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Abstract: Due to the advantages of economics, safety, and efficiency, vision-based analysis techniques
have recently gained conspicuous advancements, enabling them to be extensively applied for au-
tonomous constructions. Although numerous studies regarding the defect inspection and condition
assessment in underground sewer pipelines have presently emerged, we still lack a thorough and
comprehensive survey of the latest developments. This survey presents a systematical taxonomy
of diverse sewer inspection algorithms, which are sorted into three categories that include defect
classification, defect detection, and defect segmentation. After reviewing the related sewer defect
inspection studies for the past 22 years, the main research trends are organized and discussed in detail
according to the proposed technical taxonomy. In addition, different datasets and the evaluation
metrics used in the cited literature are described and explained. Furthermore, the performances of
the state-of-the-art methods are reported from the aspects of processing accuracy and speed.

Keywords: survey; computer vision; defect inspection; condition assessment; sewer pipes

1. Introduction
1.1. Background

Underground sewerage systems (USSs) are a vital part of public infrastructure that
contributes to collecting wastewater or stormwater from various sources and conveying
it to storage tanks or sewer treatment facilities. A healthy USS with proper functionality
can effectively prevent urban waterlogging and play a positive role in the sustainable
development of water resources. However, sewer defects caused by different influence
factors such as age and material directly affect the degradation of pipeline conditions. It was
reported in previous studies that the conditions of USSs in some places are unsatisfactory
and deteriorate over time. For example, a considerable proportion (20.8%) of Canadian
sewers is graded as poor and very poor. The rehabilitation of these USSs is needed in
the following decade in order to ensure normal operations and services on a continuing
basis [1]. Currently, the maintenance and management of USSs have become challenging
problems for municipalities worldwide due to the huge economic costs [2]. In 2019, a report
in the United States of America (USA) estimated that utilities spent more than USD 3 billion
on wastewater pipe replacements and repairs, which addressed 4692 miles of pipeline [3].

1.2. Defect Inspection Framework

Since it was first introduced in the 1960s [4], computer vision (CV) has become a
mature technology that is used to realize promising automation for sewer inspections.
In order to meet the increasing demands on USSs, a CV-based defect inspection system
is required to identify, locate, or segment the varied defects prior to the rehabilitation
process. As illustrated in Figure 1, an efficient defect inspection framework for underground
sewer pipelines should cover five stages. In the data acquisition stage, there are many

Sensors 2022, 22, 2722. https://doi.org/10.3390/s22072722 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072722
https://doi.org/10.3390/s22072722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3274-4982
https://orcid.org/0000-0001-7668-3838
https://doi.org/10.3390/s22072722
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072722?type=check_update&version=1


Sensors 2022, 22, 2722 2 of 26

available techniques such as closed-circuit television (CCTV), sewer scanner and evaluation
technology (SSET), and totally integrated sonar and camera systems (TISCITs) [5]. CCTV-
based inspections rely on a remotely controlled tractor or robot with a mounted CCTV
camera [6]. An SSET is a type of method that acquires the scanned data from a suite of
sensor devices [7]. The TISCIT system utilizes sonar and CCTV cameras to obtain a 360◦

view of the sewer conditions [5]. As mentioned in several studies [6,8–10], CCTV-based
inspections are the most widely used methods due to the advantages of economics, safety,
and simplicity. Nevertheless, the performance of CCTV-based inspections is limited by
the quality of the acquired data. Therefore, image-based learning methods require pre-
processing algorithms to remove noise and enhance the resolution of the collected images.
Many studies on sewer inspections have recently applied image pre-processing before
examining the defects [11–13].
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Figure 1. There are five stages in the defect inspection framework, which include (a) the data
acquisition stage based on various sensors (CCTV, sonar, or scanner), (b) the data processing stage for
the collected data, (c) the defect inspection stage containing different algorithms (defect classification,
detection, and segmentation), (d) the risk assessment for detected defects using image post-processing,
and (e) the final report generation stage for the condition evaluation.

