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Abstract: Existing inefficient traffic signal plans are causing traffic congestions in many urban areas.
In recent years, many deep reinforcement learning (RL) methods have been proposed to control traffic
signals in real-time by interacting with the environment. However, most of existing state-of-the-art RL
methods use complex state definition and reward functions and/or neglect the real-world constraints
such as cyclic phase order and minimum/maximum duration for each traffic phase. These issues
make existing methods infeasible to implement for real-world applications. In this paper, we propose
an RL-based multi-intersection traffic light control model with a simple yet effective combination of
state, reward, and action definitions. The proposed model uses a novel pressure method called Biased
Pressure (BP). We use a state-of-the-art advantage actor-critic learning mechanism in our model. Due
to the decentralized nature of our state, reward, and action definitions, we achieve a scalable model.
The performance of the proposed method is compared with related methods using both synthetic
and real-world datasets. Experimental results show that our method outperforms the existing cyclic
phase control methods with a significant margin in terms of throughput and average travel time.
Moreover, we conduct ablation studies to justify the superiority of the BP method over the existing
pressure methods.

Keywords: reinforcement learning; intelligent traffic signal control; optimization

1. Introduction

Traffic congestion has become increasingly concerning in recent years, having a huge
impact on the economy of major cities and countries. According to Forbes, traffic congestion
costs $74.1 billion annually in the freight sector alone in the United States [1]. Urban cities
suffer 149 h lost a year, on average, making it 24.4 min per day. The cost of traffic congestion
in South Korea surpassed 50 trillion KRW (as of 2017) [2], which makes traffic congestion
one of the primary urban issues. Reducing congestion would have significant benefits,
not only for the country’s economy but also for its environmental welfare by mitigating
millions of kilograms of harmful CO2 emissions and for its societal interest by increasing
productivity at workplaces [3,4]. Among the known factors in traffic, such as increasing
demand for transportation and the design of road structures, traffic light control plays a
major role in improving traffic management.

Traditional traffic signal control systems rely on manually-designed traffic signal plans,
such as SCATS [5] and SCOOT [6] systems. The traffic signals use pre-defined fixed time
duration in each cycle for the given intersection, calculated based on historical information
of the intersection. Starting time and duration of green and red lights change depending
on different times of the day, e.g., flat traffic hours or rush hours. Later works proposed
more adaptive and intelligent ways of adjusting phase cycle and durations by measuring
traffic demand fluctuations and volume-to-capacity ratio [7] or by optimizing offsets to
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decrease the number of stops for vehicles [8–10]. The latter method is popularly known
as GreenWave. Although such transportation engineering methods perform well for the
routine traffic volumes, they falter during unexpected events (also known as non-recurring
congestion events), such as disruptions or/and accidents in neighboring intersections,
weather condition changes, constructions in certain parts of the city, and popular public
events such as football events. In order to deal with such non-recurring congestion events,
traffic signal control systems should employ intelligent algorithms which are responsive
to dynamic and real-time traffic flow. With the development of artificial intelligence
(particularly, adaptive optimization models and deep neural networks) and navigation
applications (e.g., Google maps) over the years, vehicle trajectory data and traffic data
can be collected and used to optimize traffic control systems. Among many, some nature-
inspired optimization algorithms, such as Ant Colony Optimization (ACO) [11,12] and
Artificial Bee Colony (ABC) [13] approaches, were employed to minimize the travel time of
vehicles. The ABC algorithm usually uses meta-heuristic dynamic programming tools to
determine the green light duration and is inspired by the behavior of honey bees. Similarly,
the ACO algorithm is based on the behavior of ants in finding optimal paths to their
food. The ACO employs the principle of depositing pheromones to determine optimal
paths for vehicles to improve traffic movements. However, these methods are mostly
used for finding the shortest/optimal path for vehicles rather than essentially adjusting
traffic signals according to the intersection load. In recent years, many researchers have
studied reinforcement learning (RL) techniques to dynamically analyze real-time traffic
and adjust traffic light signal parameters (phase selection, cycle length, and duration of
phase) according to observed information [14–16]. RL is widely used in the context of smart
traffic light control theory and its applications because RL can facilitate traffic systems to
learn and react to various traffic conditions adaptively without the need for fixed traffic
programs and human labor [17]. A simplistic representation of the RL model is shown in
Figure 1. An agent of the RL model operates as an experienced policeman who manages
the intersection by observing the environment (e.g., the number of cars in each segment of
intersection) and takes action (e.g., chooses the best signal phase) by waving special signals
to drivers. The objective of an agent is to increase cumulative reward (e.g., the number of
cars that passed the intersection).
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In RL problems, defining the state representation, action space, and reward is an
important task, and according to this definition choice, many studies differ from each other.
In earlier stages, RL models were proposed for single intersections using tabular Q-learning.
Later, deep RL-based models that can represent more complex states are proposed [18–21].
However, there are some limitations to evaluate the performance of single intersections
models. For example, even though the reward gained by the model is high, the outcome
of this intersection changes the flow of other intersections. As a result, vehicles passed
from one intersection may cause traffic congestions in the next intersection. To address
this issue, several researchers proposed RL-based multi-intersection (e.g., multi-agent)
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models. Although they showed promising results in simulation conditions, most of the
existing methods cannot be implemented in real-world applications due to (1) negligence
towards real-world constraints, such as minimum/maximum duration for signal phases
and maintaining the phase order, and (2) complex representation of traffic situation, i.e.,
high-dimensional state definition or complicated action definition. As for (1), most of the
recent research works [16,22–24] are based on non-cyclic control, i.e., phase order (also
called phase sequence) is not guaranteed in order to achieve absolute flexibility. Even
though this type of approach contributes to maximizing the throughput of the intersection,
such model designs lead to starvation in other lanes and restrict the movement of pedestrians.
Moreover, irregular phase switches lead to confusion and frustration of drivers, which
may result in accidents and/or dangerous situations. As for (2), research works [16,20,25]
use complex matrix-based state representation and images of vehicle positions in the
incoming lanes of the intersection, which cannot be implemented in large-scale real-world
applications due to computational costs and application latency. Therefore, new methods
with lightweight state, action, and reward definitions are required for cyclic phase traffic
light control systems.

