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Abstract: Stretchable strain sensors are capable of acquiring data when in contact with human skin or
equipment and are widely used in wearable applications. Most strain sensors have tensile properties
of less than 20% and have limitations regarding body motion linkage, complex sensor structure, and
motion nonreliability. To address these problems, we developed a high tension and high sensitivity
sensor with a gauge factor over 40 and tensile stress about 50%. Polydimethylsiloxane (PDMS) was
selected as the flexible substrate to ensure tensile strength, and polyaniline (PANI) was used to
measure the resistance changes in the sensor. In particular, problems regarding poor uniformity of
PANI on PDMS were resolved by surface treatment of the PDMS, wherein PANI polymerization was
performed sequentially after forming a self-assembled monolayer (SAM) on the PDMS substrate. O2

plasma and (3-aminopropyl)triethoxysilane were used to form the SAM. It is expected that this sensor
can obtain stable characteristics even under high tensile stress through the evenly formed PANI films
on the surface-treated PDMS substrate and may be used in various flexible sensor applications.

Keywords: strain sensor; conducting polymer; self-assembled monolayer; dilute polymerization;
gauge factor

1. Introduction

Conductive polymers have the electrical and optical properties of metals as well as
mechanical properties of original polymers; hence, extensive research is currently underway
on their potential applications [1–5]. Polyaniline (PANI) has good electrical properties and
high mechanical strength, thereby rendering it suitable for application to flexible-substrate-
based wearable sensors [6–8]. Existing flexible substrate-based wearable sensors have been
studied for various applications, such as electronic skin, flexible displays, health monitors,
and energy harvesters; however, they are limited by several restrictions regarding use in
practical applications owing to their lack of tensile properties [9–11]. Therefore, using PANI
to develop stretchable sensors with excellent tensile properties and conductivity, such as
strain-sensor-based electronic skin, is expected to have highly valuable applications [12,13].

PANI films can be fabricated easily on substrates by various chemical, electrochemical,
template, and interfacial synthesis methods [14–17]. The chemical polymerization method,
which uses redox reactions, is widely utilized owing to simplicity of synthesis [18,19].
However, variables such as the type of oxidant, synthesis temperature and time, and
surface treatment must be considered carefully to control PANI’s shape, length, electrical
characteristics, and yield [20,21]. In particular, the surface functional groups on a substrate
are crucial for achieving high adhesive force, uniform coverage, and good electrical prop-
erties of PANI during the chemical polymerization process [22–24]. The present study
is aimed at manufacturing a crack-based strain sensor by synthesizing a PANI film on
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a polydimethylsiloxane (PDMS) substrate via surface treatment through self-assembled
monolayer (SAM) formation [22,24,25].

The gauge factor (GF) is an essential indicator for evaluating the performance of a
strain sensor [26]. GF is defined as

GF =
R/R0

L/L0
(1)

GF was expressed as the change in relative resistance with relative length (Equation (1)).
R0 and L0 denote the resistance and the length in the initial state. R and L represent the
resistance and length in the strain state. Generally, for metal thin films, the GF is as low as
2–5. Low GF indicates low sensor sensitivity, which means that a material with high GF is
required for precise sensing.

Previously, several researchers have attempted PANI polymerization on various sub-
strates with insufficient tensile properties, such as Si, PEN and PET [27,28]. In addition, a
few studies have attempted PANI polymerization on tensile substrates such as PDMS [8,29].
It is not difficult to synthesize PANI films on PDMS substrates, but uniform and stable char-
acteristics in manufacturing sensors are the greater concerns. Therefore, a simple process
for synthesizing PANI films on self-assembled monolayer (SAM)-treated PDMS substrate is
suggested in this study to ensure high GF and tensile properties. The suggested synthesis
process is suitable for manufacturing inexpensive, flexible, sensitive, and reversible sensors.

