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Abstract: Traffic-data recovery plays an important role in traffic prediction, congestion judgment,
road network planning and other fields. Complete and accurate traffic data help to find the laws
contained in the data more efficiently and effectively. However, existing methods still have problems
to cope with the case when large amounts of traffic data are missed. As a generalization of vector
algebra, geometric algebra has more powerful representation and processing capability for high-
dimensional data. In this article, we are thus inspired to propose the geometric-algebra-based
generative adversarial network to repair the missing traffic data by learning the correlation of
multidimensional traffic parameters. The generator of the proposed model consists of a geometric
algebra convolution module, an attention module and a deconvolution module. Global and local
data mean squared errors are simultaneously applied to form the loss function of the generator. The
discriminator is composed of a multichannel convolutional neural network which can continuously
optimize the adversarial training process. Real traffic data from two elevated highways are used
for experimental verification. Experimental results demonstrate that our method can effectively
repair missing traffic data in a robust way and has better performance when compared with the
state-of-the-art methods.

Keywords: traffic data recovery; geometric algebra; deep learning; intelligent transportation system

1. Introduction

Traffic data are of great significance to intelligent transportation systems (ITS), which
provide useful information for traffic flow prediction, congestion judgment and urban
transportation network planning. Accurate traffic data can make the analysis results
more reliable. In a large-scale traffic-flow-monitoring system, sensors deployed in different
locations can collect a large amount of useful time series data. However, due to the influence
of the hardware device itself, the sensors often fail to work, resulting in incomplete data
collection [1]. At the same time, accidents that occur during the storage of a large amount
of traffic data will also cause the lack of these traffic data. In order to repair the missing
traffic data, researchers have tried a variety of methods including regression-model-based
methods, probability-model-based methods and deep-learning-based methods.

2. Related Work

Regression-model-based methods evaluate the mathematical expectations of missing
data through known data points. Local binary pattern (LBP)-based support vector machines
(SVMs) [2] have shown better recovery results when a small amount of traffic data are
missing. Least squares support vector machines (LS-SVMs) introduced by Zhang and
Liu [3], and the K-value proximity algorithm based on spatial and temporal correlation [4],
also illustrate better imputation performance when missing types and data are mixed.
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Online support vector machines (OL-SVR) proposed by Manoel [5] have more timely
responses in repetitive traffic data. However, most regression models cannot recover data
with high signal-to-noise ratio (SNR) or long sequences of missing data, which often occurs
in ITS systems [6].

Probability models include the principal component analysis (PCA) [7] method, based
on historical data mining, and the fully Bayesian generative model [8], based on tensor de-
composition for estimating missing data. Bayesian principal component analysis (BPCA) [9]
combines these two algorithms mentioned above to achieve a balance between the peri-
odicity of the flow, local predictability, and statistical properties of traffic. The Bayesian
Gaussian CANDECOMP/PARAFAC tensor decomposition (BGCP) [10] algorithm extends
the tensor decomposition to higher dimension and applies it to the spatio–temporal traffic
data interpolation task, solving the problem of missing data attribution in a spatio–temporal
multidimensional environment. The variational Bayesian (VB) [11] algorithm exploits the
spatio–temporal properties of network traffic to improve the quality of lost data recovery,
fully capturing the multidimensional and spatio–temporal characteristics of traffic data.

Deep learning has demonstrated its great potential in many fields, including trans-
portation [12]. Deep-learning-based data recovery models rely on high scale traffic data
and incorporate the influence of nonlinear factors in a better way. Convolutional neu-
ral networks (CNNs) [13] are commonly used for image data recovery and improving
image resolution, and super-resolution convolutional neural networks (SRCNNs) pro-
posed by Dong et al. [14] can learn the recovery process from low-resolution images to
high-resolution images in an end-to-end manner.

Generative adversarial networks (GAN) [15] are generative models which can create
new data instances that resemble the training samples, they have been widely applied
in many domains such as image restoration [16], video prediction [17] and security [18].
GANs are also used for traffic information recovery by using historical traffic data to im-
prove recovery accuracy. He and Luo et al. [19] propose the research of GAN in traffic-data
recovery. Arora, S. [20] conducts a study on the generalization ability of GAN in different
situations. The encoded multiagent generative adversarial network (E-MGAN) proposed
by Zhao [21] proves to be very effective in overcoming GAN pattern collapse. Deep Con-
volutional Generative Adversarial Network (DCGAN) [22] and Generalized Adversarial
Interpolation Network (GAIN) [23] can solve the model instability problem to a certain
extent. M. Arif [24] establishes a deep learning model with nonparametric regression to im-
prove the prediction of lost data under nonlinear spatio–temporal effects. D. Tran et al. [25]
finds that 3D convolution is more suitable for spatio–temporal feature learning than 2D
convolution, easier to train and use. K. Xie [26] proposes a sequential tensor completing
method to reduce the computing cost of high-dimensional neural network algorithms. All
the above studies have promoted the application of 3D convolutional generative adversarial
networks [27,28] that can effectively recover traffic data in large-scale traffic networks.