In this paper, we propose a cyclic phase RL model for traffic light control. We introduce
a new coordination method called Biased Pressure (BP) that includes both the phase
pressure and the number of approaching/waiting vehicles associated with the phase. We
use an advantage actor-critic (A2C) method to take advantage of both value-based [26]
and policy-based [27] RL methods (for more details, refer to Section 3). Moreover, our
proposed model considers the above-mentioned real-world constraints in the model design
and implementation. We test our model in both synthetic and real-world datasets and
compare its performance with the related methods. Our contributions in this research are
summarized as follows:

1. We propose a scalable multi-agent traffic light control system. Decentralized RL
agents are used to control traffic signals. Each agent makes decisions based on its
own observation. Since neighboring intersections or other intersections in the road
network do not negotiate to make a decision, we can achieve a scalable model.

2. We introduce a BP method to determine the phase duration of the traffic signal. BP is
an optimized version of the pressure method from transportation engineering, which
aims to maximize the throughput of an intersection. BP is especially useful when the
action definition is based on cyclic phase control.

3. We maintain must-have constraints of the traffic signal plan in the definitions of state,
action, and reward function to make our method feasible for real-world applications.
Our state and reward definitions are simple yet effective in design and do not depend
on the number of traffic movements so that our method can be applied to different
road structures with multiple allowed traffic movements.

We believe this is the first work including a combination of the above-mentioned
contributions.

The remaining structure of this paper is as follows. Section 2 discusses conventional
and RL-based related work in the context of traffic light control. The background of the
RL algorithm is introduced in Section 3. Section 4 explains our methodology and its
learning mechanisms, agent design, and network design in detail. Section 5 describes the
experimental environment, evaluation metrics, datasets, and compared methods. Section 6
demonstrates ablation studies on the BP method, extensive experiment results, and a
comparison of our method with existing studies and methods. Finally, Section 7 concludes
the paper.

2. Related Work
2.1. Conventional Traffic Light Control

Conventional traffic light control systems can be divided into two main groups: fixed-
time traffic signals methods and optimization-based transportation methods. The fixed-
time traffic signal usually uses historical data to design traffic signal plans for each in-
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tersection. This traffic signal plan often includes a fixed duration for each phase, cycle
length, and a fixed time interval (offset) [5,6,28]. Using prior information of the intersection
(e.g., traffic movement data, daily average flow), these parameters can be determined,
and often separately for peak and rush hours. The optimization-based transportation
methods initially start with pre-timed cycle lengths, offsets, and phase split and gradually
optimize the cycle length and phase split based on traffic demand fluctuation information.
For example, Koonce et al. [7] employed the Webster method to adjust phase durations by
measuring fluctuation information and volume-to-capacity ratio for a single intersection.
Moreover, this method also uses critical lane volumes to optimize traffic flow served by
each lane. However, the method is applied to optimize parameters for a single intersection.
To improve coordination between several (multiple) intersections, the GreenWave [8–10]
method was proposed. This method determines the offsets between the beginning of green
lights in the consecutive intersections so that vehicles passed from one intersection would
not cause traffic congestion in the next intersection. By reducing the number of stops of
vehicles, the method achieves a shorter travel time and, thus, produces higher throughput.
Moreover, this traffic plan changes during rush hours and/or special days of the week or
month, which gives more flexibility and optimization. The GreenWave method, however,
gets a lot more challenging due to dynamic traffic flows and volume coming from opposite
directions, as it only optimizes flow for unidirectional traffic, and therefore, it is not flexible
for non-recurring traffic situations.

Some other optimization-based methods are proposed to minimize vehicle travel
time. For example, Maxband [29] was developed to minimize the number of stops of
vehicles along two opposite arterials to improve the efficiency of the traffic flow. By finding
a maximal bandwidth based on the signal plan, more traffic can progress through the
intersections without stops. However, Maxband requires all intersections to have the same
cycle length. In comparison, the self-organizing traffic light control (SOTL) [30,31] method
determines whether to keep or change the current phase based on the requests from current
and other competing phases. For example, SOTL changes to the next phase if there is a
request from the competing phase and the current phase’s green light is larger than the
hand-tuned threshold. Otherwise (i.e., when there is no request from other phases or if
the current phase is still ongoing), it keeps the current phase. Moreover, the request from
the other phase is generated when the number of waiting vehicles at the red light is larger
than the threshold. Later, the MaxPressure [32,33] concept was introduced to maximize the
throughput of the road network by pressing the traffic flow at the intersection. The aim
of this method is to balance the queue length of adjacent intersections by minimizing the
pressure of the phase. If the pressure of each intersection is minimized, then the maximum
throughput is achieved for the whole road network. The MaxPressure method has become
a popular approach in the transportation field as it can be integrated with modern deep
learning methods, and is often used as a baseline for state-of-the-art methods.

2.2. RL-Based Traffic Light Control

In contrast with conventional methods, RL-based traffic light control methods di-
rectly learn and optimize traffic signal plan by interacting with the environment. Such
RL methods are divided into two major groups: (1) single intersection traffic light con-
trol where the RL agent monitors and optimizes a single intersection [16,18–21] and (2)
multi-intersection traffic light control where the RL agent monitors multiple intersections
in the area [24,25,34–39]. Since the real-world scenarios at the city-level include numer-
ous intersections, multi-intersection traffic light control systems are preferred over single
intersection control systems.

