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Abstract: As an important component of autonomous intelligent systems, the research on au-
tonomous positioning algorithms used by UAVs is of great significance. In order to resolve the
problem whereby the GNSS signal is interrupted, and the visual sensor lacks sufficient feature points
in complex scenes, which leads to difficulties in autonomous positioning, this paper proposes a new
robust adaptive positioning algorithm that ensures the robustness and accuracy of autonomous navi-
gation and positioning in UAVs. On the basis of the combined navigation model of vision/inertial
navigation and satellite/inertial navigation, based on ESKF, a multi-source fusion model based on a
federated Kalman filter is here established. Furthermore, a robust adaptive localization algorithm is
proposed, which uses robust equivalent weights to estimate the sub-filters, and then uses the sub-filter
state covariance to adaptively assign information sharing coefficients. After simulation experiments
and dataset verification, the results show that the robust adaptive algorithm can effectively limit
the impact of gross errors in observations and mathematical model deviations and can automati-
cally update the information sharing coefficient online according to the sub-filter equivalent state
covariance. Compared with the classical federated Kalman algorithm and the adaptive federated
Kalman algorithm, our algorithm can meet the real-time requirements of navigation, and the accuracy
of position, velocity, and attitude measurement is improved by 2–3 times. The robust adaptive
localization algorithm proposed in this paper can effectively improve the reliability and accuracy
of autonomous navigation systems in complex scenes. Moreover, the algorithm is general—it is not
intended for a specific scene or a specific sensor combination– and is applicable to individual scenes
with varied sensor combinations.

Keywords: UAV; robust adaptation filter; multi-source fusion; error state Kalman filter (ESKF);
information sharing coefficient

1. Introduction

With the rapid development of research on autonomous and intelligent unmanned
systems, UAVs can now operate in high-risk and complex environments, thus expanding
the scope for human activities by virtue of their flexibility, low cost, and strong adaptability.
Therefore, research on their application is of great significance to the military and civilian
fields [1–3].

At present, sensors that can be used for autonomous navigation and positioning
include inertial sensors, visual sensors, satellite navigation sensors, and so on [4]. As
the heart and eyes of autonomous navigation systems, these sensors are intrinsic to the
realization of autonomous and intelligent drones. However, satellite signals are interrupted
by urban canyons and complex environments; in fog, heavy snow, and disaster scenarios,
visual sensors lack sufficient feature points; inertial sensors face problems such as long-term
error accumulation. Therefore, a single type of sensor alone cannot meet the autonomous
navigation requirements of UAVs used in complex scenarios; multi-source sensors need
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to be used for fusion navigation. The multi-source fusion method can make up for the
shortcomings of using a single type of sensor and establish complementary advantages
and information supplementation between different sensors [5,6]. In this way, optimal
estimations are obtained, and the reliability and real-time performance of an autonomous
navigation system can be guaranteed.

Multi-source fusion localization algorithms include sequential filtering, decentralized
filtering, centralized Kalman filtering, etc., [7,8]. As a distributed multi-source fusion
filtering method, the federated Kalman method can facilitate plug-and-play in a multi-
source fusion mode, thereby ensuring the navigational integrity and accuracy of the system.
A. Carlson [9] proposed a two-stage distributed filtering federated Kalman filter algo-
rithm, which includes N sub-filters, all of which are evenly distributed with information
distribution coefficients.

However, in practical applications, the performance and estimation accuracy of a local
system constantly change with the complex navigation environment, and the traditional
Kalman filter information sharing coefficient is fixed, which means the different require-
ments of the navigation system cannot be met in complex scenarios. In order to improve
the performance of the federated filter, Shen et al. [10] proposed a new adaptive federated
Kalman filter with time-varying information sharing coefficients based on an observabil-
ity analysis of the integrated navigation of unmanned ground vehicles. Xiong et al. [11]
designed a novel dynamic vector-form information-sharing method based on an analysis
of the error covariance matrix and the observation matrix of federated filters in highly
dynamic environments. Zhang et al. [12] proposed a multi-source information fusion
localization algorithm based on the federated Kalman filter, which has verified that the
algorithm proposed in this paper displays fault tolerance and reduces the amount of re-
quired computation by comparing the centralized Kalman filter. Yue et al. [13] proposed
an adaptive federated filtering algorithm that can calculate the information distribution
coefficient using previous information and adjust the information distribution coefficient in
real time. Lyu et al. [14] proposed an adaptive joint interactive multi-model (IMM) filter for
complex underwater environments, which combines adaptive joint filtering with the IMM
algorithm. Focusing on the problem of the variable accuracy of each navigation sensor,
Guo et al. [15] designed an adaptive allocation algorithm of information factors based on
prediction residuals. However, most of these studies focus on specific scenarios and the
failure of a single sensor and lack discussions of different scenarios and different types
of sensor failures. In this paper, we consider general adaptability. The proposed robust
adaptive algorithm is not aimed at a single specific scene with a specific combination of
sensors but is suitable for similar scenes with variable sensor combinations.