In summary, existing research has made some progress in the field of traffic-data
restoration. But the accuracy of repairing large-scale missing data still needs to be improved.
Traffic data are composed of multiple parameters, such as flow, speed and occupancy. These
parameters are interrelated and contain complex high-dimensional traffic laws. Geometric
algebra has strong expressive ability for multidimensional signals, and can better realize the
learning of high-dimensional correlation. In this paper, considering the advantages of deep
learning, we propose a geometric-algebra-based generative adversarial network (GAGAN)
to recover missing traffic data by learning the correlation of multidimensional traffic
parameters. The performance of traffic-data repair can be improved by coupling geometric
algebra and generative adversarial network into a single model. We first preprocess
the original traffic data, which include speed, flow and occupancy, to generate scalar-
valued spatio–temporal matrices. By embedding the traffic data in the framework of
geometric algebra, multivector-valued spatio–temporal matrices, which contain elements
of high-dimensional entities, are created and used as the inputs of the proposed GAGAN
model. The generator of GAGAN consists of a geometric algebra convolutional module,
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an attention module and a deconvolutional module. The discriminator of GAGAN is
composed of a multichannel convolutional neural network.

The main contributions of this paper are summarized as follows:

• We present a geometric algebra based generative adversarial network (GAGAN) to
handle the problem of traffic data recovery. To represent and process multidimen-
sional signals more efficiently, original traffic data are embedded in the framework of
geometric algebra to form multivector-valued spatial-temporal matrices.

• The generator of the proposed GAGAN contains a geometric algebra convolutional
module, an attention module and a deconvolutional module. The geometric algebra
convolutional module is capable of learning the correlations of multidimensional
inputs more efficiently. The loss function of the generator considers both the global
and local traffic data mean squared errors.

• We conduct various experiments based on traffic data from two urban expressways of
Shanghai, China. Experimental results prove that our method can effectively repair
missing traffic data in a robust way. Compared with the state-of-the-art work, our
approach shows the best performance.

3. Geometric Algebra of Euclidean 3D Space

Geomtric algebra [29,30] is a generalization of vector algebra and it has been succes-
fully applied in the domain of physics and engineering [31]. Compared with the classical
vector algebra, modeling capability based on geometric algebra is tremendously extended.
As a coordinate-free system, it captures the geometric characteristics of the problem in
a better way and enables a more powerful representation and processing framework for
multidimensional signals. Since the traffic data recovery problem is handled in the 3D
Eulidean space (R3), in this section, we breifly introduce the geometric algebra of Euclidean
3D space (R3).

As shown in Equation (1), there are 8 basis elements of the gemetric algebra of 3D
Euclidean space (R3).

R3 = span{1, e1, e2, e3, e12, e23, e31, e123} (1)

where 1 indicates the scalar basis, e1, e2 and e3 refer to orthonormal basis vectors; e12, e23
and e31 indicate unit bivectors; e123 means the unit trivector.

For a unit cube, e1, e2 and e3 represent three axes, e12, e23 and e31 correspond to
three surfaces and e123 indicates the cube. By combining these basis elements, a mul-
tivector can be formed to represent multidimensional entities in an efficient way, e.g.,
M = 3 + 5e1 + 7e2 + 9e3 + 11e12 + 13e23 + 15e31 + 17e123. Geometric product is the basic
product of geometric algebra, it is noncommutative and can be decomposed as the combi-
nation of inner product and outer product, Table 1 shows the results of geometric products
of basis elements.

Table 1. The geometric product of basis elements of R3.

1 e1 e2 e3 e12 e23 e31 e123

1 1 e1 e2 e3 e12 e23 e31 e123
e1 e1 1 e12 e13 e2 e123 −e3 e23
e2 e2 −e12 1 e23 −e1 e3 −e123 −e13
e3 e3 −e13 −e23 1 −e1 e123 −e1 e12
e12 e12 −e2 e1 e123 −1 e13 e23 −e3
e23 e23 e123 −e3 e2 −e13 −1 −e12 −e1
e31 e31 e3 e123 e1 −e23 e12 −1 −e2
e123 e123 e23 −e13 e12 −e3 −e1 −e2 −1
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Given two multivectors M1 = 3e1 + 5e23 and M2 = 3e2 + 7e12, there geometric
product is given by

M1 ⊗M2 = M1 ·M2 + M1 ∧M2 = 21e2 − 15e3 + 9e12 + 35e31 (2)

where ⊗, · and ∧ represent geometric product, inner product and outer product, respectively.

4. Proposed Methodology
4.1. Overview

This paper aims to realize the repair of damaged traffic data. Figure 1 shows our system
architecture. Raw traffic data which include speed, flow and occupancy are collected by
the detectors deployed on the elevated highway at specific time intervals, and there is a
position interval between these detectors. First, raw traffic data are preprocessed, and then
converted into spatio–temporal matrices, each of which integrates certain traffic information
of a day in both spatial and time domains. The matrix containing speed information is used
to generate damaged speed matrix using point-by-point multiplication with a randomly
generated mask of the same size. Next, the damaged speed matrix, the complete flow
matrix and the complete occupancy matrix become a sample whose label is the complete
speed matrix. Samples of all days constitute a data set. We randomly divide the samples
into training samples to train proposed GAGAN model and test samples to repair and
test the performance of our model. Recovered speed matrix is obtained by multiplying
predicted speed matrix generated by GAGAN with the mask-inverted matrix.

