broad absorption bands and are dominated by
overlapping overtone and combination band data and hence can be difficult to interpret.
Usually, multivariate statistical approaches are applied to the spectral data in so-called ‘soft
sensors’ to predict material properties which are measured offline. Due to the cost relative
to conventional process instrumentation, NIR spectroscopy is most commonly applied in
high-value polymer extrusion for monitoring of blends/mixtures. For example, its use has
been widely reported for quantifying the drug content in pharmaceutical products under
fixed processing conditions, using the classical chemometric regression technique of partial
least squares (PLS) [8].

NIR spectral data contain a very high number of variables (absorbance of light at
hundreds of wavelengths); however, the absorbances of adjacent wavelengths are highly
correlated, and so a large number of variables are redundant. Hence, some form of feature
reduction is required for regression. The classical approach is dimension reduction via a
subset of features derived from a linear transformation of the original variables, such as
in principal component regression (PCR) or PLS. PLS dominates as a soft-sensor method
for spectroscopy data in polymer extrusion processes, with very little exploration of other
methods in the field to date [8,9]. PLS has achieved a level of industrial acceptance
due to its tried-and-tested effectiveness for chemometric applications, relative simplicity,
and suitability for application with relatively small data sets, as is usually the case in process
development for pharmaceutical and medical device products. However, PLS does not
perform well where relationships in the data are nonlinear [10]. Further, PLS may in some
cases reduce the access or the interpretability of the data, as information on which regions
of the spectrum are responsible for the majority of the variation is obscured. Research
studies in other fields have examined the use of PLS together with direct selection of a
subset of the original wavelength variables (e.g., GA-PLS, bi-PLS, SiPLS), which can result
in a simpler and more interpretable model [11]. However, these methods can be sensitive
to the selection of training and validation data and may result in poor performance on new
samples, especially where the training data set is small [12]. An alternative is to reduce
the dimensionality of the data set by summarising intervals of the spectra with various
statistics [12]; however, this adds significant complexity in processing the data and tuning
additional hyperparameters such as the number of segments, which segments to retain in
the regression model, and which statistics/features to use.

Nonlinear soft sensors using, e.g., artificial neural network (ANN) or kernel-based
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methods such as support vector regression (SVR) or Gaussian process regression (GPR)
have commonly been applied in other fields and can outperform linear approaches [13,14].
With costly raw materials, such as in this application, the generation of training data is
expensive, and hence methods which can be trained with relatively small amounts of
data are required. Neural-network-based approaches typically require a large amount of
training data; however, SVR is most commonly explored as a nonlinear alternative to PLS
with spectral data and can perform well with a small number of samples [15,16]. Random
forest (RF) regression has gained interest more recently for soft sensing with spectral data
in industrial processes and appears to be promising for application with small amounts of
data [17,18]. Zhang et al. [17] found that RF regression outperformed SVR and PLS in the
quantification of multiple elements in 14 steel samples, using laser-induced breakdown
spectroscopy (LIBS). Kneale and Brown [18] compared five soft sensor methodologies
involving different implementations of PLS and RF regression on small data sets. The RF
method, together with a hybrid RF-PLS method, (where PLS predictions are included
as inputs to the RF regression model), offered the best performance on all data sets with
non-monotonic response variables, and the hybrid model yielded the best one-step-ahead
prediction on all data sets.

There has recently been increasing interest in monitoring/predicting parameters such
as polymer degradation and mechanical properties in melt processing of bioresorbable
and medical polymers. McKinley et al. [19] used ANN with an evolutionary algorithm to
explore the effect of extrusion conditions on the mechanical properties of a drug-delivery
vaginal film. However, this was to develop insight for process optimisation purposes rather
than for quality monitoring. Montano-Herrera et al. [6] used NIR spectroscopy with PLS to
predict the degree of thermal degradation induced during the extrusion of four different
grades of the biodegradable polymer Polyhydroxyalkanoate (PHA). Muroga et al. [20] used
NIR hyperspectral imaging on compression-moulded PLA samples to predict mechanical
properties under different melting and annealing times and achieved reasonable predictions
for the flexural properties and crystallinity of the samples using PLS regression. In this
case, the NIR imaging was applied to room-temperature samples after they had been
processed. In our previous work [21], we explored a low-cost method using only in-process
pressure and temperature data for the prediction of yield stress in extruded PLA sheet using
ensemble decision tree methods (bagging, random forest). If such soft-sensor approaches
are to be used for quality assurance, then an appropriately rigorous performance evaluation
is required to satisfy regulatory requirements. FDA guidelines for validation of qualitative
analyses based on NIR models outline that the evaluation of such methods should include
evaluation of the precision, accuracy, linearity, and robustness on an independent (‘external’)
test data set [22]. None of the methods so far proposed have examined performance on an
independent test set.