In addition, RL methods can be categorized further according to the state definition
of the agent. For example, in research works [21,36,40], the positions of vehicles were
used to represent the state of the intersection. In this approach, an information matrix
can be used to update the position of each vehicle. Some methods [16,17,23,40–43] use
queue length as their state definition, which is simpler than tracking the position of each



Sensors 2022, 22, 2818 5 of 20

vehicle. Recent state-of-the-art methods [25,35,39] use pressure of the intersection to define
the state. The pressure approach considers the number of vehicles in both incoming (i.e.,
entering vehicles) and outgoing (i.e., exiting vehicles) lanes of the intersection, and it is
calculated by subtracting the number of exiting vehicles from the number of entering
vehicles. Although one state representation is not necessarily ‘better’ than the other in
terms of performance, a simpler approach to define the state is preferred because complex
states, such as vehicle position, create undesired computational cost and lead to latencies,
especially in the large-scale road networks.

RL-based traffic light control systems can also be differentiated by their action def-
inition. Two types of action definition, namely phase selection (i.e., which phase to set)
and phase duration selection (i.e., what duration to set for the next phase), are commonly
used in recent studies. Most research works, including [16,23–25,34,39], use phase selection,
in which an agent tries to select the optimal phase according to the traffic state. In this
action definition, the order of the phase and the overall cycle length is not considered.
At each time interval, an agent selects an optimal phase to increase its cumulative reward.
Even though this approach produces high efficiency, it cannot be implemented in most
real-world intersections because the phase order and minimum/maximum phase duration
are not guaranteed. Moreover, phase selection-based methods tend to change traffic light
signal many times in a short period of time which can confuse drivers in the real world.
This tendency has also been identified by [35,44]. To solve this problem, another group
of methods [17,21,35] uses phase duration selection, where an agent selects the optimal
duration for the next phase upon switching. In [21], the phase duration is adjusted by
increasing or decreasing it by 5 s. However, this method changes the phase duration
relatively slower; thus, it cannot respond to dramatic traffic changes. In [35], the cycle
length is fixed, and the duration of each phase is selected proportionally which adds up to
the fixed cycle length. In [17], the action space of possible durations for phases is directly
defined, and an agent selects the optimal duration from this action space. However, none of
these methods offer an optimal combination of state, reward, and action definitions. In this
paper, we present lightweight state and reward definitions using an improved pressure
method called Biased Pressure, and our action definition guarantees phase order as well as
the minimum/maximum duration for each phase to maintain real-life constraints.

3. Background of Deep RL Algorithm

Deep RL is one of the machine learning algorithms that combines RL and deep learning.
In RL, an agent interacts with the environment and learns a “good behavior” to maximize
the objective reward function using trial and error experience. Based on this experience,
the deep RL agent further analyzes its environment through exploration and learns to take
better action at each time step. In recent years, deep RL has become progressively popular
in many machine learning domains and real-world applications, such as robotics [45],
finance [46], self-driving cars [47], healthcare [48], smart grids [49], and social networks [50],
even beating human performances in some domains. This progressive leap can be seen,
especially, in game theory, where deep RL agents successfully beat the world’s top players
in Poker, Go, and Chess [51–53]. This type of learning process is regarded as Markov
Decision Process (MDP) and can be defined using five-tuple < S, A, R, T, γ >, where:

• S is the state space,
• A is the action space,
• R is the reward function,
• T : S× A× S→ [0, 1] is the transition function,
• γ ∈ [0,1) is the discount factor.

At each time step t, an agent receives the current state st and reward rt. Then, it takes an
action at, which results in state transition st+1 and reward rt+1, determined by (st, at, st+1).
The objective of the agent is to learn a policy π(s, a) : A× S→ [0, 1] , which maximizes the
expected cumulative reward. Generally speaking, π is a mapping states st to action at. This
process continues until an agent reaches a terminal state, e.g., the end of the game.
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The expected reward can be represented with the Q-value function Qπ(s, a), which is
defined as Equation (1):

Qπ(st, at) = E

[
∞

∑
k=0

γkrt+k

∣∣∣∣∣ st = s, at = a, π

]
(1)

The intuition behind the equation is that the agent tries to get maximum reward by
taking action at in the current state st, following policy π. The action policy can be obtained
recursively, as shown in Equation (2):

Qπ(st, at) = ∑
st+1∈S

T(st, at, st+1)(R(st, at, st+1) + γQπ(st+1, at+1)) (2)

and the optimal Q-value function Q∗(st, at) = max
π∈Π

Qπ(st, at) can be defined as Equation (3):

Q∗(st, at) = ∑
st+1∈S

T(st, at, st+1)

(
R(st, at, st+1) + γ max

at+1
Q∗(st+1, at+1)

)
(3)

Then, the optimal policy can be derived directly from Q∗(st, at), as shown in Equation (4):

π∗(st) = argmax
a∈A

Q∗(st, at) (4)

The intuition behind obtaining optimal policy is selecting the best action which maxi-
mizes the expected reward. In many cases, action space available to the RL agent is limited
or/and restricted. Therefore, the agent needs to learn how to map the state space into an
action space. In this scenario, the agent might have to think about the long-term outcome
of its actions, i.e., maximizing future gain, even though the current action may result in a
smaller or even negative reward. The importance of immediate and future reward can be
defined by the discount factor γ.

In value-based methods, e.g., Q-learning [26], an agent relies on value function opti-
mization, shown in Equation (1), without an explicit policy function. Its parameter update is
based on one-step temporal difference sampled using agent experience stored in experience
replay in the form of < st, at, rt, st+1 >:

YQ
j = rt + γ max

at+1
Q∗
(
st+1, at+1; θj

)
(5)

where θj denotes parameters at the jth iteration. After each iteration, the parameters of θ

are updated by minimizing the loss function (temporal difference) L(θ) = YQ
j −Q

(
s, a; θj

)
:

θj+1 = θj + α
(

YQ
j −Q

(
s, a; θj

))
(6)

where α denotes a learning rate. This learning mechanism approximates Q
(
s, a; θj

)
towards

Q∗(st, at) from Equation (3) after many iterations, given the assumption that the experience
gathered (through exploration) in experience replay is sufficient.