Focusing on the problems of GNSS signal interruption and the lack of sufficient
feature points for visual sensors in complex scenes, this paper proposes a new robust
adaptive positioning algorithm for UAV based on IMU/GNSS/VO, which can achieve the
autonomous navigation and positioning of UAVs. Based on the ESKF, this paper establishes
an integrated navigation model of IMU/GNSS and IMU/VO, incorporating system error
model, measurement model and so on. Then, a robust adaptive localization algorithm
is proposed based on a federated Kalman filter as the algorithmic framework, combined
with robust equivalent weights and sub-filter adaptive shared coefficients. Finally, the
time and accuracy of the three schemes are compared and analyzed through mathematical
simulation experiments; the ‘OutBuilding’ scene data are selected, and the reliability and
robustness of the proposed algorithm are verified through dataset tests.

This paper is organized as follows: A multi-source fusion model based on ESKF and
federated Kalman filtering is established in Section 2, on the basis of the IMU/GNSS and
IMU/VO integrated navigation model. In Section 3, an equivalent weight adaptive filtering
algorithm is proposed based on robust equivalent weights and sub-filter adaptive shared
coefficients. In Section 4, the accuracy and real-time performance of the three schemes are
discussed and analyzed through mathematical simulation experiments. In Section 5, the
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effectiveness of the proposed algorithm is proven through dataset validation. Finally, the
conclusions are drawn in Section 6.

2. Multi-Source Fusion Model
2.1. ESKF (Error State Kalman Filter)

Compared with the classical Kalman filter, the ESKF can constrain the error state to
run at a position close to the origin, thereby avoiding the possible parameter singularity
and gimbal lock problems and ensuring parameter linearization. In this paper, a loose
combination of vision/inertial navigation and satellite/inertial navigation is modeled
based on the ESKF. Similar to the classic Kalman approach, the ESKF performs prediction
and measurement updates. The prediction model is kinematically updated based on the
IMU (Inertial Measurement Unit) model, and the measurement is updated based on VO
(Visual Odometry—the position and attitude data are obtained by solving camera image
poses) and GNSS (Global Navigation Satellite Systems) measurement data.

2.1.1. Predictive Model

This paper adopts the local navigation coordinate system, and the system state quantity
is [q, v, p, ab, ωb]

T, where q represents UAV attitude quaternion, v represents UAV speed,
p represents UAV position, ab represents the accelerometer bias, and ωb represents the
angular velocity bias. The UAV kinematics equation is as follows:

.
q = 1

2 q⊗ (ωm −ωb)
.
v = Cn

b (am − ab)
.
p = δv
.
ab = 0
.

ωb = 0

(1)

Considering that the actual measurement contains errors, here, the state quantity is set
to the error state x(t) = [δθ, δv, δp, δab, δωb]

T. The UAV error state equation is as follows:

δ
.
θ = [ωm −ωb]×δθ − δab − wω

δ
.
v = −Cn

b [am − ab]×δθ − Cn
b δωb − Cn

b wa

δ
.
p = δv

δ
.
ab = wab

δ
.

ωb = wωb

(2)

where δθ is the attitude angle error state that satisfies δq = eδθ/2, δv is the velocity error
state, δp is the position error state, δab is the accelerometer bias error state, and δωb is the
angular velocity bias error state. ωm is the measurement value of the gyroscope, wω is the
measurement noise of the gyroscope, and wωb is the noise of the gyroscope bias. am is the
measurement value of the accelerometer, wa is the measurement noise of the accelerometer,
and wab is the noise of the accelerometer bias.
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With reference to Equation (2), the equation for state is:

.
x(t) = F(t)x(t) + G(t)w(t)

F(t) =



[ωm −ωb]× 03×3 03×3 −I3×3 03×3

−Cn
b [am − ab]× 03×3 03×3 03×3 −Cn

b

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3



G(t) =



−I3×3 03×3 03×3 03×3

03×3 −Cn
b 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3


w(t) =


wa
wω

wab

wωb



(3)

Using Taylor expansion, the formula is discretized, and the following formula is
thus obtained:

xk+1 = (I + F∆T)xk + G∆Twk

= Φkxk + Γkwk
(4)

where ∆T is the sampling time.