In the past few decades, many defect inspection strategies and algorithms have been
presented based on CCTV cameras. Manual inspections by humans are inefficient and
error-prone, so several studies attempted to adopt conventional machine learning (ML)
approaches in order to diagnose the defects based on morphological, geometrical, or
textural features [14–16]. With the elevation and progress of ML, deep learning (DL)
methods have been widely applied to enhance the overall performance in recent studies
on sewer inspections. Previous investigations have reviewed and summarized different
kinds of inspections, which mainly include manual inspections [17,18] and automatic
inspections based on the conventional machine learning algorithms [15,19] and deep
learning algorithms [9,20].

In the attempt to evaluate the infrastructure conditions, some researchers have devel-
oped risk assessment approaches using different image post-processing algorithms [21–23].
For instance, a defect segmentation method was proposed to separate the cracks from the
background, and post-processing was subsequently used to calculate the morphological
features of the cracks [22]. In another study, a method based on a fully convolutional net-
work and post-processing was introduced to detect and measure cracks [21]. Nevertheless,
the existing risk assessment methods are limited to the feature analysis of cracks only, and
there is no further research and exploration of each specific category.
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1.3. Previous Survey Papers

Table 1 lists the major contributions of five survey papers, which considered different
aspects of defect inspection and condition assessment in underground sewer pipelines. In
2019, an in-depth survey was presented to analyze different inspection algorithms [24].
However, it only focused on defect detection, and defect segmentation was not involved
in this study. Several surveys [7,10,20] were conducted one year later to discuss the
previous studies on sewer defects. Moreover, the recent studies associated with image-
based construction applications are discussed in [8]. In these relevant surveys, the authors
of each paper put efforts into emphasizing a particular area. A more comprehensive review
of the latest research on defect inspection and condition assessment is significant for the
researchers who are interested in integrating the algorithms into real-life sewer applications.
In addition, the detailed and well-arranged list tables for the existing defect inspection
methods according to the different categories are not provided in these papers.

Table 1. Major contributions of the previous review papers on defect inspection and condition
assessment. ‘

√
’ indicates the research areas (defect inspection or condition assessment) are involved.

‘×’ means the research areas (defect inspection or condition assessment) are not involved.

ID Ref. Time Defect
Inspection

Condition
Assessment Contributions

1 [24] 2019
√ √

• Analyze the status of practical
defect detection and condition
assessment technologies.

• Compare the benefits and
drawbacks of the
reviewed work.

2 [10] 2020
√

×

• Introduce defect inspection
methods that are suitable for
different materials.

• Provide a taxonomy of
various defects.

• List the state-of-the-art (SOTA)
methods for the classification
and detection.

3 [7] 2020
√

×

• Create a brief overview of the
defect inspection algorithms,
datasets, and evaluation metrics.

• Indicate three recommendations
for the future research.

4 [20] 2020 ×
√

• Investigate different models for
the condition assessment.

• Analyze the influence factors of
the reviewed models on the
sewer conditions.

5 [8] 2021
√ √ • Present a review for main

applications, advantages, and
possible research areas.

1.4. Contributions

In order to address the above issues, a survey that covers various methods regarding
sewer defect inspection and condition assessment is conducted in this study. The main
contributions are as follows. This survey creates a comprehensive review of the vision-
based algorithms about defect inspection and condition assessment from 2000 to the present.
Moreover, we divide the existing algorithms into three categories, which include defect
classification, detection, and segmentation. In addition, different datasets and evaluation
metrics are summarized. Based on the investigated papers, the research focuses and
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tendencies in previous studies are analyzed. Meanwhile, the limitations of the existing
approaches as well as the future research directions are indicated.

The rest of this survey is divided into four sections. Section 2 presents the methodology
used in this survey. Section 3 discusses the image-based defect inspection algorithms that
cover classification, detection, and segmentation. Section 4 analyzes the dataset and the
evaluation metrics that are used from 2000 onwards. In Section 5, the challenges and future
needs are indicated. Conclusions of previous studies and suggestions for future research
are provided in Section 6.