Policy-based methods, e.g., REINFORCE [54], directly optimizes policy function from
the parameterized model πθ . In such methods, an agent selects the optimal policy πθ

that maximizes the expected return. Policy evaluation Qπ(st, at) is used to evaluate policy
improvement, which increases the likelihood of the actions to be chosen by the agent. Policy
gradient estimator ∇ωL(ω) is derived by Equation (7):

∇ωL(ω) = E[∇ω log πω(s, a) Qπω (s, a)] (7)
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where ω denote policy parameters and the term ∇ω log πω(s, a) is derived from the likeli-
hood ratio trick ∇ω log πω(s, a) = ∇ωπω(s,a)

πω(s,a) , as in ∇ log x = ∇x
x . Finally, parameters are

updated with a learning rate of απ , as shown in Equation (8):

ωj+1 = ωj + απ ∇ω log πω(s, a) Qπω (s, a) (8)

Although such policy-based methods are more robust to nonstationary MDP transi-
tions (because they use cumulative reward directly, instead of estimating at each iteration,
Equation (7)), they experience a high variance in log probabilities and cumulative return
due to random sampling. This results in noisy gradients, which cause unstable learning.
Variance, however, can be reduced by using the advantage actor-critic (A2C) method [55].
A2C method consists of an actor which takes an action by following a policy and a critic
which estimates the value function of the policy. Generally speaking, A2C takes the advan-
tage of both policy-based and value-based methods. The term ‘advantage’ in the definition
of A2C refers to an advantage value and it is calculated as:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (9)

Intuitively, subtracting value Vπ(s) (as opposed to an action-value Qπ(s, a), shown in
Equation (2), Vπ(s) refers to the state-value) as a baseline leads to smaller gradients which
results in smaller updates, and this leads to stable learning. By combining Equations (7)
and (9), we derive Equation (10), and by combining (8) and (9), we derive Equation (11):

∇ωL(ω) = E[∇ω log πω(s, a) Aπω (s, a)]Aπ(s, a) = Qπ(s, a)−Vπ(s) (10)

ωj+1 = ωj + απ ∇ω log πω(s, a) Aπω (s, a) (11)

In this work, we use A2C methods because of their advantages over policy-based and
value-based methods.

4. Methodology
4.1. Agent Design

In this section, we discuss real-world constraints that need to be included in agent
design, with background justification for each case. Additionally, we present our action,
space, and reward definition.

Constraints. As discussed in the introduction, some real-world constraints need to
be considered. Simulation is usually a ‘perfect world’ assumption where pedestrians are
not part of the environment. If we do not maintain the following must-have constraints,
the agent always tries to get a high reward; thus, it does not care about pedestrians or
starved vehicles (i.e., vehicles that have been waiting for a long time). Note that even
though these constraints conflict with maximizing the throughput, they need to be satisfied
in order to make the model suitable for real-world applications.

1. In a real-world environment, the phase order in the traffic light is important for
large intersections with pedestrian crossing sections. If the order of the traffic light is
not preserved, pedestrians cannot cross the intersections safely. Additionally, some
vehicles might end up waiting for a green light for a long time, which leads to phase
starvation. Figure 2a shows an illustration of an intersection with four phases. When
phase #2 is set (Figure 2b), pedestrians can cross the intersection through A–C and
B–D directions; when phase #4 is set, they can cross through A–B and C–D.

2. The minimum phase duration is necessary to enable safe pedestrian crossing. The min-
imum time required for safe crossing is determined by the width of the road in the
intersection and the average walking speed of pedestrians. Generally, pedestrian
walking speeds at the crosswalk in normal conditions range from 4.63 km/h to
5.37 km/h [56]. Thus, the minimum phase duration for roads, for example, with a
width of 15 m and 20 m should be about 12 s and 15 s, respectively.
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3. Maximum phase duration is also necessary to prevent starvation of vehicles. Increas-
ing the duration of the phase indefinitely, e.g., due to continuously incoming vehicles,
may cause starvation in other lanes.
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Figure 2. The illustration of (a) a road intersection that has four directions and twelve traffic move-
ments, and (b) four traffic signal phases. Here, phase #4 is set for an intersection. The phase order is
set cyclic as #1-2-3-4-1-2, etc.

State definition. The state s is defined for each intersection i at time t as si
t. The state

includes a current phase p, its duration τ, and the biased pressure (BP) of each phase. This
means that our state definition does not depend on the number of traffic movements (e.g.,
8, 12, 16), which gives flexibility on road network configuration and the advantage over
existing MaxPressure methods, such as MPLight [25] and PressLight [39].

MaxPressure. The objective of the MaxPressure control policy is to maximize the
throughput of the intersection by maintaining equal distribution in different directions,
which is achieved by minimizing the pressure of the intersection. It is determined by the
difference of queue length on incoming and outgoing lanes, as shown in Equation (12).
However, MaxPressure control is not suitable for the cyclic control schemes. The problem
with MaxPressure is that it sets the same pressure for different lanes if the difference
between incoming and outgoing traffic is the same. Figure 3 shows an example scenario
where the pressure values of phases #1 and #4 are both zero. Therefore, the MaxPressure-
based agent treats them equally. However, phase #4 has more approaching vehicles.
In cyclic control, any phase with the highest pressure cannot be selected unless it is the next
phase. Therefore, lanes with more incoming vehicles (even though these lanes have the
same pressure) require more time to free the intersection.