Raw traffic data

Spatio temporal

matrix generation

Missing data generation

* =

speed
matrix

mask damaged
speed matrix

Dataset

Training

samples

Test

samples

GAGAN Trained GAGAN

Recovered speed data

* =

predicted
speed matrix

mask recovered
speed matrix

training test

Figure 1. The system architecture of traffic speed imputation using GAGAN.

4.2. Damaged Data Set Generation

Traffic data are collected by detectors deployed on the road. Different roads have
different value ranges for the same traffic parameter. Therefore, it is necessary to normalize
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the traffic data including flow, speed and occupancy. For example, the regularization of
speed can be described as:

snorm =
s− smin

smax − smin
(3)

snorm represents normalized data while s is original speed data. smax means the
maximum value of the original speed data, and smin is the minimum value. Flow and
occupancy are also processed in the same way.

Because the detectors are deployed at different locations on the road and collect traffic
data at regular intervals, the traffic data itself has time and space properties. In order to
make full use of the correlation between time and space, we construct the traffic spatial–
temporal matrix. A row of the matrix indicates the location of a detector, and different
columns represent different times of a day. The matrix elements refer to values of traffic
speed. Mathematically, traffic speed spatial–temporal matrix can be represented as:

S =


S11 S12 ... S1n
S21 S22 ... S2n
... Sij ... ...

Sm1 Sm2 ... Smn

 (4)

The matrix S represents the traffic speed information for each day. Where m and
n are the number of loop detectors and the number of time intervals respectively, Sij
is normalized speed of the ith loop detector at the jth time period. Similarly, we can
get the flow spatial–temporal matrix and occupancy spatial–temporal matrix, which are
represented as F and O, respectively.

Next, we simulate the damage to the traffic speed data. Traffic data corruption usually
occurs in various locations. Moreover, the shape of the damaged part is also different.
Therefore, we use two different shapes of masks to randomly destroy the data. One is
the strip damage, in this case damaged data is continuous with time, which in the space–
time matrix is displayed as a rectangle. The other is the discrete damage, that means
the damaged data is discontinuous, which in the space–time matrix is displayed as dots.
Mathematically, the mask can be defined as:

Mask =


k11 k12 ... k1n
k21 k22 ... k2n
... kij ... ...

km1 km2 ... kmn

 (5)

where the value of kij is 0 or 1. If it is 0, the data of this point is damaged. If it is 1, the data
of this point is retained.

Finally, we multiply the speed spatial–temporal matrix and the mask point-by-point
to obtain a corrupted data set.

4.3. The GAGAN Model for Traffic Speed Recovery

The GAN model has been proved to perform very well in the application of image
generation, and geometric algebra has the advantage of representing and processing
multidimensional signals in an efficient way; therefore, we are inspired to propose the
GAGAN model for traffic speed recovery by coupling GAN and geometric algebra into a
single framework.

As shown in Figure 2, three scalar-valued matrices, i.e., damaged speed, complete flow
and occupancy, are employed as the input of GAGAN model. By embedding these scalar-
valued matrices in the gemoetric algebra, a multivector-valued matrix which represents
multidimensional signals can be obtained and considered as the input of the generator. The
generator of GAGAN is a geometric algebra convolutional neural network (GACNN) with
multivector-valued neurons; it aims to learn the correlation of multidimensional traffic data
and generate a recovered speed matrix. The discriminator of GAGAN contains a scalar-
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valued multichannel CNN, which is applied to determine whether the result generated by
the generator is true or false, and to continuously feed back information to the generator,
thereby improving the model’s repair accuracy.

GACNN

(multi-vector)

Generator
Input

Recovered 

Speed data

Discriminator

Ground truth Multi-

channel

CNN

(scalar)

True or False

Condition

Information

FeedbackAdversarial training

Figure 2. The geometric algebra based generative adversarial network (GAGAN).

Even though the presented GAGAN model in this paper is used to recover missing
traffic speed data, it also can be generalized to recover different types of data based on
multidimensional inputs.

4.3.1. The Generator of GAGAN

The structure of the generator is a GACNN, as illustrated in the Figure 3. It consists
of two parts: encoding and decoding. The encoding part includes 3 geometric algebra
convolutional layers, 3 pooling layers and 1 convolutional block attention module (CBAM).
The function of the encoding part is to produce advanced feature maps which can efficiently
describe the correlation characteristics of the input. The decoding part of the generator
consists of 3 deconvolutional layers, aiming to decode the comprehensive spatio–temporal
features extracted from the traffic parameters, and output the repaired speed matrix with
the same size as the input speed matrix. Compared with scalar-valued CNN, GACNN has
better capability to learn the potential dependencies between mutidimensional inputs.

GA-

conv

1

P1

C

B

A

M

GA-

conv P2

GA-

conv P3

econv econv2 econv

Figure 3. The generator of GAGAN.

The orignial inputs of the GAGAN model are damaged speed, complete flow and
occupancy matrices of a day, they are first embedded in the geometric algebra with bivector
basis to yield a multivector valued matrix as the input of the generator, which can be
represented as Equation (6).

Z =


Z11 Z12 ... Z1n
Z21 Z22 ... Z2n
... Zij ... ...