2.1.2. Measurement Update

The UAV measurement update equation is as follows:

zk = Hkxk + vk (5)

The GNSS measurement data are converted into the local navigation coordinate system
of this paper, and the measurement matrix is obtained as follows:

HGNSS
k = [ I3×3 I3×3 03×3 03×3 03×3 ]

vk = [ nGNSS
v nGNSS

p ]
T

, nGNSS
v ∼ N(0, σ2

nGNSS
v

), nGNSS
p ∼ N(0, σ2

nGNSS
p

)
(6)

where nGNSS
v is the velocity measurement white noise, and nGNSS

p is the white noise pro-
duced by position measurement.

Similarly, the VO measurement data are the position and attitude values obtained from
the original image through pose calculation, and the measurement matrix is as follows:

HVO
k = [ I3×3 03×3 I3×3 03×3 03×3 ]

vk = [ nVO
θ nVO

p ]
T

, nVO
θ ∼ N(0, σ2

nVO
θ

), nVO
p ∼ N(0, σ2

nVO
p
)

(7)

where nVO
θ is the attitude measurement white noise, and nVO

p is the position measurement
white noise.

2.2. Fusion Model

The UAV measurement data are derived from two types of sensors, GNSS and VO, so
the multi-source fusion method is used for state estimation. Considering the need to ensure
the fault tolerance and reliability of the navigation system, the distributed filtering method
is adopted in this paper. Figure 1 shows the classic fusion feedback mode of federated
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Kalman [16]. Two sub-filters are established using GNSS/IMU and VO/IMU, respectively,
and finally the UAV navigation state is estimated by fusing the data of the two sub-filters.
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2.2.1. Time Update

The measurement update equation is as follows: Xi
k+1/k = Φi

k+1/kXi
k, i = 1 · · ·N, m

Pi
k+1/k = Φi

k+1/kPi
kΦi

k+1/k
T + Γi

kQi
k(Γ

i
k)

T (8)

where Xi
k is the state quantity of the i-th (i = 1 · · ·N) filter at time k, Xm

k is the state quantity
of the main filter at time k, Xi

k+1/k is the one-step predicted state, Qi
k is the system state

covariance, Φi
k+1/k is the state transition matrix of the i-th filter, and Pi

k+1/k is the one-step
predicted state covariance of the i-th filter.

2.2.2. Measurement Update

The measurement update equation is as follows:
Ki

k+1 = Pi
k+1/k(Hi

k+1)
T
(Hi

k+1Pi
k+1/k(Hi

k+1)
T
+ Ri

k+1)
−1

Xi
k+1 = Xi

k+1/k + Ki
k+1(Zi

k+1 − Hi
k+1Xi

k+1/k)

Pi
k+1 = (I − Ki

k+1Hi
k+1)Pi

k+1/k, i = 1 · · ·N

(9)

where Ki
k+1 is the gain matrix, Hi

k+1 is the measurement matrix, Ri
K+1 is the measurement

state covariance, Xi
k+1 is the predicted state, and Pi

k+1 is the predicted state covariance.

2.2.3. Information Fusion

The state quantity and state covariance of the main filter are obtained by fusing the
sub-filters. The fusion equation is as follows:

Pg
k+1 = [

N
∑

i=1
(Pi

k)
−1

]
−1

, i = 1 · · ·N, m

Xg
k+1 = Pg

k+1[
N
∑

i=1
(Pi

k)
−1Xi

k+1]

(10)

where Pg
k+1 is the state covariance after the main filter fusion, and Xg

k+1 is the state quantity
after the fusion of the main filter.
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2.2.4. Information Sharing and Feedback

The information sharing and feedback factor model is as follows:

Qi
k = βi

−1Qg
k

Pi
k = βi

−1Pg
k

N
∑

i=1
βi = 1

Xi
k = Xg

k , i = 1 · · ·N, m

(11)

where βi is the sub-filter sharing factor, and βm is the main filter sharing factor.