2. Materials and Methods
2.1. Materials

PDMS used as the flexible substrate was made using a Si elastomer base and a curing
agent (sylgard 184) purchased from Dow Corning Corporation (Midland, MI, USA). Aniline
(≥99.5%) for PANI synthesis was purchased from Sigma-Aldrich (St. Louis, MO, USA),
perchloric acid (70%) was purchased from Sigma-Aldrich (St. Louis, MO, USA), and
ammonium persulfate (≥98%) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Toluene (≥99.9%) for surface treatment and (3-aminopropyl)triethoxysilane (APTES, 99%)
were both purchased from Sigma-Aldrich (St. Louis, MO, USA). Acetone and isopropanol
(IPA) used for cleaning were purchased from J.T. Baker (Radnor, PA, USA).

2.2. Methods

The PDMS substrate synthesis process is as follows. PDMS is combined in a base to
curing agent ratio of 10:1 in a 4-inch Petri dish and mixed thoroughly for 10 min; then, a
treatment procedure involving vacuum for 5 min, release for 1 min, and waiting for 5 min
was repeated three times in a vacuum desiccator to remove air bubbles. Thereafter, curing
was performed at 100 ◦C for 48 min in an oven to complete the fabrication of bulk PDMS,
followed by cooling and removal from the Petri dish [18]. Finally, the PDMS was cut using
a mold made according to the ASTM D412 model [30–32].

The PDMS substrate was then subject to the following surface treatment process.
First, the surface was cleaned with acetone, IPA, and deionized (DI) water for 1 min each
and dried with nitrogen. Then, surface modifications are performed using O2 plasma
under 100 W, 20 sccm, and 100 mTorr for 2 min. Thereafter, the PDMS surface treatment is
completed by immersing the substrate in 10 mM APTES in toluene for 30 min. Finally, the
substrate is naturally dried for 3 h.

PANI films are deposited on the PDMS surface by the dilute polymerization process.
First, the concentration at which PANI can be most evenly formed on the surface was
selected. The typical ratio of aniline to APS is 1.5 [18]. However, we tried to find the
most suitable synthesis concentration of aniline in the range of 6–14 mM while fixing the
APS concentration as shown in Figure 1. The density with 14 mM of aniline is sufficiently
ensured and better as compared to other concentrations. Therefore, we prepare 14 mM
of aniline solution and 9.33 mM APS solution in 1 M perchloric solution, followed by
precooling for 30 min. The surface-treated PDMS substrate is attached to the beaker, and
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the prepared aniline solution is first added, followed by slow addition of the prepared
APS solution. The beaker is then maintained at 0 ◦C for 24 h and stirred at 200 rpm. After
completion of synthesis, the final product is cleaned in DI water and dried with a nitrogen
gun. The various prepared samples are listed in Table 1. The sample 1 is a PANI on PDMS
without any treatment. The sample 2 is a PANI on PDMS after O2 plasma treatment. The
sample 3 is a PANI on PDMS after O2 plasma and APTES treatments. Circle and cross
indicate whether or not they have gone through any treatment processes.
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Figure 1. Scanning electron microscopy images of PANI with different mole concentrations of aniline.

Table 1. Three different samples with PANI on PDMS.

PANI O2 Plasma APTES

Sample 1 O X X
Sample 2 O O X
Sample 3 O O O

3. Results
3.1. SAM on PDMS

A SAM refers to an organic monolayer that is formed spontaneously on the surface
of the substrate. The organic molecules of the SAM consist of three parts: the first part is
the head group, which enables chemical adsorption of the molecules on the surface; the
second part is the body group that enables ordered molecular film formation; the third part
is the tail group that determines the chemical functional groups of the formed molecular
film. Here, the amine group (NH2) is used as the tail group to ensure high deposition
rate with PANI during the dilute polymerization process. Synthesis is performed using
the same characteristics of the amine group (NH2) of PANI and the tail group of SAM.
Figure 2 shows the process of synthesis of PANI after surface treatment. When PANI is
synthesized on a substrate, aniline must be deposited in seed form for PANI growth. If
this seed is nonuniformly deposited on the substrate, the final deposited product will also
be nonuniform. Therefore, for PANI to grow uniformly on the substrate, it is noted that
the surface of the substrate must also be chemically uniform. PDMS has a –CH3 func-
tional group (Figure 2a) that is converted to an –OH group through O2 plasma treatment
(Figure 2b). Thereafter, this functional group is replaced with the NH2 group to facilitate
PANI synthesis through APTES treatment (Figure 2c). Finally, PANI polymerization is
performed on the modified PDMS surface (Figure 2d). To grow a uniform PANI layer on
the PDMS surface and increase the overall coverage, it is essential to form a SAM. Because
the surface is not chemically uniform in the pristine PDMS, it is subjected to O2 plasma
and then silane (here, APTES) treatments to form a chemically uniform surface capable of
achieving good adhesion with PANI.
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Figure 2. PDMS surface modification: (a) pristine PDMS; (b) O2 plasma treatment; (c) APTES
treatment; (d) PANI polymerization after surface modification.