Hence, while both NIR and conventional pressure and temperature sensors appear
to yield useful information on the subsequent mechanical properties of melt-processed
PLA, the validity of using such sensor data for in-line monitoring of product quality in
an industrial process has not yet been explored. It should be noted that in the previous
NIR-based studies, process conditions were constant or the NIR imaging was performed
on samples post-processing. However, NIR is sensitive to changes in process conditions
including melt temperature, screw speed, and polymer rheology [23], and this may mask
the effect of chemical changes in the material. In this paper we explore for the first time
the application of both in-process NIR and pressure/temperature data to predict the me-
chanical properties of an extruded product and investigate whether such a sensing method
can satisfy performance demands for quality assurance in the medical/pharmaceutical
industries. As this involves spectral data, the modelling complexity significantly increases
relative to our previous low-cost method (number of available input features increases
from eight to several hundred). This is a significant challenge where it is too expensive and
time-consuming to generate a large data set for model training (the so-called ‘curse of di-
mensionality’), and risks the development of a model with poor generalisation performance
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on independent data. Hence, in this work we compare the established regression algorithms
for spectral data (PLS, PCR, ridge regression) to two promising nonlinear methods (SVR
and random forest) and evaluate the performance based on FDA guidelines. This includes
an independent external test set with perturbations in the processing conditions relative
to the conditions used in the model training. A multi-rate data set comprising in-process
NIR spectra together with data from pressure and temperature probes was captured from a
small number of process trials covering a wide range of processing conditions under a de-
sign of experiments methodology. For the nonlinear methods, we explore a prior dimension
reduction step via principal components (PC) analysis, where only the number of PCs to be
included must be tuned. Dimension reduction via principal components is preferred here
over methods which select a subset of the original variables, which, as discussed, are more
interpretable but are too sensitive to the training/validation split in small data sets [12]. We
show that it is possible to meet regulatory demands for accuracy and robustness, but only if
NIR and pressure/temperature data are combined. Only the nonlinear methods preceded
by a PC step satisfy the quality assurance requirements for use. The results significantly
outperform those of earlier studies that used NIR imaging of post-processed PLA samples
alone to estimate mechanical properties [20], with the advantage that the predictions are
available continuously during processing, allowing corrective action to be taken if the
product is not meeting specification.

2. Description of the Data Set
2.1. Experiments

A Prism twin-screw extruder with four barrel zones was used along with a calender
roll-off unit to manufacture extruded PLA sheet. The PLA grade was Ingeo™ biopolymer
2003D from NatureWorks LLC. A slit die was attached to the end of the extruder and
housed the sensors used to capture in-line process data. Data were recorded from pressure,
temperature and NIR spectroscopic sensors. The pressure drop between two pressure
transducers spaced along the slit die allowed for the shear viscosity of the material to be
estimated during extrusion processing, as described in our earlier work [21]. Pressure
and temperature data were acquired at sample rates between 5 and 10 Hz. A Dynisco
pressure transducer with an embedded type ] thermocouple was used along with two
miniature, 3mm diaphragm, fibre-optic pressure transducers, each containing an embedded
type K thermocouple. Two additional type K thermocouples that were flush mounted to
the melt in the slit die were also used. NIR spectral data were captured in transmittance
mode using a spectroscopy system provided by FOS Messtechnik GmbH that included an
LR1 compact USB spectrometer with a resolution of 4 cm~! (Aseq Instruments). Figure 1
shows a schematic overview of the experimental set-up. NIR spectra were measured in the
4000-7500 cm~! wavenumber range with a spectrum typically collected every 30 s.