3. Robust Adaptive Filtering

In a complex environment, considering that errors, or even gross errors, arise in the
measurement values of random dynamic systems, the statistical characteristics of noise
will change, which will reduce the accuracy of Kalman filtering, and even cause diver-
gence [15,17]. In this case, the availability of sub-filter data is reduced or even completely
eliminated. One should consider performing residual testing and robustness processing on
the sub-filters before the data fusion of the main filter in order to reduce the availability
of observations. Unusable observations are isolated from the main filter so as not to con-
taminate the entire filtering process, thus improving the accuracy and fault tolerance of the
entire system.

3.1. Robust Equivalent Weight Filtering

The system state residual is determined by both the model error and the observation
error. When the model error is small, the residual can be used to represent the observation
error, and the robustness equivalent weight factor can be used to alter the observation
availability gain [18–21].

The state residual is si
k = (zi

k − Hi
kxi

k/k−1), and its covariance matrix is
wi

k = Hi
kPi

k/k−1Hi
k

T + Ri
k.

Here, si
k represents the residual of the i-th filter at time k in distributed filtering.

The residual of the i-th subfilter is normalized as follows:

vi = (si)
T(w i)

−1si (12)

Here, the IGG3 [22] weight function is introduced for robust processing, and the
residual gain matrix is adaptively adjusted using the system’s normalized residual.

µi =


1 |vi|≤ k0

(k0/
∣∣∣vi

∣∣∣ )d2
i

k0 <|vi| ≤ k1

0 |vi|> k1

di =
k1−|vi|
k1 − k0

(13)

In the absence of gross errors in observations, the normalized residuals vi obey the
standard state distribution: vi ∼ N(0, 1). Robust processing is performed on observations
that exceed the 95% confidence level, where k0 is set to 1 and k1 is set to 2. After the
observation robustness is processed, the measurement update is performed as follows: Xi

k+1 = Xi
k+1/k + µiKi

k+1(Zi
k+1 − Hi

k+1Xi
k+1/k)

Pi
k+1 = (I − µiKi

k+1Hi
k+1)Pi

k+1,k, i = 1 · · ·N
(14)

3.2. Adaptive Information Sharing Coefficient

In the classical federated Kalman, the sub-filters equally distribute the information
sharing coefficient, i.e., β1 = . . . = βn = 1/n [17,23].
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In practice, considering that the filtering accuracy of different sub-filters is inconsistent,
it is necessary to adjust the proportion of information in each of the sub-filters according
to the filtering accuracy. The information sharing coefficient determines the role of each
sub-filter in the information fusion process. Specifically, the larger the information sharing
coefficient, the larger the proportion of the state estimates dealt with by the local sub-
filters [24].

In filtering, the state covariance Pi positively reflects the filtering quality of the filter.
The smaller the value of Pi, the more accurate the filter, and vice versa. Here, the accuracy
of the sub-filter λi(k) and the state covariance Pi are defined by Equation (15), as follows.

λi(k) =
√

tr(Pi(k)·Pi(k)
T) (15)

As discussed in the previous section, the normalized residuals vi reflect the availability
of filter observations, so we can combine vi and Pi to comprehensively consider the accuracy
of the sub-filters. Here, the IGG3 weight function is introduced to constrain the availability
of observations. Considering Equations (13) and (15), the accuracy of the sub-filter can be
determined as follows:

λi(k) = µi(k)·
√

tr(Pi(k)·Pi(k)
T) (16)

given that in the federated Kalman filter, the information sharing coefficient satisfies [25–28]:

N

∑
i=1

βi(k) = 1, 0 ≤ βi(k) ≤ 1 (17)

where βi(k) is the information sharing coefficient of the i-th filter at step k.
Here, the main filter does not distribute information, so the adaptive information

sharing coefficient and sub-filter precision λi(k) are expressed as follows:

βi(k) =
1/λi(k)

1/λ1(k) + 1/λ2(k) + · · ·+ 1/λN(k)
, i = 1, 2, · · · , N (18)

3.3. Robust Adaptive Multi-Source Model

As shown in Figure 2, based on the federated Kalman filter, this study uses
IMU/GNSS/VO to build a multi-source fusion navigation system. Robust filtering is
performed on IMU/GNSS and IMU/VO, respectively, and the information sharing coeffi-
cients are adaptively adjusted by robust equivalent weights.
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4. Simulation Experiment

In order to verify the effectiveness and robustness of the algorithm proposed in
this paper, the parameters are set in alignment with the real characteristics of different
sensors, and the scene is set with consideration for the complexity of the real environment.
Simulation experiments are carried out to compare and analyze different schemes in
different scenarios. We here highlight that the following simulation experiments have been
developed and realized on the basis of the PSINS toolbox, completed by Prof. Yan Gongmin
of Northwestern Polytechnical University.