3.2. Scanning Electron Microscopy (SEM)

We selected PDMS as the substrate and confirmed PANI film growth based on sur-
face treatment in the dilute polymerization process of PANI. The surface morphology
and elemental composition were studied through SEM-coupled energy-dispersive X-ray
spectroscopy (EDS) analysis. Figure 3a,b shows the growth of PANI on PDMS without
any surface treatment (sample 1); it is seen that the PANI film was deposited on the PDMS
surface such that the density was sufficiently secured. However, Figure 3c,d shows PANI
growth after O2 plasma treatment of the PDMS (sample 2), and it is seen that the density is
significantly less than that of PANI grown on pristine PDMS. This shows that synthesis
is poor when PANI is grown immediately after O2 plasma treatment. The formation of
–OH group on PDMS substrate alone proves that PANI is difficult to synthesize normally.
Figure 3e,f shows that APTES treatment was performed immediately after O2 plasma
treatment of the PDMS, followed by PANI growth (sample 3); here, the shape itself is not
much different from the sample with PANI growth on pristine PDMS, but the density is
sufficiently ensured, thickness is greater, and linkage is better. The EDS pattern of the
sample 3 (Figure 3g) show several peaks for the PANI film, with carbon (C) and nitrogen
(N) signals representing PANI, silicon (Si), and oxygen (O) signals derived from APTES
surface treatment, and chloride (Cl) signals from perchloric acid.
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Figure 3. Scanning electron microscopy images of sample 1, 2 and 3 at 10 k and 100 k magnifications:
(a,b) PANI on pristine PDMS; (c,d) PANI on PDMS after O2 plasma treatment; (e,f) PANI on PDMS
after O2 plasma and APTES treatments; (g) energy-dispersive X-ray spectroscopy pattern and element
composition of the PANI film (sample 3).
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3.3. Contact Angle

The contact angle (CA) is a good indicator of the hydrophilicity or hydrophobicity of
the surface. Figure 4 shows the contact angles of DI water between the PDMS and PANI
surfaces. Since the pristine PDMS surface has –CH3 functional groups, it is predicted that
the surface is hydrophobic; thus, it is confirmed from the CA of over 110◦ that the pristine
PDMS is hydrophobic (Figure 4a). From the O2 plasma treatment of the PDMS surface, it is
seen that the PDMS surface becomes hydrophilic with a CA of less than 20◦ (Figure 4b).
However, after O2 plasma treatment and PANI polymerization, the surface returns to the
hydrophobic state with a CA over 110◦, similar to that of pristine PDMS (Figure 4c). Thus,
it is seen that the surface of PANI is also hydrophobic like that of PDMS. The O2 plasma
treatment process is hence required for good APTES deposition on the PDMS surface; when
the CA is measured after completing APTES treatment and PANI synthesis, it is confirmed
that the PANI surface becomes hydrophobic with a CA over 90◦ (Figure 4d).
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3.4. Strain and I–V Characteristics

PANI can be formed in three types as leucoemeraldine, emeraldine, and pernigraniline
through the synthesis processes and represents the base and salt structures via redox
reactions in each form. One of the characteristics of PANI is that it shows different colors
depending on the synthesized form. Among these, the emeraldine salt structure having
conductivity exhibits a green color. Figure 5 illustrates the synthesis of PANI on PDMS
substrate, and all three illustrations above show a green color and conductivity; thus, it
is expected that PANI would have an emeraldine salt structure. Figure 5a shows PANI
synthesized on PDMS without any treatment, and Figure 5b shows PANI synthesis after O2
plasma treatment. Compared with synthesis on pristine PDMS, when a plasma treatment
is performed, the coverage is significantly lowered by the PDMS surface property, which
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become hydrophilic owing to the –OH groups. However, as in Figure 5c, when PANI
synthesis is performed after O2 plasma and APTES treatment with –NH2 functional groups,
the coverage is confirmed to be better than that after plasma treatment of the pristine
surface. The –NH2 functional group is hydrophilic similar to the –OH group, but both
PANI and APTES have the same –NH2 functional groups, which offer advantages in the
synthesis process.
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Figure 5. PANI growth on PDMS: (a) PANI on pristine PDMS; (b) PANI on PDMS after O2 plasma
treatment; (c) PANI on PDMS after O2 plasma and APTES treatments.