Ppk
t = ∑

(l,m)∈pk

[
ql

t − qm
t

]
(12)

where Ppk
t denotes the pressure of phase pk and ql

t and qm
t denote the queue length of

incoming lanes l and outgoing lanes m associated with phase pk, respectively.
Biased Pressure (BP). To address the above-mentioned issue, we introduce a new version

of MaxPressure control by putting some bias towards the number of approaching vehicles
(or/and waiting vehicles) in the incoming lanes. To do this, we calculate the pressure of
each phase and add the number of vehicles in the incoming lanes of this phase, as shown
in Equation (13):

BPpk
t = ∑

l∈pk

Nl
t + ∑

(l,m)∈pk

[
ql

t − qm
t

]
(13)

where Nl
t denotes the number of approaching vehicles in the incoming lanes l associated

with phase pk. Note that, unlike phase selection methods where the agent sets a phase with
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the highest pressure, the aim of our work is to determine the phase duration. Moreover, the
limitation of cyclic control compared to non-cyclic control is that the phase order should
be preserved, which means the agent cannot set the previous phase without completing
the cycle. Therefore, adding the number of approaching vehicles, as shown in Equation
(13), helps the agent select a more appropriate phase duration. Coming back to an example
scenario shown in Figure 3, BPpk values for phases #1 and #4 are no longer the same, which
means an agent now has ‘more’ information about the traffic situation in the intersection to
take a better action, e.g., the duration of phase #4 is set longer than phase #1. The complexity
of BP is the same as MaxPressure but performs better for the cyclic control scheme, which
will be justified in the experiments.
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Figure 3. Example scenario to illustrate the difference of conventional pressure control and the
proposed BP control. Phase #4 is set for the intersection. The table on the bottom-right corner of the
figure shows the sum of approaching vehicles in the incoming lanes (denoted as Nw), pressure value
(denoted as P), and BP value (denoted as BP) for all four phases.

Action definition. As has already been discussed, we use cyclic signal control, in the
same order shown in Figure 2b. Therefore, an agent only needs to select the phase duration
τ for each phase p at time t as its action at from the pre-defined action set A. To maintain
a minimum phase duration constraint, we use an action set of {15, 20, 25, 30, 35, 40, 45,
50, 55, 60} for phases #2 and #4. This means that an agent selects the green light duration
of mentioned phases from the given set. Since phase #1 and phase #3 do not involve any
pedestrian crossing, we use an action set of {0, 5, 10, 15, 20, 25, 30, 35, 40, 45} for these
phases. Note that the purpose of using separate action set for different phase groups is to
maximize the throughput optimally (i.e., there is no need to wait for a minimum of 15 s if
there is no traffic). The presence of {0} in the second set means the phase can be skipped if
there is no traffic in the incoming lanes associated with the phase. Similarly, our method
can be applied to non-cyclic phase control by introducing {0} in the action space for all
phases. In that case, the agent sets the phase with the highest BP value. In addition, each
green light of the corresponding phase is followed by 3 s yellow light. The specified phase
durations and their range (e.g., {15, 20, 25, 30, 35, 40, 45, 50, 55, 60} and {0, 5, 10, 15, 20, 25,
30, 35, 40, 45}) in the action sets were determined through empirical methods and based on
existing literature. Note that the duration step in the action set can be changed from 5 s
to, for example, 3 s or 10 s, if necessary (additionally, action space can be continuous by
setting the step to 1 s). For this work, 5 s was preferred because it is small enough to make
a smoother transition and large enough to notice the action outcome so that the agent can
be rewarded accordingly.
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Reward definition. The reward is defined for the intersection, which means that an
agent receives a reward based on the BP change on the whole intersection for taking an
action. In this fashion, the agent is punished for the wrong selection of phase duration.
The intuition behind the usage of intersection BP instead of phase BP is that every decision
of an agent affects the distribution of incoming and outgoing lanes, which in turn, changes
the distribution of vehicles in between several intersections. To increase the road network’s
throughput, an agent needs to minimize the BP of the intersection. Therefore, the dynamics
of intersections are more important than phase dynamics in a bigger picture. The reward
ri(t) for the intersection i is calculated with Equation (14):

ri
t = −BPi

t+∆t = − ∑
pk∈i

BPpk
t+∆t (14)

where BPi
t+∆t denotes the sum of BP of each phase associated with an intersection i at

timestep t + ∆t and ∆t denotes an interaction period between the agent and environment.

4.2. Framework Design and Training

Framework design. The overall architecture of our proposed deep RL model is shown
in Figure 4. From the environment, each agent i observes state st of its own intersection at
time t and depending on the current phase p and traffic state st, each agent takes an action
at, which results in state change st+1, and receives reward rt from the environment. After
timestep u, the network parameters are updated.
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Figure 4. The overall framework of the proposed method. Each deep RL agent controls its own
intersection in the environment.

The structure of the deep neural network (DNN) used in this paper is also shown
in Figure 4. We use long short-term memory (LSTM) after two fully connected layers.
The purpose of using LSTM in the network is to help the model memorize the short history
(also called temporal context) of state representation. LSTM has been used widely in recent
RL applications because it has the ability to keep hidden states [34,57]. The LSTM layer is
followed by the output layer, which consists of two parts, critic and actor.

Update functions for critic and actor are shown in Equations (15) and (16), respectively:

θi
j = α θ

(
1

2B ∑
t∈B

(
Qi

θ(st, at)−Vi
θ(st)

)2
)

(15)

ωi
j = απ ω

(
1
B ∑

t∈B
log πω(s, a) Aπω ,i

t (st, at)

)
(16)



Sensors 2022, 22, 2818 11 of 20

where B is a minibatch and contains experience trajectory < st, at, st+1, rt >, and dis-
counted reward function Qi

θ(st, at) is derived from Equation (2), in which ri
t is derived from

Equation (14).
Training. We train our model from scratch using a trial-and-error mechanism. To in-

crease the efficiency, the model (a single agent) is first trained on a single intersection for 30
episodes, with each episode lasting for 30 min. Then, this agent is duplicated for all inter-
sections of the given road network (multi-agent) and trained for another 40 episodes. Note
that such training approach preserves computational resources because in the early stages,
an agent only needs to learn the correlation between traffic volume and its movement with
the corresponding appropriate actions. Therefore, training a single agent first and then
sharing its gained ‘common knowledge’ with other agents is favorable.