Zm1 Zm2 ... Zmn

 (6)

where the matrix Z indicates the multivector valued spatio–temporal matrix which encodes
the traffic information for a day, m and n are the number of loop detectors and the number
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of time intervals respectively, Zij is the multivector valued traffic parameter of the ith loop
detector at the jth time period, Zij can be further expressed in the following form:

Zij = Fije12 + Sije23 + Oije31 (7)

where Fij, Sij and Oij refer to the flow, speed and occupancy, respectively.
The geometric algebra convolutional layers of the generator are able to extact coore-

lated spatio–temporal features by convolving the input with learnable kernels. Different
with the conventional scalar-valued convolution, in this case, both the input and kernel
are multivector-valued. For the Lth geometric algebra convolutional layer, the input of the
multivector-valued neuron is the output of the previous layer, which can be denoted as

XL−1
ij = XL−1,r

ij + XL−1,1
ij e12 + XL−1,2

ij e23 + XL−1,3
ij e31 (8)

where XL−1
ij means the output of the previous layer, r indicates the scalar part of the

multivector XL−1
ij , 1, 2, 3 represent the corresponding bivector parts.

For the first layer, since there are only 3 traffic parameters, the scalar part of XL−1
ij

is zero, i.e., XL−1
ij = Zij. However, according to the results of geometric product, XL−1

ij
at other layers will contain scalar parts. To perform the geometric algebra convolution,
the weights W L

ij of the kernel in the Lth layer also take multivector values as shown
in Equation (9)

W L
ij = W L,r

ij + W L,1
ij e12 + W L,2

ij e23 + W L,3
ij e31 (9)

Hence, the convolved output of a neuron in the Lth geometric algebra convolution
layer reads

XL
ij = f

(
p

∑
i=1

q

∑
j=1

XL−1
ij ⊗W L

ij + BL
ij

)

= f

(
p

∑
i=1

q

∑
j=1

(
XL−1

ij ·W L
ij + XL−1

ij ∧W L
ij

)
+ BL

ij

) (10)

where f is the ReLU activation function, the kernel has a size of p× q,⊗, ·, ∧ respectively
represent geometric product, inner product and outer product, BL

ij means the bias parameter
of this layer. According to the relationship shown in Table 1, the geometric product of two
multivectors XL−1

ij and W L
ij is defined as:

XL−1
ij ⊗W L

ij =XL−1
ij ·W L

ij + XL−1
ij ∧W L

ij

=Dr + D1e12 + D2e23 + D3e31
(11)

where Dr , D1, D2 and D3 are scalar coefficients which can be further expressed as:

Dr =XL−1,r
ij W L,r

ij − XL−1,1
ij W L,1

ij

− XL−1,2
ij W L,2

ij − XL−1,3
ij W L,3

ij

(12)

D1 =XL−1,r
ij W L,1

ij + XL−1,1
ij W L,r

ij

+ XL−1,2
ij W L,3

ij − XL−1,3
ij W L,2

ij

(13)

D2 =XL−1,r
ij W L,2

ij − XL−1,1
ij W L,3

ij

+ XL−1,2
ij W L,r

ij + XL−1,3
ij W L,1

ij

(14)

D3 =XL−1,r
ij W L,3

ij + XL−1,1
ij W L,2

ij

− XL−1,2
ij W L,1

ij + XL−1,3
ij W L,r

ij

(15)
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The geometric algebra convolution layer is mainly based on the geometric product
operation to realize the information transfer between multivector neurons. The neurons are
connected locally and the weights are shared. From Equations (10)–(15), it is demonstrated
that the traditional scalar-valued convolution, indicated by the inner product, is just a part of
the geometric algebra convolution. In addition, the geometric algebra convolution includes
the computation of outer products, it provides the potential to learn the correlations of
multidimensional inputs. Compared with 3D convolution, which ignores the relationship
between channels and causes information loss, the geometric algebra convolution is capable
of learning coorelation features of multidimensional signals in a more efficient way.

Geometric algebra is the basic mathematical framework to model our problem, how-
ever, in the real implementation, we follow the way illustrated in Figure 4 to perform the
computation of a geometric algebra convolutional layer L. For the geometric product, we
map multivector-valued neurons to multiple scalar neurons according to the number of
dimensions. In this case, one multivector-valued neuron corresponds to four scalar-valued
neurons, their outputs can be obtained according to equations from (11) to (15) by adding
and subtracting the results of 4 ordinary convolutions. The geometric algebra convolution is
similar to learning the compound characteristics by aggregating several separate standard
convolution results. The four convolved results are then combined by basis to form the
multivector-valued input for the next layer.

Figure 4. The implementation of geometric algebra convolutional layer.

It is worth noting that for the area to be repaired, the traffic area far away from it does
not provide much information and may even interfere with the repair result. We introduce
the convolutional block attention module (CBAM) to extract useful information and filter
useless information, thereby improving feature extraction capabilities. Mathematically, the
process of CBAM can be defined as:
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Fc = σ(FC
(

AvgPool
(

Fga
))
+

FC
(

MaxPool
(

Fga
))
)
⊙

Fga
(16)

Fs(Fc) = σ( f 7×7(AvgPool(Fc)
⊕

MaxPool(Fc)))
⊙

Fc
(17)

Fga, Fc and Fs represent feature maps obtained from geometric algebra convolution layer,
channel attention module and spatial attention module, respectively, AvgPool and MaxPool
represent average pooling and maximum pooling, respectively, FC and f 7×7 refer to the fully
connected layer and convolutional layer using the convolution kernel with a size of 7× 7,
σ denotes the sigmoid function,