PLA mini fibre optic pressure
transducers with
embedded type K thermocouple

NIR probe

1

Pressure transducer with
type J thermocouple

Machine Settings:

= Screw Speed =

= Feed Rate
= Temperature Settings

T« NIR}obe T

Type K Thermocouples

Figure 1. Schematic illustration of experimental set-up.
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A design of experiments (DoE) methodology was applied to explore the effect of
process conditions on the mechanical properties of the extruded PLA sheet within the
processing window of the material. An initial set of 24 process trials consisted of twelve
different processing conditions, each replicated using different combinations of extruder
feed rate, screw speed, and temperature profile. The temperature profile included four
barrel zones of the extruder (Z1, Z2, Z3, and Z4), the adaptor zone, and the die zone.
The factor levels for the feed rate were 1160 g/h (Low) and 1600 g/h (High) and for screw
speed were 56 rpm (Low) and 83 rpm (High). These were chosen at the extremities of the
processing window for the material and extruder that was identified in the scoping trials.
Three levels of temperature profile were applied: Low, Mid, and High, as presented in
Table 1.

Table 1. Factor levels for the temperature profile in runs 1-24 (used in training).

Factor Level Temperature Profile (°C)
Z1 Z2 Z3 Z4 Adaptor Die
Low 130 190 200 200 200 200
Mid 130 190 200 205 210 210
High 130 190 200 210 220 220

The initial process runs were full factorial, i.e., all combinations of factor levels were
investigated with two replicates. The details of these experiments, together with their run
order and factor level combinations are available in [21].

A second set of experiments comprising six process runs forming an independent test
set, was conducted in a separate trial several months later. The factor levels for the feed
rate and screw speed were the same as in the initial experiments; however, as presented in
Table 2, slight changes were made to the temperature profiles to assess the robustness of
the models to minor perturbations in process conditions. The process runs, the factor levels
for each of the controllable variables, and their respective combinations are presented in
Table 3.

Table 2. Factor levels for the temperature profile in runs 25-30 (independent external test set).

Factor Level Temperature Profile (°C)
Z1 72 Z3 Z4 Adaptor Die
Low 130 180 200 200 200 200
Low-Mid 130 180 200 200 205 205
Mid 130 180 200 200 205 210
High 130 180 200 200 210 220

Table 3. Factor levels (SS = screw speed; FR = feed rate; TP = temperature profile) for runs 25-30
(independent external test set).

Process Run SS Level FR Level TP Level
25 Low High Low
26 High Low High
27 Low High Low-Mid
28 Low High Mid
29 Low Low Low-Mid

30 High Low Low
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Data were recorded for four minutes in all 30 runs once a steady state was reached (as
indicated by a steady average pressure reading). Three samples were cut from the sheet
extruded in each process run. The yield stress (0y) of each sample was measured using a
Zwick Roell Z0.5 tensile tester with a load cell of 0.5 kN. Tests were carried out at a speed of
5 mm/min, with a measurement accuracy of +1%. The mean yield stress for each process
run was recorded.

2.2. Data Pre-Processing

As some regions of the NIR spectra were noisy and uninformative, only the region
6100-6700 cm !, relating to C-H stretching overtones, was selected. This is the region most
likely to be affected by the degradation of PLA. The spectral data were converted from
transmittance to absorbance and pre-processed using multiplicative scatter correction and
baseline correction. These pretreatments are well known and are described in detail in [24].
The sampling rate of the NIR system was lower than that of the pressure and temperature
data, and the yield-stress response data were sampled at an even lower frequency (once
per processing run). Typically, this situation is handled either by downsampling (to the
lower frequency) or upsampling (to the higher frequency) [14]. Downsampling avoids
introducing errors by interpolation of the low-frequency data, which may not result in
a good representation of the true physical state. However, upsampling avoids any loss
of information and can result in better soft sensor performance due to the larger data
set available for modelling [25]. Here, as the process was monitored under steady-state
conditions and the overall data set was small, we opted to upsample the data to preserve
as much information as possible. A zero-order hold was applied for interpolation of the
NIR data to the frequency of the pressure and temperature data (i.e., maintaining the most
recent values at each time point until an updated spectrum arrived). The same value
of mean yield stress was applied to all upsampled observations in each processing run.
Following preprocessing of the data there were 50,762 observations (rows) and 612 features
(columns) available for prediction of the product yield stress. The features included all
pressure and temperature measurements, a shear viscosity estimate, and the NIR spectral
data in the wavenumber range 6100-6700 cm~!. Each wavenumber in that range was a
feature used for training the models, i.e., each wavenumber represented an input data
column of observed amplitudes at that wavenumber.