Network hyperparameters. Hyperparameters of DNN and the training process are
finetuned using the grid search. Fully connected layers of the DNN, shown in Figure 4,
have 6 and 64 nodes, respectively, and an LSTM layer has 32 nodes. A softmax layer with
6 nodes is used for the actor and a linear layer is used for the critic. The parameters θ
and ω of the critic and actor are then trained using Equations (15) and (16) with their
corresponding learning rates α = 10−3 and απ = 10−4. Minibatch size B = 64 is used to
store the experience trajectories. The discount factor γ is set to 0.99.

5. Experimental Environment

Our experimental evaluation has two major objectives. The first objective is to justify
the superiority of the proposed BP method. We demonstrate it through ablation studies
using BP and the existing pressure methods, such as MaxPressure [32] and PressLight [39].
The second objective is to show the effectiveness of the proposed model. We conduct
comprehensive experiments on both synthetic and real-world datasets and road network
structures to compare our method with the existing cyclic control methods. We imple-
mented our method using the Keras framework with a Tensorflow backend. Experiments
are conducted with the NVIDIA Titan Xp graphics processing unit. The experiments are
conducted on CityFlow (https://cityflow-project.github.io/, accessed on 2 February 2022),
an open-source large-scale traffic control simulator that can support different road network
designs and traffic flow [58]. Derived synthetic and real-world datasets are designed to fit
the simulation. CityFlow includes API functions to derive the number of vehicles in the
incoming and outgoing lanes. For real-world situations, this information can be obtained
by smart sensors or cameras.

5.1. Metrics for Performance Evaluation

To evaluate and compare the performance of different methods, we use two types of
evaluation metrics:

1. Travel time. The average travel time of vehicles is measured in seconds. This metric is
widely used by research works in the transportation field and traffic light control. It is
calculated by dividing the travel time of all vehicles by the number of vehicles in the
last two episodes. Shorter travel time is better in comparison. However, this metric
alone cannot determine which traffic plan is better. For example, if the road is full due
to a bad signal plan, then incoming cars cannot join the road network. Therefore, we
also use throughput as a metric.

2. Throughput. We denote the closed road network in the simulation as “city”. Then,
throughput is measured by the number of vehicles that have left the city in the last
two episodes of testing. For example, as shown in Figure 5, four vehicles have left
the city between time step t and t + 1. We sum the number of leaving vehicles during
the whole two-episode duration to calculate throughput. Higher throughput is better
in comparison.

https://cityflow-project.github.io/
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Figure 5. The traffic state of the road network, also called a city, (a) Traffic network state at time t
and (b) Traffic network state at time t + 1. As seen, four vehicles have left the city at the destinations
labeled as 1, 3, 4, and 6. Thus, throughput is four between t and t + 1.

5.2. Datasets

We use synthetic and real-world datasets to evaluate the performance of our work
and related methods. Both synthetic and real-world datasets are adjusted to fit the simula-
tion settings.

Synthetic data. Four configurations are used for a synthetic dataset, as shown in
Table 1. To test the flexibility of the deep RL model, both normal and rush-hour traffic
(denoted as light and heavy traffic, respectively) flows are used.

Table 1. Various configurations of synthetic dataset.

Config Directions Arrival Rate (vehicles/min) Traffic Volume

1 All 8
Light (normal traffic)

2
NS & SN 6

EW & WE 10
3 All 15

Heavy (rush hours)
4

NS & SN 12
EW & WE 18

NS, SN, EW, and WE indicate north-south, south-north, east-west, and west-east directions, respectively. For the
synthetic road network structures, we use two types of road networks: (1) RN3×3—3 × 3 road network and (2)
RN4×8— 4 × 8 road network. Each intersection has four directions, and each direction has 3 lanes with equal
width of 5 m and a length of 300 m.

Real-world data. For the real-world scenarios, we use New York and Seoul transport
data on vehicle trip records and their corresponding road networks. Figure 6 shows road
networks for New York and Seoul. New York vehicle trip record data are taken from
open-source trip data (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page,
accessed on 23 November 2021). To use these data in the CityFlow simulator, we map
each vehicle’s origin and destination from the geo-locations of the data. In the same
fashion, we create a dataset from Seoul transport data (https://kosis.kr/eng/statisticsList/
statisticsListIndex.do, accessed on 23 November 2021). To complete the dataset, we use a
combination of four statistical record databases: Vehicle Kilometer Statistics, Traffic Volume
Data, Road Statistics, and National Traffic Survey. The dataset information is roughly
summarized in Table 2.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://kosis.kr/eng/statisticsList/statisticsListIndex.do
https://kosis.kr/eng/statisticsList/statisticsListIndex.do
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Figure 6. Road network for real-world data: (a) Part of Hell’s Kitchen, Manhattan, New York, USA
and (b) Central area of Jung-gu, Seoul, South Korea. For both road networks, the coverage of the
monitored area is marked with black lines, and red points represent corresponding intersections in
the area.

Table 2. Summary of two real-world datasets.

Dataset
Arrival Rate (Vehicles/min) Number of

IntersectionsMean Std Max Min

New York 46.12 3.42 53 40 90

Seoul 82.90 6.34 98 71 20

Although the number of intersections varies significantly between two road networks
(New York’s 90 against Seoul’s 20), the areas of selected regions are almost the same
(~1.8 km2).

5.3. Compared Methods

To evaluate the performance of our model, we use the following related methods.
In this work, we use related cyclic control methods that use phase duration selection (not
phase selection) as their action definition since phase order is important in most real-world
intersections, as explained in Section 4.1. We also demonstrate the performance difference
between cyclic and non-cyclic designs.