⊙
represents point-by-point multiplication between matrices,⊕

denotes concatenating channels.
The CBAM layer is composed of two parts, first the channel attention module, and

then the spatial attention module.The channel attention module first adopts global average
pooling and global maximum pooling. Then the feature maps are delivered to the fully
connected layers to model the correlation between the channels. The weight of the feature
channel is defined in Formula (16) as the part between symbols of = and

⊙
, they are

multiplied channel-by-channel to complete the recalibration of the original feature in the
channel dimension. The spatial attention module takes the output of the channel attention
module as the input. The global average pooling and global maximum pooling are also
used. The difference is that the pooling operation compresses the multichannel feature
map into a single channel, so that the subsequent convolution only focuses on the spatial
dimension. Finally, it is the same recalibration operation that the newly obtained weight
in the spatial dimension is multiplied by the feature map to yield the result adjusted by
double attention models.

After completing the extraction of the high-dimensional features of the traffic pa-
rameters, the extracted high-dimensional features need to be decoded. As mentioned
above, we perform feature encoding based on three bivectors and one scalar. For decoding,
deconvolution is performed for the four dimensions of three bivectors and one scalar. The
feature maps obtained by deconvolution decode the traffic speed information layer by
layer. Finally, we fuse the feature maps generated from these four dimensions, stitch them
together according to the channels, and then pass them to the last deconvolution layer to
produce the recovered traffic speed matrix.

4.3.2. The Discriminator Structure

The discriminator of GAGAN can be regarded as a binary classifier, it aims to distin-
guish as accurately as possible whether the input is the ground truth or the recovered value
yielded by the generator. The discriminator fights against the generator, which further
encourages the generator to produce more realistic recovered values. It has been proved
that the performance of GAN will be improved if it is conditioned. The proposed GAGAN
model is a conditional GAN, as illustrated in Figure 5. The discriminator is composed
of multiple CNNs, each CNN consists of 2 convolutional layers, 2 pooling layers and
2 fully connected layers. Multidimensional data including flow, occupancy and damaged
speed are taken as conditions and fed to three CNNs for learning patterns and distributions,
features of the predicated speed matrix is also learned by another CNN. Concatenating
results from these four CNNs produces P1, a value which indicates the probability of the
output of generator coming from training samples. In addition to this, the ground truth
of speed matrix is also delivered to the fifth CNN, and P2, the probability of real values
coming from training samples can be obtained. In this paper, the multiple conditions
applied to our model enable the discriminator to make a more reliable decision of the
probability that the predicted value is the true value under the constraints of the current
FSO matrices.
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Ground truth

Predicted value

Condition

P1 P

CNN

CNN

CNN

CNN

CNN

concatenate P1

P2

Figure 5. The structure of discriminator of GAGAN.

4.3.3. Model Optimization

Model training is a process of continuously adjusting the weight parameters. The
model is composed of the generator network (G) and the discriminator network (D), they
compete with each other and are trained alternately.

The goal of the discriminator is to distinguish as accurately as possible whether the
input is the data generated by the generator or the real data, by minimizing the probability
P1 and maximizing the probability P2, as shown in Figure 5. Thus, the loss function of D is
the crocess entropy, which can be defined as:

LD = − log (1− D(G(Ĉ)))− log (D(x|Ĉ)) (18)

where Ĉ means the FSO condition matrices, G(Ĉ) indicates the output generated by the
generator, D(G(Ĉ)) denotes the probability P1, x refers to the training data coming from
real distribution and D(x|Ĉ) denotes the probability P2.

The goal of the optimization is to make the repaired value, that is the output of the
generator, as close to the real value as possible. Based on the traditional GAN [32], we
optimize the loss function of the generator as

LG = αLg + βLtotalMSE + γLlocalMSE, (19)

with
Lg = − log (D(G(Ĉ))) (20)

LtotalMSE =
1
N

N

∑
t=1

(
1

mn
(

m

∑
i=1

n

∑
j=1

(Sijt − Ŝijt)
2)) (21)

LlocalMSE =
1
N

N

∑
t=1

(
1

Ct
(

m

∑
i=1

n

∑
j=1

((Sijt − Ŝijt) ∗ (1−Maskijt))
2))

(22)

where α, β, and γ, whose sum equals 1, are weights associated with 3 parts of the loss
function of GAGAN. Lg is used to measure the authenticity of the generated results and
make the generated value from G more approximate to the real value. LtotalMSE represents
the global mean squared error (MSE), it measures the overall loss between the speed matrix
generated by the generator and the real matrix. N refers to the number of test samples, m
and n are the number of rows and columns of a speed matrix, respectively. Sijt denotes the
true speed value of the the ith loop detector at the jth time period of the tth test sample, Ŝijt
means the corresponding recovered value. LlocalMSE is used to measure the loss between
the recovered value and true value in the damaged area, so as to learn the characteristics
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of the damaged area in a targeted manner. Ct indicates the number of damaged points
in the tth speed matrix. Similar to Sijt, Maskijt means the mask value of the the ith loop
detector at the jth time period of the tth test sample. The multiplier ‘1−Maskijt’ aims to
keep damaged points and remove other irrelevant points.