3. Modelling Techniques
3.1. Linear Methods

Principal component analysis (PCA) is primarily used to reduce the dimensionality
of data sets which contain a number of highly correlated features [26]. Highly correlated
features may be largely redundant with respect to predictive ability, while high dimension-
ality tends to cause model overfitting. PCA performs a change of basis of the original data
set to a new basis of orthogonal principal components (PCs). The PCs are uncorrelated
linear functions of all original variables that successively maximise the explained variance
in the data. Dimension reduction is achieved by choosing a subset of PCs that retains much
of the variance of the original data set.

Principal component regression (PCR) uses a subset of these PCs in a linear regression
model to predict the response Y. One of the problems associated with PCR is the selection
of the optimum number of PCs. Generally, the first few PCs (major PCs), which capture
most of the variability in the data, are selected, and the minor PCs are excluded in the final
model. However, while the major PCs constitute the optimal low-order approximation of
the input data set (minimum loss of information); there is no surety that these selected PCs
are also relevant to the prediction of the dependent feature Y [27].

Partial least squares (PLS) regression also involves linear regression on a set of uncor-
related predictor features which are created from a linear transformation of the original
set of variables. In PLS, the new features—the so-called ‘latent variables’—are formed
from a simultaneous decomposition of X and Y such that these components successively
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maximise the covariance between the independent matrix X and the response feature Y [4].
As with PCR, a key problem is the choice of an appropriate number of features (latent
variables or PCs). Selecting too few components may result in a regression model which
does not explain all the relevant variance (underfitting), while selecting too many can lead
to overfitting as noise is captured along with the systematic variance information.
Regularisation is a popular method used to solve the multicollinearity problem of
linear regression, whereby the X” X matrix in the well-known least squares estimator
Equation (1) is close to singular. In this case, slight variations in the data (such as adding
or removing a few observations) will lead to significant changes in the coefficient esti-
mates [28].
p=(xTx)"'xTy 1)

where § is the vector of estimated regression coefficients.

A regularisation method imposes a penalty on the size of the regression coefficients in
the loss function of ordinary least squares (OLS). In ridge regression, a penalty proportional
to the sum of the squares of the regression coefficients is added [29]. The loss functions
for OLS and ridge regression are given in Equations (2) and (3) respectively, with x as an
independent feature and y as a response feature.

BN

P

Lois(B) = 2 (vi— xip)? 2)

i=1

®)

‘\'~N)

Lridge(,B) = ; (yi - xi,B)z +A .

]

Here, n is the number of observations in the data set and m is the number of features
in the model. A is a penalty term which must be tuned.

As a result, a positive constant is added to the diagonal of X' X in the estimator
equation, and the problem of matrix inversion of an ill-conditioned matrix is avoided.
Ridge regression retains all the original features in the model but due to the penalty term A,
features which effectively constitute noise are shrunk towards zero, while the coefficients
of highly correlated features are penalised.

An alternative regularisation technique is LASSO (least absolute shrinkage and se-
lection operator), which imposes a penalty on the sum of the absolute magnitudes of the
regression coefficients. The LASSO technique has some advantages over ridge regression
in that it drives some of the coefficients to exactly zero, resulting in a more parsimonious
model which may be more interpretable [30]. However, when features are highly correlated,
LASSO tends to select just one of the features to have a non-zero coefficient, potentially
resulting in some loss of information which may be useful for prediction. To overcome this
limitation of LASSO, an ‘elastic net’ model combines the penalties on both the sum of abso-
lute magnitudes and the sum of the squared magnitudes of the coefficients [30,31]. In this
work, ridge regression outperformed both LASSO and elastic net in the accuracy of yield
stress prediction, and therefore the other regularisation methods are not presented here.