4.1. Simulation Settings
4.1.1. Track Settings

The simulation is set up with the initial position (local coordinates) as [0 m; 0 m; 0 m],
the initial attitude (pitch, roll, yaw) as [0◦; 0◦; 0◦], and the initial velocity (local coordinates)
as [0 m/s; 0 m/s; 0 m/s]. The trajectory of the drone in the air is simulated, including
acceleration, climbing, turning, descending, decelerating, and landing.

4.1.2. Scene Settings

In consideration of the real urban environment, the challenging scenarios faced by
UAV flight are here simulated. The following two periods are prone to measurement
errors and have been designed considering the limitations of the motion model, and the
complexity of the terrain and the environment.

Period 1: 100 s~200 s, when the UAV is flying between buildings; because there are few
feature points, 20 times the RVO gross error is added to the VO positioning measurement.
RVO is the measurement error value, including position error and attitude error, as shown
in Table 1.

Table 1. Sensor parameter settings.

Sensor Type Parameter Value

IMU

Gyro bias error 0.1
◦
/h

Gyro random walk error 0.08
◦
/
√

h
Accelerometer bias error 200 µg

Accelerometer random walk error 50 µg/
√

h
Frequency 100 Hz

GNSS
Position error [1 m; 1 m; 3 m]
Speed error [0.1 m/s; 0.1 m/s; 0.1 m/s]
Frequency 1 Hz

VO
Position error [0.5 m; 0.5 m; 0.5 m]
Attitude error [0.5◦; 0.5◦; 0.5◦]

Frequency 2 Hz

Period 2: 270 s~370 s, when the UAV flying height drops; here, the urban canyon
environment is simulated, and 20 times RGNSS gross error is added to the GNSS positioning
measurement. RGNSS is the measurement error value, including position error and speed
error, as shown in Table 1.

4.1.3. Sensor Parameter Settings

Table 1 shows the measurement error parameters and update frequency settings of
each sensor (IMU, GNSS, VO).

4.1.4. Simulation Scheme

In this paper, three schemes are designed to simulate the trajectory of the UAV in the
above simulation.
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Scheme 1: Traditional federated Kalman filtering. Information sharing coefficients are
distributed equally.

Scheme 2: Adaptive federated Kalman filtering. The sub-filter remains unchanged,
and the main filter adaptively adjusts the information sharing coefficient according to the
accuracy of the sub-filter.

Scheme 3: Robust adaptive federated Kalman filtering. The sub-filter performs robust
filtering, and the main filter adaptively adjusts the information sharing coefficient according
to the accuracy of the sub-filter.

4.2. Experimental Results and Discussions
4.2.1. Information Sharing Coefficient Simulation

The capacity of the information sharing coefficient for online adaptation can improve
the accuracy and fault tolerance of the whole system in the case of partial sensor failure.
The following shows a comparative analysis of the information sharing coefficients of the
three schemes.

Figure 3 shows the distribution of information sharing coefficients for the three
schemes proposed in this paper. In Scheme 1, the sub-filter information sharing coef-
ficients are evenly distributed. In Scheme 2, since the sub-filter observation error holds
a fixed value, the mean square error shows a stable change trend, and the final factor
weight of sub-filter information allocation is not changed. In Scheme 3, the information
sharing coefficient shows a changing trend in periods 1 and 2. This is due to the presence
of gross measurement or model errors, and the sub-filters worsen. The adaptive algorithm
proposed in this paper can automatically reduce its corresponding information sharing
coefficient and increase the sharing factors of the other two sub-filters. This is in line with
expectations. Therefore, the algorithm can guarantee the fault tolerance of the whole system
in a complex environment.
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Figure 3. Comparison of information sharing coefficients of three schemes: (a) Scheme 1; (b) Scheme 2;
and (c) Scheme 3.