4. Fixed-time signal plan with GreenWave effect (FT). This is the most commonly used
technique in real-world traffic light control systems. The cycle length, offset, and
phase duration of each intersection is pre-determined based on historical data of the
intersection. In this paper, we use 30 s and 40 s FT approaches, where FT 30 s and FT
40 s mean that the duration of green light in a phase is 30 s and 40 s, respectively.

5. MaxPressure [32]. This method uses queue length to represent the state and greedily
selects the phase which minimizes the pressure of the intersection. By doing so, it aims
to maximize the throughput of the intersection, and ultimately, the throughput of the
whole network. MaxPressure method is selected for comparison because it is widely
used on the recent state-of-the-art methods, such as MPLight [25] and PressLight [39].

6. BackPressure [35]. This method is an adaptation of MaxPressure for the cyclic scheme.
In the beginning, cycle duration is fixed, and the duration of each phase is determined
proportionally, depending on the pressure of each phase in the intersection.

7. 3DQN [21]. This method is the combination of DQN, Double DQN, and Dueling
DQN. State representation is based on the image of vehicle positions in the incoming
lanes. The authors divided the whole intersection into small grids and used a matrix
to represent the position of each vehicle. The action is whether to increase or decrease
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the phase duration by 5 s. This is one of the state-of-the-art methods that adjusts
the duration of each phase depending on the traffic, and this method beats previous
works on DQN methods, such as [19] in terms of travel time.

6. Numerical Results
6.1. Ablation Study

In this section, we present ablation studies on the proposed Biased Pressure (BP)
to justify the action and state definitions of our RL agent. In the first experiment, we
compare the performance of the BP coordination method with MaxPressure. Additionally,
we present the results of Fixed-time 30 s signal plan as a reference point. Since the purpose
of this experiment is to show the effectiveness of the BP method, we use the same model
with the same network structure for both methods. The experiment procedure is repeated
using both RN3×3 and RN4×8 road networks with four configurations of traffic volume
from Table 1. Methods are compared in terms of the average travel time of vehicles within
the network during the first 100 min of simulation. Results are shown in Figure 7.
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(a) RN3×3 with Config 1. (b) RN4×8 with Config 3. (c) RN3×3 with Config 4. (d) RN4×8 with Config 2.

In each configuration, our method outperforms the existing MaxPressure method.
For the RN3×3 road network, the proposed BP method achieves, on average, a 10–15 s
improvement in travel time. The performance gap is especially seen with the RN4×8 net-
work, Figure 7b,d, where BP achieves about 60–70 s shorter travel time for each vehicle,
compared to MaxPressure. The reason why the BP method works better than the con-
ventional MaxPressure method is that our model has more information about the traffic
situation and, thus, selects a more appropriate phase duration, e.g., a longer phase if there
are more incoming cars and a shorter phase if the opposite, given that the pressure of the
lanes is the same. It is important to note that agents can take actions (i.e., phase duration
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selection for the next phase) within 3–5 s in our local machine, which facilitate real-time
signal optimization.

In the second experiment, we compare the performance of cyclic and non-cyclic BP
methods. Cycle-based approaches keep the order of phase and are more suitable for city-
level traffic signal control. However, non-cyclic approaches can select any phase with the
highest BP value, and therefore, they can quickly react to the traffic flow, which helps to
maximize the throughput. Table 3 shows a comparison between cyclic and non-cyclic BP
methods. Due to flexibility, non-cyclic BP outperforms cyclic BP in all configurations of
synthetic data. The performance gap is larger for Config 3 and 4 in terms of travel time
and throughput, which means non-cyclic BP excels in heavy traffic. This ablation study is
deliberately conducted to validate that our proposed BP method can be applied in both
cyclic and non-cyclic phase control schemes. Moreover, the comparison between our BP
method and PressLight method is demonstrated for non-cyclic control. For Config 1 and 2,
PressLight outperforms the BP method. Moreover, for Config 3 and 4, which represent a
heavy traffic flow, our method achieves better results.

Table 3. Performance comparison of cyclic and non-cyclic phase control on the RN3×3 network within
one hour of simulation. Best results are shown in bold.

Type Travel Time Throughput

Config 1 Config 2 Config 3 Config 4 Config 1 Config 2 Config 3 Config 4

Cyclic BP 112.69 123.10 182.47 179.93 4617 4508 9292 9356
Non-cyclic BP 107.14 119.76 163.91 158.71 4739 4632 9415 9498

PressLight 106.21 118.80 168.66 163.13 4751 4645 9384 9412

However, as explained in previous sections, the motivation of this research is to
propose an efficient model for real-world situations, where, unlike simulations, intersec-
tions also include pedestrian traffic and require a cyclic phase. Therefore, the remaining
experiments include only cyclic control schemes.

6.2. Performance Comparison

Synthetic data. In the first experiment, we compare the performance of the related
methods on a synthetic dataset. The average travel time and throughput of each method are
measured for all configurations to test the flexibility of methods with different traffic vol-
umes. Results are collected from the last hour of simulation. Table 4 shows the performance
comparison of different methods on the RN3×3 road network. Our method outperforms all
related methods with a notable margin. Travel time is calculated for each vehicle; therefore,
the numerical difference is not significant. The greatest marginal difference between our
method and the second-best method (of the corresponding Config) is 19.8 s and it is seen
in Config 2, and the smallest marginal difference is achieved in Config 4 with 8.3 s travel
time improvement. When it comes to throughput, our method allows 120 more vehicles to
pass in each hour on average with light traffic (Config 1 and 2) and 334 more vehicles with
heavy traffic (Config 3 and 4). This means that 8016 more vehicles can pass the 3 × 3 road
network on a daily basis with our traffic signal control model, which is significant.