3.2. Nonlinear Methods

In this study, we explored support vector regression and random forest regression
as two methods which have been established to work well with small data sets in the
handling of spectroscopy data. Support vector regression is an extension of the support
vector machine algorithm [32]. The essential principle of SVR is the mapping of the data
to a higher-dimensional space, where a linear regression is applied to give predictions
within a defined margin of error from the true value. The dual slack variables ¢ and ¢*
are introduced in case there is no such function for which the constraints are feasible, and
this allows for regression errors to exist beyond the margin (¢). This so-called e-insensitive
loss function means that any value with an error less than € is ignored as zero, which
tends to avoid overfitting of the model to the training data. The explicit mapping to
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the higher-dimensional space is avoided by means of the ‘kernel trick’, which reduces
the computational load, i.e., the input (n x m) data matrix X is substituted by an (1 x n)
kernel matrix K which characterises an observation-to-observation relationship. Similar to
ridge regression, the loss function for SVR (presented in the primal form in Equation (4)),
also penalises the sum of squared magnitudes of the coefficient vector j, referred to as
the model complexity. C is a positive constant which determines the trade-off between
model complexity and the degree to which predictions outside the € margin are tolerated.
The optimisation problem is usually solved in the computationally simpler Lagrange dual
formulation (see for example [33] for more in-depth reading on the SVR algorithm).

N
Lo () = 366+ C L (6 +0) @
n=1

The Gaussian radial basis function (RBF) given by Equation (5), is regarded as an ideal
kernel choice to model functions of arbitrary nonlinearity [34]. The resulting SVR model
hyperparameters therefore include the error tolerance margin (€), the trade-off parameter
C, and the Gaussian kernel parameter .

K(xi, x;) = exp (—lx; — x;]?) ®)

Random forest (RF) is an ensemble learning method whereby several decision trees
are grown using bootstrapped data [35]. The regression predictions are the averages of
all the decision tree predictions. RF differs from a bagging (bootstrap aggregation) model
in using a tuning parameter m;,y. The parameter i,y is a number controlling the size of
the subset input features sampled at random at each node of the RF decision tree for its
split decision. The model then searches for the best feature and split value from within that
subset. By selecting an m,, value which is less than the total number of input features, only
a subset of input features is considered at each split. This is known as decorrelation of the
trees and results in a variance reduction in the model. This is achieved because averaging
a number of uncorrelated features results in greater variance reduction than averaging a
number of positively correlated features. The algorithm is described in the following steps:

1.  Choose the total number of trees to grow in the random forest (T).
2. Choose a value for my, < the number of input features.
3. Fort=1toT:

(a) Generate a bootstrap data set from the training data.

(b)  Grow a random forest regression tree R; for the bootstrapped data, by recur-
sively repeating the following steps for each terminal node of the tree, until the
stopping criterion is reached.

() Select my,, input features at random as candidates for splitting the node.

(ii) Pick the best feature/split-point among the 1, which minimises the
combined residual sum of squares of the two subsequent nodes.

(iii) Repeat until reaching terminal nodes that have >5 observations. If a

node has >5 observations, it becomes a terminal node if a split will
leave subsequent nodes with <5 observations.
(o) Repeat until T trees are grown.

4. Output the ensemble of trees {Ry, Ry, ..., Rt}
5. Average the predictions from each regression decision tree to predict using the forest.

4. Model Training

The data split for training and testing the models was prepared as follows. The data
from the 24 initial experiments were split in a ratio of 65:35. The 65% set was used as the
training data for each of the models. The 35% set, referred to as the ‘internal validation” set
(referencing the language in the FDA guidance for NIR-based soft sensors [22]), was used
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to tune the model hyperparameters. The data from the six processing runs in the second
set of experiments were withheld as an independent ‘external’ test set. Model training
involved the minimisation of the root mean squared error (RMSE) over all upsampled
observations (as described in Section 2) in the training set. The model hyperparameters
were then tuned according to the lowest RMSE on the internal validation set.