4.2.2. Comparison of State Estimation of Different Combined Systems

In Figure 4, the black line represents the real trajectory, the red line represents the
VO/IMU estimated trajectory, the green line represents the GNSS/IMU estimated trajectory,
and the blue line represents the VO/GNSS/IMU estimated trajectory. If the three sub-filters
are used for independent navigation, the state estimation accuracy will decrease due to the
presence of gross errors in the observation values in different time periods (1, 2), which
will cause a deviation from the true trajectory and mean the accuracy requirements of the
entire navigation system are unmet. As expected, the performance of the VO/GNSS/IMU’s
global optimal fusion is not seriously affected by abnormal signals given by local sensors
and can achieve high accuracy.
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Figure 4. Comparison of state estimation of different combined systems. Asterisk indicates the
starting position, the dotted line indicates the position of the enlarged area, and the arrow indicates
the specific enlarged area (a,b).

4.2.3. Comparison of the Results of Different Schemes

In Figure 5, the black line represents the true trajectory. The red line represents Scheme
1, which is the estimated trajectory of the federated Kalman filter. The green line represents
Scheme 2, which is the estimated trajectory of the adaptive federal Kalman filter. The
blue line represents Scheme 3, which is the estimated trajectory of the robust adaptive
federal filtering proposed in this paper. It can be seen from Figure 5 that all three filtering
methods can be used for VO/GNSS/GNSS system navigation. However, on the whole,
and especially during the 100~200 s and 270~370 s periods, compared to the estimated
trajectories of adaptive federated Kalman filtering and federated Kalman filtering, the
estimated trajectories of the robust adaptive federal filter are the closest to the true values.
This is because the robust adaptive federated Kalman can perform robust and adaptive
adjustments on the sub-filter estimates, and the main filter performs adaptive information
sharing coefficient allocation according to the estimated weights of the sub-filters. As
expected, the performance of the main globally optimal fusion filter is not severely affected
by local sensor anomalies and can achieve high accuracy.
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The attitude error estimation curve is shown in Figure 6. The attitude angle estimates
obtained by the three filtering methods can all track the change in the true attitude angle,
but their estimation accuracies are different. The error in the pitch angle and roll angle is
within 100 arc seconds, and the error in the yaw angle is within 30 arc minutes. Compared
with the actual data, the error here is small, which has a strong impact on the accuracy
of the initial value and initial state covariance set by the simulation. At the same time, it
can be seen that the accuracy of Scheme 3 is greatly improved compared with the other
two schemes.
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Figure 6. Comparison of attitude errors.

Figures 7 and 8 show the comparison charts of speed and position error. According
to the error estimation curve, it can be seen that the overall error of Scheme 3 is relatively
stable, with a slight oscillation around the zero value. In the two time periods set in this
paper, even when the local sensors are interfered with or fail entirely, the whole system can
still maintain sufficiently high precision for navigation. This is because Scheme 3 can switch
between different systems in time to reassign weights when local sensors are affected by
external disturbances. Therefore, the robust adaptive filter can use the current adaptive
state of each local system and can effectively utilize sub-filters with higher state accuracy,
thereby reducing the estimated value of the error.
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Figure 8. Comparison of position errors.

In order to further compare the three schemes used for information fusion, we carried
out 20 Monte Carlo simulations analogous to the real environment. The noise, trajectory
and speed of each setting are different. The mean absolute errors (MAEs) of the position
errors for the 20 experiment groups are listed in Table 2, and the average error precision is
shown in Figure 9.

Table 2. The MAEs of position errors (m) in the 20 experiment group.

Number Scheme 1 Scheme 2 Scheme 3

1 0.4818 0.1813 0.1470
2 0.3065 0.1891 0.0755
3 0.3805 0.2339 0.1125
4 0.3480 0.1894 0.0616
5 0.3754 0.1758 0.0641
6 0.4136 0.1953 0.0983
7 0.4064 0.2052 0.0929
8 0.3724 0.2280 0.0258
9 0.4319 0.1735 0.0093
10 0.4257 0.2243 0.0267
11 0.4267 0.2148 0.0140
12 0.3838 0.2646 0.0730
13 0.4428 0.2031 0.0542
14 0.4273 0.2063 0.0559
15 0.5012 0.1648 0.0162
16 0.4434 0.1562 0.1018
17 0.4471 0.2241 0.0882
18 0.4030 0.2017 0.0671
19 0.3493 0.2318 0.1115
20 0.3860 0.1759 0.0357