We conducted I–V measurements according to the strain for PANI on pristine PDMS
and PANI on PDMS after O2 plasma and APTES treatments. PANI on PDMS after O2
plasma treatment is judged to have not been polymerized on the substrate because of signif-
icantly lower coverage than those of the other samples, thereby showing the characteristics
of poor conductor; hence, I–V measurements were not shown here. Figure 6a shows the
current measurements performed by attaching nickel tape and varying the voltage from
−2 V to 2 V in steps of 0.1 V with dual sweeping. The strain was assessed for 0%, 10%,
20%, 30%, 40% and 50%, and Figure 6b–d shows the I–V values according to each strain.
Figure 6b shows I–V trends according to strain of the PANI polymerization sample for
pristine PDMS. When strain was 0%, it showed about 5 × 10−9 A at 2 V, and as seen from
the graph, it was not possible to ensure stable current values based on the voltage and
strain values. Figure 6c shows the I–V measurements for PANI on PDMS after O2 plasma
and APTES treatments, which has a value of 6 × 10−7 A at 2 V with 0% strain, and it
was possible to obtain stable measurements depending on the voltage. In addition, when
the strain was gradually increased from 0% to 50%, the current decreased, and when the
maximum tensile value was 50%, a current of about 3 × 10−8 A was obtained. It should be
noted here that a stable current value was seen in accordance with the voltage value for
voltages of 0 V to 2 V, and the current value tended to decrease in accordance with 0% to
50% strain.
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Figure 7 shows the GF values. In Figure 7a, the GF is in the range of 6–14 when the
strain is 50%; this is not only a low value for a strain sensor but also shows poor stability
of the sample measuring at different strains. However, from Figure 7b, a GF of 12–30 is
confirmed when the strain is 10%, and a high GF of 38–49 is available when the strain
is 50%. Relatively high and stable GF values can be secured. Additionally, we prepared
three more samples after O2 plasma and APTES treatments. Although the GF value at 50%
strain is not able to measure, average GF values with the strain from 10 to 40% are more
stable according to the strain as shown in Figure 7c. Thus, the PANI synthesis on PDMS
after APTES treatment of the strain sensor produces higher sensitivity and reliability than
pristine PDMS.
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4. Discussion

Various applications using flexible substrates are being commercialized and various
materials are being developed. Among them, there are different process methods to utilize
the good characteristics of PANI. However, the synthesis of PANI on PDMS is a well-known
process, but it is not easy to obtain stable properties by directly synthesizing PANI on PDMS
substrates with high uniformity. The process of bonding two different substances without
any intermediate treatment is not easy when considering intermolecular interconnections.
In order to obtain stable properties by combining heterogeneous substances, a surface
treatment process must be accompanied. In this study, we propose a process to obtain
higher uniformity and reliable operational characteristics than previously known PANI
synthesis on PDMS through chemical surface treatment. In particular, the surface treatment
method using a SAM is a very important part of synthesizing a conductive polymer on a
flexible substrate. The result of PANI on PDMS synthesis without any surface treatment and
the result of PANI on PDMS synthesis through surface treatment were compared. Finally,
the PANI synthesis on the PDMS strain sensor after O2 plasma and APTES treatments
produced a maximum GF of 49 at 50% strain, which shows that this configuration obtained
higher coverage and better electrical characteristics than PANI synthesis on a pristine
PDMS strain sensor. High GF at a high strain rate was secured, which is considered to be
a good indicator in using PANI and PDMS in the future. We believe that strain sensors
manufactured using surface treatments to synthesize conductive polymers can be used in
various applications, such as wearables, electronic skin, and robotics.
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