For PLS and PCR, the number of components included was increased in increments
of 1 until a clear minimum in the RMSE on the internal validation set was identified. PLS
performed optimally on the internal validation set with 30 components, while the optimal
PCR model had 290 components (from the original set of 612 features). For ridge regression,
A was varied between 0 and 3 in increments of 0.01. The lowest RMSE on the internal
validation set was achieved with A = 0.41.

Multiple SVR models were trained using original features or principal components.
An SVR model using the original features was trained using default parameters, i.e.,e = 0.1,
C=1andy = nl—f, but did not generalise well to the external test set, despite having

reasonable performance on the internal validation data. The term 7 represents the number
of training features. Further hyperparameter tuning was not pursued using the original
features. The principal components were then used to train several SVR models. A bottom-
up approach was taken to determine the optimal number of PCs, i.e., beginning with the first
five PCs, a model was trained, and on each iteration the subsequent five PCs were added.
It was discovered that an SVR model using the first 25 PCs was best. The hyperparameters
€ and C were tuned, while 7y remained at the default value, which was equal to 0.04 for
25 PCs. The optimised PCA-SVR model had € = 0.05 and C = 0.25.

Random forest models were trained using all 612 original features, all PCs, or subsets
of PCs. For each of the models, either with original features or with all PCs, an my,
value equal to 204 was used, i.e., one third of the number of features, which is the default
value. To reduce the dimensionality, the model performance with a subset of PCs was
investigated, similarly to the approach used in the SVR model training. The number of
PCs to include and the model m;,, value were both tuned in a two-step process. First,
an RF model was trained for each of a different number npc; of the major PCs. Values of
npcs of 5,10, 15, 20, 30, and 50 were tested. One hundred trees were used in each model,
where an 1y, value equal to, or rounded up from, "% was applied. This is an accepted
heuristic [35]. The models with 15, 20, and 30 PCs had similarly low RMSE values on the
internal validation set; however, the model with 20 PCs performed best on the external
test set. Hence, PCs 1 to 20 were chosen as the subset of features to fit the final model.
In the second step, using the subset of 20 major PCs, all possible models with 100 trees
were trained by varying the tuning parameter 1, from 1 to 20. The number of trees was
fixed at 100 as it was observed that there was no performance gain above that threshold.
An myy value of 5 resulted in the lowest RMSE value on the internal validation set, and
this model was selected for performance evaluation.

It is worth noting that we also investigated whether there was an advantage to using
an RF model to select a subset from all the PCs (not just the major ones), as an alternative
feature selection step. Here, an RF model was trained using all 612 PCs, and an internal
feature importance score was generated by the model. The model ranked features by
permuting the last feature in each subset used to split tree nodes and measuring the effect
on the model error during the training phase. Those which had the greatest effect on the
model error were ranked in order of importance. RF models were then generated using
each of the top 30 and top 50 important features from the model ranking, and the heuristic
My, value of “E& was applied. Neither of these models outperformed the the PCA-RF
soft sensor using only the first 20 major PCs, and therefore we felt there was no advantage
to this approach, which was significantly more time-consuming than selecting from the
major PCs.
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5. Performance Evaluation

FDA guidelines endorse the use of predictive models to realise the potential of in-line
analytical sensors for quality assurance, provided the model reliability is adequate for the
purpose [22]. Assessment of the reliability should include the consideration of: accuracy
(predictive errors of calibration and independent test data as well as biases in prediction);
precision (standard deviation of predictions); linearity (of predicted vs. measured values
over the full range of the analytical procedure); and robustness (e.g., to variations in
environmental conditions, operating conditions, raw materials, etc.). Here, we treat the
initial 24 experimental process runs, which cover the full process window of the material,
as the calibration data set and assess the calibration performance on the internal validation
data. Experimental runs 25-30 were conducted months later, allowing for variations in
the environmental conditions and raw material as well as introducing variations in the
temperature settings relative to the calibration runs. These six later runs were used as an
external test set and allowed for an assessment of robustness. Note that similar studies on
the validation of soft sensors for monitoring drug content using in-process NIR, Raman,
or UV-Vis spectra typically have internal validation sets of fewer than ten runs and external
test sets of the order of three to five runs (e.g., [5,36]).