As shown in Figure 9 and Table 2, the accuracy of Scheme 3 (robust adaptive Federated
Kalman filtering) is significantly better than those of the other two schemes. The average
position error accuracies of the 20 experiment groups were calculated separately, and the
errors of the three schemes were obtained as follows: 0.4009 m, 0.2117 m, and 0.0719 m.
Compared with Scheme 2, the accuracy of Scheme 3 increased by 66%, and compared
with Scheme 1, it increased by 82%. The discussion and analysis of the above results
further prove that the robust adaptive federated Kalman filtering algorithm proposed in
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this paper achieves high accuracy and good robustness, and the algorithm can be applied
to complex environments.
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The calculation times of the three algorithms have been tested. The test environment
was Windows C++, and the test platform was configured at 1.99 GHz, with Intel(R) Core
(TM) i7-8550U CPU. The times required for the single-step execution of the three schemes
are shown in Table 3. The time required for the single-step execution of the robust adaptive
federated Kalman filter algorithm was 2.12 × 10−2, which meets the real-time requirements
of practical applications.

Table 3. The time required for the single-step execution of the three schemes.

Scheme 1 Scheme 2 Scheme 3

Time (s) 7.56 × 10−3 9.01 × 10−3 2.12 × 10−2

5. Dataset Validation

On the basis of the simulation verification preformed in the previous section, the
dataset collected by the Shanghai Beidou Navigation and Location Services Key Laboratory
(UAV configuration sensors and related parameters are shown in Figure 10 and Table 4) are
used for verification. This dataset includes four scenarios: 5 × 5 × 2.5 m testing room with
Vicon, “Room”; 8 × 12 × 5 m hall of office with Vicon, “Hall”; 20 × 20 m outdoor square,
“OutSquare”; 50 m2 outdoor area near the building, “OutBuilding”. Among the four scenar-
ios, “OutBuilding” (“OutBuilding” is shown in Figure 10) is the most representative, and
offers the conditions of short-term errors in or interruptions of GNSS and VO measurement
due to signal occlusion or single features. In order to test the applicability of the algorithm
in this paper in a complex environment, the SE_OutBuilding_06.bag data are here used to
artificially add errors in different time periods. By comparing the final results of the three
different schemes, the effectiveness of the algorithm in this paper is verified.

First, based on the ESKF model, the state estimation results of the VO/IMU, GNSS/IMU,
and VO/GNSS/IMU integrated navigation systems are obtained, as shown in Figure 11.
It can be seen that these integrated navigation systems meet the needs of navigation and
positioning, without model or measurement errors. The positioning accuracy is deter-
mined by the accuracy and combination of the sensors themselves. The VO/GNSS/IMU
combination shows the highest accuracy, followed by the VO/IMU combination, and
finally GNSS/IMU.
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Figure 10. UAV sensor configuration (different sensors and mounting locations for UAV)
and “OutBuilding”.

Table 4. Sensors and related parameters.

Sensor Product Model Collection Frequency (Hz)

Optical flow Px4flow v1.3.1 20
Stereo camera 640 × 480 × 2 OV7725 30

IMU MPU9250 40
RGB-D Camera ASUS Xtion Pro Live 40

Vicon Vero 360 100
RTK GNSS receiver Ublox M8P 10
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Figure 11. Location estimation for different scenarios.

In consideration of the real properties of the sensor and the complex external envi-
ronment, the following two time periods are set. These two periods contain model and
measurement errors, which can enable us to more effectively verify the algorithm proposed
in this paper.



Sensors 2022, 22, 2832 15 of 18

Period 1: 10~40 s; non-Gaussian noise is added to RGB-D Camera measurement,
which obeys the following distribution:

g(ω) =
1− ε

σ1
√

2π
exp(− ω2

2σ2
1
) +

ε

σ2
√

2π
exp(− ω2

2σ2
2
)

where σ1= 2500 µrad, σ2= 4σ1 and ε = 0.5.
Period 2: 60~90 s; 20R random error is added to RTK GNSS receiver posi-

tioning measurement.
As shown in Figure 12, the information sharing coefficients of different schemes show

different trends, as consistent with the simulation results in Section 4.2. Since the mea-
surement accuracy of the vision sensor is higher than that of GNSS, when the information
sharing coefficient in Scheme 2 stabilizes, the ratio of VO/IMU will be higher. At the same
time, the information sharing coefficient of Scheme 3 shows a change trend, which indicates
that the information sharing coefficient of the robust adaptive equivalent Kalman filter
algorithm can be adjusted online when the environment changes, thereby improving the
accuracy of the entire system.
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Figure 12. Information sharing coefficient of different schemes (Scheme 1, Scheme 2, Scheme 3).