We repeat the same experiment on the RN4×8 road network. This network is larger
than RN3×3 and has more intersections. Moreover, the number of SN and WE directions
is different which creates different traffic fluctuations and imbalance (due to SN and WE
asymmetry) in the network. Results of compared methods are shown in Table 5. Our
method outperforms the related methods in all traffic scenarios. In terms of travel time,
our method achieves an average of 47.7 s improvement in all configurations. In Config 1,
for example, vehicles complete their trip 61.4 s faster than the second-best method, which
is BackPressure. The performance gap shown in Table 5 is significantly higher than in
Table 4, meaning that our method dominates over related works more and more, as the
road network size gets bigger and bigger. A similar trend is seen in terms of throughput.
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In Config 3, 478 more vehicles can pass the network each hour with our method, making it
an average of 11,472 more vehicles daily.

Table 4. Performance comparison of different methods on the RN3×3 network.

Methods
Travel time Throughput

Config 1 Config 2 Config 3 Config 4 Config 1 Config 2 Config 3 Config 4

FT 30 s 147.79 153.78 195.34 199.10 4298 4271 8680 8805
FT 40 s 155.23 159.41 200.74 201.94 4127 4236 8548 8690

MaxPressure 131.58 142.93 194.59 188.21 4490 4395 8971 9010
BackPressure 143.73 146.90 193.64 190.37 4285 4229 8730 8867

3DQN 141.47 150.28 191.16 192.80 4331 4290 8863 8733
Our method 112.69 123.10 182.47 179.93 4617 4508 9292 9356

Table 5. Performance comparison of different methods on the RN4×8 network.

Methods
Travel time Throughput

Config 1 Config 2 Config 3 Config 4 Config 1 Config 2 Config 3 Config 4

FT 30 s 417.23 398.89 660.81 611.63 7163 7249 9570 10179
FT 40 s 430.28 414.81 612.61 601.27 7097 7118 9732 10319

MaxPressure 313.94 284.54 474.83 480.84 8219 8361 10113 11070
BackPressure 325.92 280.17 501.80 481.04 7592 8314 9920 11021

3DQN 328.87 283.35 484.93 491.90 7931 8210 10187 10896
Our method 252.58 246.74 436.92 422.56 8412 8552 10665 11427

According to the overall numerical results, FT 40 s and FT 30 s achieve the worst
performance in comparison because they use fixed duration for all phases regardless of
the traffic situation. MaxPressure, BackPressure, and 3DQN methods perform relatively
equally, outperforming each other in the respective configurations. However, MaxPressure
shows more robust performance in all traffic scenarios. The limitation of BackPressure is
that the method uses fixed cycle length, which is less flexible to changing traffic, whereas
the limitation of 3DQN is that it changes the traffic signal by 5 s, which results in a slower
reaction to dramatic changes in the traffic.

Real-world data. In this part of the experiment, we compare the performance of each
method using real-world datasets and their corresponding road networks. Table 6 shows
numerical results for New York and Seoul datasets. Although the number of intersections
is greater in the New York network, Seoul has a heavier traffic volume, as discussed in
Section 5.2. Our method shows superior performance in both datasets, with the least travel
time and the highest throughput. In the New York dataset, 3DQN achieves the second-best
result with a travel time of 189.30 s, compared to our method’s 152.90 s. In the Seoul dataset,
our method achieves 123.48 s travel time, whereas the second-best result is obtained by
MaxPressure, with 131.29 s. The throughput difference between our method and the
second-best method (in the corresponding dataset) for New York and Seoul datasets is 257
and 244, respectively. From the overall trend, we can see that our method performs better as
the number of intersections increases. This means that our method shows more scalability
potential, owing to simple and well-designed state, reward, and action definitions.

Table 6. Performance comparison of different methods on real-world data.

Methods
Travel Time Throughput

New York Seoul New York Seoul

FT 30 s 196.25 162.03 2119 4248
FT 40 s 210.61 174.71 2087 4190
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Table 6. Cont.

Methods
Travel Time Throughput

New York Seoul New York Seoul

MaxPressure 195.42 131.29 2345 4455
BackPressure 202.78 132.85 2281 4492

3DQN 189.30 137.68 2316 4331
Our method 152.90 123.48 2602 4736

7. Conclusions

In this paper, we propose a multi-agent RL-based traffic signal control model. We in-
troduce a new BP method, which considers not only the phase pressure but also the number
of incoming cars to design our state representation and reward function. Additionally, we
consider real-world constraints and define our action space to facilitate cyclic phase control
with minimum and maximum allowed duration for each phase. Setting different action
spaces for different phases proves to maximize the throughput while enabling safe pedes-
trian crossing. We validate the superiority of the proposed BP over the existing pressure
methods through an ablation study and experiments. Experimental results on synthetic and
real-world datasets show that our method outperforms the related cycle-based methods
with a significant margin, achieving the shortest travel time of vehicles and the highest
overall throughput. Robust performances in different configurations of traffic volume and
various road network structures justify that our model can scale up and learn favorable
policy to adjust appropriate phase duration for traffic lights.

Even though our method produced promising results, there is a need for future
improvements in intelligent traffic signal control systems. Results should be derived
using real traffic lights instead of simulated traffic lights to evaluate the authenticity of
RL-based methods, since real-world traffic situations include a dynamic sequence of traffic
movements. Impatient drivers and pedestrians, drivers’ mood, their perceptions, and other
human factors as well as the involvement of long vehicles, such as trucks and busses, play
a great role in decision making, and ultimately, affect traffic movement and dynamics.
Moreover, computational complexity and feasibility of decision making at the real-world
intersections should be investigated, since obtaining data via smart sensors or cameras costs
more than via numerical data used in simulations. Therefore, more real-world constraints
should be studied, and the reality gap between the real world and simulated environment
should be examined thoroughly.
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