5. Experiment
5.1. Datasets and Settings

In this study, the experimental data are collected from two urban expressways named
Yan’an and Neihuan of Shanghai, China in 2011. Figure 6 shows the map of these two
elevated highways, which are important parts of Shanghai’s urban transportation network
and effectively increase the traffic capacity.

Figure 6. Marking of two elevated highways. Red and green bold lines mark Yan’an elevated highway
and Neihuan elevated highway, respectively.

On each elevated highway, there is a loop detector every 400 m. The detector collects
and stores traffic data at its location every 5 min, including flow, speed, and occupancy.
There are 35 and 72 detectors on the Yan’an and Neihuan elevated highways, respectively.
These detectors collect 288 time points in a day.

To use the correlation between time and space, we first convert the raw data collected
from loop detectors into daily spatio–temporal matrices. However, there may exist errors
in the spatio–temporal matrix, because of the inevitable damage of the detector and storage.
Therefore, these data needs further process. Firstly, we use neighbour average filtering to
handle the invalid value ‘0’ in the matrix. Secondly, we choose to use data collected from
7 a.m. to 10 p.m. for experiments, because some loop detectors may be maintained at night
and fail to collect traffic data. Lastly, in terms of the Yan’an elevated highway, we only
have data from 361 days to make the data set, due to the lack of data from 20 March to
23 March. After making these processes, to simulate the traffic data damage, we use the two
masks mentioned in Section 4.2. A value of 0 in the mask indicates that data is damaged.
Multipling the mask and the original speed space–time matrix point-by-point yields the
damaged speed matrix. Figure 7 shows the strip damage. It may appear when a detector
fails and lasts for a period of time. Figure 8 illustrates the discrete damage. This situation
may occur when the transient detector fails or data is lost during storage. The damaged
speed space–time matrix, the flow matrix, and the occupancy matrix together are taken
as the input, and the label is the complete speed space–time matrix. All the matrices for
the whole of 2011 constitute the basic data set of each elevated highway. To evaluate the
performance of our proposed model, we randomly select 36 samples as the test set for
each data set, and the remaining samples are regarded as the training set. For Yan’an and
Neihuan elevated highways, their respective training sets include 325 and 329 samples.
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Figure 7. Mask used to simulate strip damage.

Figure 8. Mask used to simulate discrete damage.

The experiments are conducted on a server with i7-5820K CPU, 48 GB memory and
NVIDIA GeForce GTX1080 GPU. The proposed model is implemented on the TensorFlow
framework of deep learning, whose parameter configuration is shown in Tables 2 and 3.
Note that, the parameters and network structure of the two elevated highways are the
same. The step size of all convolution kernels is set as 1× 1. The learning rate of both the
generator and the discriminator is 0.0001, and the total number of iterations of our network
is 10,000.

Table 2. Parameter configuration of the generator of GAGAN.

Layers Name Description

1 GA-conv Layer1 32 kernels of size 3× 3× 1
2 Pooling1 kernels of size 2× 2
3 CBAM attention module
4 GA-conv Layer2 64 kernels of size 3× 3× 32
5 Pooling2 kernels of size 2× 2
6 GA-conv Layer3 64 kernels of size 3× 3× 64
7 Pooling3 kernels of size 2× 2
8 deconv Layer1 64 kernels of size 3× 3× 64
9 deconv Layer2 64 kernels of size 3× 3× 32
10 deconv Layer3 32 kernels of size 3× 3× 1

The numbers of training samples of Yan’an and Neihuan expressways are 325 and
329, respectively. These samples are considered as inputs to train the proposed GAGAN
model by minimizing the loss function. Once the training process is terminated, the learned
weight matrices will be immediately saved. There are 36 randomly selected test samples
for every elevated highway, each sample is delivered to the saved generator of GAGAN
to yield a predicted speed matrix by forward calculation. Combing the predicted speed
matrix and its associated mask, missing speed values can be recovered.
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Table 3. Parameter configuration of the discriminator of GAGAN.

Layers Name Description

1 convolution1 32 kernels of size 5× 5× 31
2 pooling1 kernels of size 2× 2
3 convolution2 64 kernels of size 3× 3× 32
4 pooling2 kernels of size 2× 2
5 FC1 128 neuron nodes
6 FC2 1 neuron nodes

5.2. Results and Analysis

We first visualize speed matrices as heat maps, which reveal the traffic speed values
in a whole day, to demonstrate the repaired results of our model. In each heat map,
the x-axis represents the time series of one day, and the y-axis indicates the position of
these detectors. In addition, the different values of speed are represented with different
colors. The darker the color is, the smaller the speed value is. Figure 9 includes the heat
maps of Yan’an elevated highway with strip damage. From left to right are the mask, the
damaged speed matrix, the ground truth and its corresponding repaired speed matrix
on the 1st day of test set. Similarly, Figure 10 shows the results of 8th day of the test set
with strip damage. Figure 11 contains the results of 31st day of the test set with discrete
damage. Obviously, the repaired speed data of our model are very close to the ground
truth for the Yan’an elevated highway with both strip damage and discrete damage. Then
we conduct the same experiments on the Neihuan elevated highway, and the results are
depicted in Figures 12–14. It is also illustrated that our proposed method achieves a close
result to the ground truth for the Neihuan elevated highway with both strip damage and
discrete damage.