Using the three schemes set in Section 4.1, a position estimate is obtained as shown
in Figure 13. Here, the black line represents the true trajectory; the red line (Scheme 1)
represents the estimated trajectory of the federated Kalman filter; the green line (Scheme 2)
represents the estimated trajectory of the adaptive information sharing coefficient of the
main filter; the blue line (scenario 3) represents the estimated trajectory of the robust
adaptive federated filter proposed in this paper. As can be seen, the robust adaptive
federated Kalman filter proposed in this paper can effectively track the ground truth.

Figure 14 shows a comparison of the position, velocity, and attitude errors of the
three schemes. Compared with Scheme 1 and Scheme 2, Scheme 3 has a higher overall
accuracy, which is consistent with the simulation results shown in Section 4.2. For the next
20 analyses, the mean absolute errors (MAEs) and standard deviations (STDs) of the state
estimation errors of the three schemes are obtained individually, as shown in Table 5.

As can be seen from Table 5, compared with Scheme 1 and Scheme 2, the average
value of the pitch angle and roll angle in Scheme 3 is increased by 1 degree, and the
average value of the yaw angle is increased by 2 degrees. The average speed is increased
by 0.2 m/s, and the average position is increased by about 0.2 m. These experimental
results further demonstrate that the robust adaptive Kalman filter algorithm proposed in
this paper can effectively improve the accuracy and robustness of the multi-source fusion
navigation system. Scheme 3 is significantly better than the other two schemes, with an
overall accuracy improvement of 2–3-fold.
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Figure 14. Comparison of position, speed, and attitude errors of different schemes.
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Table 5. Accuracy statistics of different schemes (the mean absolute errors (MAEs) and standard
deviations (STDs) of the state estimation errors of the three schemes).

Error Pitch
(◦)

Roll
(◦)

Yaw
(◦)

VX
(m/s)

VY
(m/s)

VZ
(m/s)

X
(m)

Y
(m)

Z
(m)

Scheme 1
MAE 1.56 1.62 3.01 0.30 0.25 0.22 0.26 0.24 0.19
STD 0.95 0.97 1.97 0.23 0.22 0.19 0.50 0.55 0.64

Scheme 2
MAE 1.08 1.12 1.78 0.15 0.14 0.12 0.13 0.12 0.11
STD 0.81 0.85 1.25 0.15 0.11 0.09 0.32 0.45 0.84

Scheme 3
MAE 0.62 0.55 0.95 0.07 0.07 0.06 0.06 0.07 0.06
STD 0.41 0.23 0.52 0.10 0.08 0.07 0.15 0.18 0.14

6. Conclusions

With the intention of improving the reliability and robustness of UAV autonomous
navigation and positioning in complex scenarios, we have here designed an autonomous
positioning fusion algorithm. The main innovation is that the algorithm can not only
independently evaluate the working performance of the sub-filters online, but it can also
dynamically adjust the information sharing coefficient. In order to verify the effectiveness
and robustness of the algorithm proposed in this paper, an urban canyon scene has been
simulated. Through comparative analysis of the two scenarios and three schemes set
up, Scheme 3 displayed the highest accuracy of robust adaptive federal kalman filtering,
followed by Scheme 2 (adaptive federal Kalman filtering), and finally Scheme 1 (federal
Kalman filtering). In addition, by testing the time taken for the single-step debugging of
the robust adaptive federal Kalman filter, it has been proven that the algorithm can meet
the requirements of actual real-time measurements. Further, this paper used the Beidou
Navigation and Location Services Key Laboratory dataset for verification. Using the “Out-
Building” data, the artificially simulated model errors and measurement gross errors have
been added, and the final results show that the overall accuracy of the algorithm proposed
in this paper is improved 2–3-fold. In summary, the algorithm can significantly improve
the accuracy and tolerance of the navigation system in complex environments and can be
applied to UAV autonomous navigation in urban canyons and GNSS loss-of-lock scenarios.
Moreover, the algorithm is general, and can be applied in similar complex scenes and other
sensor combinations. Therefore, using the robust adaptive fusion algorithm proposed in
this paper, reliable, adaptive, robust and high-precision positioning information can be
obtained. Next, we will focus on the actual application of UAVs in complex environments
to verify the effectiveness of the algorithm proposed in this paper.
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