Model accuracy was evaluated based on the mean predicted value of the yield stress
for each process run, as given by Equation (6). That is, while a yield stress prediction was
made for every observation in the process data (at a frequency of 5-10 Hz), the observed
mean yield stress in the product was indicative of the material that had been processed over
the entire four-minute run at each process condition. Hence, by averaging the predictions
over the equivalent period, a more appropriate rate for predicting mechanical properties
was applied. In the equation below, ij; is the mean predicted value of the yield stress and y;
is the mean value of the yield stress observed for the corresponding process run, while (#,)
is the number of process runs.

Table 4 lists the RMSE values of all models for the internal validation set and the
external test set. A normalised root mean squared error (NRMSE) was also calculated by
dividing the RMSE by the range of the mean yield stress values in the data set to illustrate
the magnitude of the errors relative to the range of variation in the true values. The NRMSE
is illustrated for all models in Figure 2, together with the standard deviation (Sd) of the
model errors and the relative bias of the predictions. Note that while high numbers of
components gave the best performance for both PCR and PLS on the internal validation
set, these models performed poorly on the external test set and were clearly overfitting
to the data captured in the initial 24 experiments. In similar applications, performance
on the external test set is used to select the number of components (e.g., [36]). Here, best
performance on the external test set was achieved with a PCR model with five PCs and
a PLS model with four latent variables. This resulted in lower external test errors than
internal validation errors, as is also seen in other studies using this approach [36]. In this
case, the number of model components selected was tuned to the “external” test set such
that it was no longer truly independent. High errors on several of the process runs in the
internal validation data were evident in the linearity plots for PCR and PLS (Figure 3c,d),
giving poor confidence in the reliability of these models over the full range of processing
conditions. The PCA-RF hybrid model outperformed all other models on both sets of
unseen data for all error metrics.

Model linearity was determined by plotting the predicted yield stress against the
measured yield stress, and a coefficient of determination (R?) value and y-intercept was
calculated for each model, as shown in Figure 3. It can be seen that both the PCA-RF and the
PCA-SVR model exhibited excellent linearity relative to the conventional linear methods.

As outlined in the Introduction, our previous work examined the use of low-cost
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pressure and temperature instrumentation for the prediction of yield stress in PLA extru-
sion [21]; however, this method was not previously analysed for robustness on an external
test set. The RMSE of the PCA-RF model proposed in [21] on the internal validation
and external test sets is also reported in Table 4, and it is evident this demonstrates poor
accuracy on the external test set. The performance of an RF model (without a prior PC
step), as well as PCR and PLS models on the same data set are also given for comparison.
The ability to predict product yield stress using NIR data alone was also investigated for the
RF, PCA-RF, PCR and PLS models (with hyperparameters tuned in the same fashion as for
the full data set described above). All models based solely on NIR data performed poorly
on both the internal validation and external test sets. As NIR is known to be sensitive to
process conditions, particularly temperature, it is unsurprising that using NIR data without
information on the physical state of the melt is insufficient to predict the mechanical prop-
erties of the extruded product. The predictions of the best-performing model (in all cases a
random forest model) on each of the subsets of sensor data are shown with the range and
mean of the observed yield stress values for the external test set in Figure 4.

0.3- 0.04- Method

PCARF
2 M PcasvR
M PCR (n=290)
M PCR (n=5)
M PLS (n=30)
M PLS (n=4)
0.00- . RF
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SVR
|

Internal  External Internal  External Internal  External
Validation  Test Validation  Test Validation  Test

0.02-

NRMSE

Sd of errors
Relative Bias

0.0- 0-

Figure 2. NRMSE, SD of errors, and relative bias for all soft sensors.
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Figure 3. Linearity plots with R? and intercept values for all unseen data. (a) PCA-RF; (b) PCA-SVR;
(c) PLS (n = 4); (d) PCR (n = 5). The black points relate to the internal validation set and the red points
relate to the external test set.
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Table 4. Soft-sensor RMSE values.