(a) (b)

(c) (d)

Figure 9. Speed matrices of Yan’an elevated highway (the 1st day of testset) with strip damage visualized
as heat maps. (a) Mask matrix visualized as a heat map. (b) Damaged speed matrix visualized as a
heat map. (c) Repaired speed matrix visualized as a heat map. (d) Real speed matrix visualized as a
heat map.
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(a) (b)

(c) (d)

Figure 10. Speed matrices of Yan’an elevated highway (the 8th day of testset) with strip damage
visualized as heat maps. (a) Mask matrix visualized as a heat map. (b) Damaged speed matrix
visualized as a heat map. (c) Repaired speed matrix visualized as a heat map. (d) Real speed matrix
visualized as a heat map.

(a) (b)

(c) (d)

Figure 11. Speed matrices of Yan’an elevated highway (the 31st day of testset) with discrete damage
visualized as heat maps. The ratio of damaged area to total area is 10%. (a) Mask matrix visualized as a
heat map. (b) Damaged speed matrix visualized as a heat map. (c) Repaired speed matrix visualized as
a heat map. (d) Real speed matrix visualized as a heat map.
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(a) (b)

(c) (d)

Figure 12. Speed matrices of Neihuan elevated highway (the 6thday of testset) with strip damage
visualized as heat maps. (a) Mask matrix visualized as a heat map. (b) Damaged speed matrix visualized
as a heat map. (c) Repaired speed matrix visualized as a heat map. (d) Real speed matrix visualized as a
heat map.

(a) (b)

(c) (d)

Figure 13. Speed matrices of Neihuan elevated highway (the 23rd day of testset) with strip damage
visualized as heat maps. (a) Mask matrix visualized as a heat map. (b) Damaged speed matrix visualized
as a heat map. (c) Repaired speed matrix visualized as a heat map. (d) Real speed matrix visualized as a
heat map.
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(a) (b)

(c) (d)

Figure 14. Speed matrices of Neihuan elevated highway (the 36th day of testset) with discrete damage
visualized as heat maps. The ratio of damaged area to total area is 10%. (a) Mask matrix visualized as a
heat map. (b) Damaged speed matrix visualized as a heat map. (c) Repaired speed matrix visualized as
a heat map. (d) Real speed matrix visualized as a heat map.

In this paper, we use L1 loss and L2 loss to evaluate the repair performance. The L1
loss indicates the average absolute error (MAE) of the damaged location, and the L2 loss is
used to measure the mean squared error (MSE). The formulas of L1 loss and L2 loss are
defined as

L1 =
1
v

v

∑
j=1

(
1
u

u

∑
i=1
|yij− ŷij|

)
(23)

L2 =
1
v

v

∑
j=1

(
1
u

u

∑
i=1

(
yij− ŷij

)2
)

(24)

where yij means the true value of the ith damaged point in the speed matrix of jth test
sample, ŷij is the corresponding repaired value, u indicates the number of damaged points
in a recovered speed matrix and v denotes the number of samples in the test set.

To improve the efficiency of the proposed model, we compare our method with
CNNBranch3 [27], CNN3 [28], CNN1 [22] and CNNBranch3_fc, they all have the GAN ar-
chitecture. In order to prove the advantages of geometric algebra convolution, CNNBranch3
is used as its comparative experiment. The difference between CNNBranch3 and our model
is only the convolutional layer of the generator. CNNBranch3 uses traditional scalar convo-
lution, while our model has geometric algebra convolution. Compared with CNNBranch3,
which takes a multibranch structure to process inputs with parameters of F, S and O, CNN3
simply uses 3D convolution to process inputs with these three parameters. In order to
prove the influence of parameter correlation on the repair effect, CNN1 was employed for
comparison. It only takes the damaged speed parameter as the input; flow and occupancy
are not included. CNN1 also uses scalar convolution. For the last CNNBranch3_fc model,
compared with the CNNBranch3 model, the deconvolution layer of the generator is re-
placed with a fully connected layer, and the other modules remain unchanged to prove the
importance of decoding high-dimensional features.
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In the experiment, the generator of CNNBranch3 contains three branches, which are
used to process traffic, speed, and occupancy data. These three branches encode and
decode the corresponding parameters. The results generated by the branches are merged,
the repaired data can be obtained from the last deconvolution layer. The encoding part has
three convolutional layers, and the decoding also includes three deconvolutional layers.
The generator of CNN3 employs 3D convolution to process the three traffic parameters,
without merging feature maps such as branches, and other module structures are the same
as that of CNNBranch3. The input of the CNN1 generator is the impaired speed matrix,
which is also composed of three convolutional layers and three deconvolutional layers. The
structure of CNNBranch3_fc and CNNBranch3 is basically the same, except that the three
deconvolution layers in the generator is replaced with three fully connected layers.

Curves of Figures 15 and 16 demonstrate the recovered values and their corresponding
ground truth of the Yan’an and Neihuan elevated highways for some detectors. More
specifically, we randomly selected six diagrams of each highway, which represent the speed
values of different detectors on different days. In these subgraphs, the blue solid line
denotes the ground truth, the yellow solid line represents the repaired value of our model,
and other curves with different colors indicate the results of baseline methods. It can be
seen from these figures that the repaired results generated by our model are the closest to
the ground truth.