RMSE

Soft Sensor

Internal Validation External Test

All sensor data

PCA-RF 0.2071 0.704
PCA-SVR 0.627 0.757
PLS (n=4) 5.207 0.796
PCR (n =5) 5.525 0.994

SVR 0.923 2.315

PLS (n = 30) 0.545 2.346

Ridge A =0.41 2.191 2.543

RF 0.1965 2.622

PCR (n =290) 0.541 3.141
Pressure and temperature data only

RF 0.597 2.439

PLS (n=2) 5.38 2.631

PCR (n=3) 5.369 2.714

PCA-RF [21] 0.185 5.026

NIR data only

PCA-RF 6.839 2.758
PCR (n=2) 7.06 2.789
PLS (n=2) 6.980 2.813

RF 5.875 3.121
©  ObservedMean |  Observed Range PCARF(alldata) + PCARF(NIR) RF(P&T)
i %
5
i 7 i |
% 32
E
28~
25 21 28 29 30

Processing Run

Figure 4. Comparison of predictions for external test set using: NIR and pressure and temperature
data; pressure and temperature data only; and NIR data only.
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6. Discussion and Conclusions

The use of in-process vibrational spectroscopy tools coupled with intelligent sensing
concepts is gaining acceptance for product quality monitoring in extrusion of medical and
pharmaceutical products; however, validated applications are so far limited to quantifying
mixture concentrations (e.g., drug content), with fixed processing conditions and almost
always using the linear method of partial least squares. In this paper, we showed that com-
bining in-process NIR with pressure and temperature sensors can allow reliable prediction
of the mechanical properties of a bioresorbable polymer product under different processing
conditions. While previous work indicated the potential of using low-cost pressure and
temperature instrumentation for soft sensing of mechanical properties in PLA extrusion,
it was shown here that model robustness is significantly improved with the addition of
NIR data, which provides information on molecular bond activity in the polymer melt as
well as information on the physical state (temperature, viscosity, etc.). The results of the
low-cost method may be satisfactory for process control in non-critical applications such as
biodegradable packaging, but they are not sufficient to satisfy quality assurance demands
in highly regulated industries. Due to the cost of the NIR equipment, the method proposed
here is most suitable for high-value PLA applications with stringent quality demands,
such as in pharmaceutical and medical device products. Further, the approach described
here performs significantly better on predictive accuracy relative to other studies that
predicted the mechanical properties of PLA using PLS regression applied to hyperspectral
NIR images of post-processed samples [20]. Imaging of post-processing samples at room
temperature removes the complication of the sensitivity of the NIR spectra to changes in
processing temperature, melt viscosity, etc. However, a further advantage of the approach
presented here is that the mechanical property predictions are available in real time during
processing, and are available continuously rather than only on post-processing samples of
the product.

We showed that a nonlinear regression method is needed in this application in order to
satisfy the reliability demands outlined in regulatory guidelines for quality analysis in the
medical and pharmaceutical industries. Both support vector regression and random forest
regression approaches worked well when preceded by a principal component dimension
reduction step. While the PCA-RF approach gave the best performance, further tuning of
the PCA-SVR method is possible. However, an advantage of the random forest method is
the simplicity in model tuning, where only the number of PCs to be included and a single
hyperparameter (11;,) require tuning, compared to SVR where the number of PCs and
three hyperparameters require tuning. However, it should be noted that other nonlinear
methods have also been proposed in the literature and may also perform well for such
a task. In particular, kernel-PLS has been found to have a similar performance to SVR
and may be a more attractive alternative in the industry, which has a level of familiarity
with PLS methods and their interpretability [10].

A significant constraint on model development in medical and pharmaceutical appli-
cations is the cost of generating training data using very high-value raw materials; however,
the nonlinear methods proposed here perform well against all industry-standard reliability
metrics for analytical procedures, even with the constraint of limited training data. Further
reliability testing should be carried out if the method is to be applied outside the range of
conditions analysed in the external test set used here. However, the results indicate the
potential for in-process measurements to give rapid feedback for process control purposes,
and may reduce the amount of off-line destructive testing of the product required for
quality assurance purposes. A challenge to industrial acceptance in highly conservative,
regulated industries such as medical devices is the ‘black box” nature of such models.
The interpretability of nonlinear approaches should be addressed in future work.
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