Finally, we use strip mask and show the results compared with baseline methods in
Tables 4 and 5. It can be found that the proposed model achieves the lowest error among all
of the methods. More specifically, CNN1 and CNNBranch3_fc perform the worst, as CNN1
does not consider the correlation of traffic parameters, and CNNBranch3_fc cannot decode
the extracted features effectively. The performance of CNN3 is better than the previous
two, because it makes full use of the excellent decoding ability of parameter correlation
and deconvolution. Compared with CNN3, CNNBranch3 performs feature extraction on
each parameter separately, so that all parameters can be fused after they have been fully
learned, and the performance is better. Our model shows the best performance due to
the use of geometric algebra convolution. For the Yan’an elevated highway, L1 and L2
indicators produced by our method are 3.264% and 0.259%, which are the lowest of all
listed methods. Compared with the presented models, L1 and L2 measures of our approach
for the Neihuan elevated highway have the values of 2.616% and 0.180%, which are still
the smallest.

In order to further verify the generalization ability, we conduct a comparative ex-
periment with different degrees of damage in the case of discrete damage. The ratios of
damaged area to total area are 10%, 20%, 30%, 40% and 50%. Figure 17 demonstrates that
as the degree of damage increases, the performance of the models also declines within a
reasonable range. However, the proposed method still performs the best, which proves the
robustness of our model.

In this section, various experiments are conducted to evaluate the robustness of our
model and to compare with other state-of-the-art work. It is illustrated that our method
outperforms CNNBranch3 [24], CNN3 [25], CNN1 [19] and CNNBranch3_fc. In addition,
the proposed approach performs well with both strip damage and discrete damage on
two highways. Specifically, in the case of discrete damage, the generalization ability of
our model with different degrees of damage is also proved. The performance of the
proposed GAGAN model greatly contributes to the joint learning of correlation between
high-dimensional traffic parameters.



Sensors 2022, 22, 2744 18 of 22

(a) (b)

(c) (d)

(e) (f)

Figure 15. Repaired speed curves and corresponding ground truth of six loop detectors of Yan’an
elevated highway. (a) The repaired values and the ground truth of the 10th loop detector on the
Yan’an elevated highway in the 2nd test day. (b) The repaired values and the ground truth of the
35th loop detector on the Yan’an elevated highway in the 3rd test day. (c) The repaired values and
the ground truth of the 8th loop detector on the Yan’an elevated highway in the 7th test day. (d) The
repaired values and the ground truth of the 11th loop detector on the Yan’an elevated highway in the
10th test day. (e) The repaired values and the ground truth of the 19th loop detector on the Yan’an
elevated highway in the 32nd test day. (f) The repaired values and the ground truth of the 15th loop
detector on the Yan’an elevated highway in the 35th test day.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Repaired speed curves and corresponding ground truth of six loop detectors of Neihuan
elevated highway. (a) The repaired values and the ground truth of the 7th loop detector on the
Neihuan elevated highway in the 2nd test day. (b) The repaired values and the ground truth of the
24th loop detector on the Neihuan elevated highway in the 10th test day. (c) The repaired values
and the ground truth of the 14th loop detector on the Neihuan elevated highway in the 12th test
day. (d) The repaired values and the ground truth of the 10th loop detector on the Neihuan elevated
highway in the 15th test day. (e) The repaired values and the ground truth of the 32nd loop detector
on the Neihuan elevated highway in the 21st test day. (f) The repaired values and the ground truth of
the 31st loop detector on the Neihuan elevated highway in the 27th test day.
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Table 4. Comparison results for Yan’an elevated highway.

Models L1 L2

Our model 0.03264 0.00259
Cnnbranch3 0.03495 0.00271

Cnn3 0.03960 0.00357
Cnn1 0.05014 0.00573

Cnnbranch3fc 0.05198 0.00636

Table 5. Comparison results for Neihuan elevated highway.

Models L1 L2

Our model 0.02616 0.00180
Cnnbranch3 0.02995 0.00254

Cnn3 0.03741 0.00312
Cnn1 0.04830 0.00490

Cnnbranch3fc 0.04034 0.00399

(a) (b)

(c) (d)

Figure 17. Results of different levels of damage on two elevated highways. (a) L1 of different levels
of damage on Yan’an elevated highways. (b) L2 of different levels of damage on Yan’an elevated
highways. (c) L1 of different levels of damage on Neihuan elevated highways. (d) L2 of different
levels of damage on Neihuan elevated highways.

6. Conclusions

In this paper, we propose a geometric-algebra-based generative adversarial network
to deal with the important task of repairing missing traffic speed data. The original traffic
data which include speed, flow and occupancy are first processed as spatial–temporal
matrices. To make full use of the correlation between different traffic parameters, the
speed, flow and occupancy data are embedded in the geometric algebraic framework to
form multivectors and used as the input of the proposed model. The geometric algebra
convolution module in the generator encodes high-dimensional data and enables efficient
joint learning of multidimensional traffic parameters. The deconvolution module in the
generator decodes the extracted features and generates recovered traffic speed matrix. In
the proposed model, the generator loss function takes into account the feedback information
from the discriminator, the global and local traffic speed data characteristics at the same
time. The discriminator based on the multichannel convolutional network makes the repair
value more realistic. Traffic data obtained from the elevated highway loop detectors are
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used to evaluate the performance of the proposed method. Experimental results show that
our approach outperforms the state-of-the-art work and can effectively recover missing
traffic speed data in a robust way.
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