2. Survey Methodology

A thorough search of the academic studies was conducted by using the Scopus journal
database. It automatically arranges the results from different publishers, which include
Elsevier, Springer Link, Wiley online library, IEEE Xplore, ASCE Library, MDPI, SACG,
preprint, Taylor & Francis Group, and others. Figure 2 shows the distribution of the
academic journals reviewed in diverse databases. The journals in the other databases
include SPIE Digital Library, Korean Science, Easy Chair, and Nature. In order to highlight
the advances in vision-based defect inspection and condition assessment, the papers of
these fields that were published between 2000 and 2022 are investigated. The search
criterion of this survey is to use an advanced retrieval approach by selecting high-level
keywords like (“vision-based sensor” OR “video” OR “image”) AND (“automatic sewer
inspection” OR “defect classification” OR “defect detection” OR “defect segmentation”
OR “condition assessment”). Since there is no limitation on a certain specific construction
material or pipe typology, the research on any sewer pipeline that can be entered and that
obtained visual data is covered in this survey. Nevertheless, the papers that focus on some
topics, which do not relate to the vision-based sewer inspection, are not included in this
paper. For example, the quality assessment for sewer images [25], pipe reconstruction,
internal pipe structure, wall thickness measurement, and sewer inspections based on other
sensors such as depth sensors [26,27], laser scanners [28,29], or acoustic sensors [30,31]
are considered irrelevant topics. Figure 3 represents the number of articles including
journals and conference papers in different time periods from 2000 to 2022. By manually
scanning the title and abstract sections, a total of 124 papers that includes both journals
(95) and conferences (29) in English was selected to examine the topic’s relevancy. In
addition to these papers, four books and three websites were also used to construct this
survey. After that, the filtered papers were classified in terms of the employed methods and
application areas. Finally, the papers in each category were further studied by analyzing
their weaknesses and strengths.
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3. Defect Inspection

In this section, several classic algorithms are illustrated, and the research tendency is
analyzed. Figure 4 provides a brief description of the algorithms in each category. Accord-
ing to the literature review, the existing studies about sewer inspection are summarized
in three tables. Tables 2–4 show the recent studies about defect classification (Section 3.1),
detection (Section 3.2), and segmentation (Section 3.3) algorithms. In order to comprehen-
sively analyze these studies, the publication time, title, utilized methodology, advantages,
and disadvantages for each study are covered. Moreover, the specific proportion of each in-
spection algorithm is computed in Figure 5. It is clear that the defect classification accounts
for the most significant percentages in all the investigated studies.
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3.1. Defect Classification

Due to the recent advancements in ML, both the scientific community and industry
have attempted to apply ML-based pattern recognition in various areas, such as agricul-
ture [32], resource management [33], and construction [34]. At present, many types of defect
classification algorithms have been presented for both binary and multi-class classification
tasks. The commonly used algorithms are described below.

3.1.1. Support Vector Machines (SVMs)

SVMs have become one of the most typical and robust ML algorithms because they
are not sensitive to the overfitting problem compared with other ML algorithms [35–37].
The principal objective of an SVM is to perfectly divide the training data into two or more
classes by optimizing the classification hyperplane [38,39]. A classification hyperplane
equation can be normalized in order to form a two-dimensional sample set that satisfies
Equation (1).

yi

(
wTx + b

)
≥ 1, i = 1, . . . , n. (1)

where xi ∈ R2 and yi ∈ (+1,−1); w is the optimal separator and b is the bias. As shown
in Figure 6, the circles and triangles indicate two classes of training samples. The optimal
hyperplane is represented as H, and the other two parallel hyperplanes are represented as
H1 and H2. On the premise of correctly separating samples, the maximum margin between
the two hyperplanes (H1 and H2) is conducive to gaining the optimal hyperplane (H).
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Despite classifying various types of defects with high accuracy, the SVM algorithm can-
not be applied to end-to-end classification problems [40]. As demonstrated in [41], Ye et al.
established a sewer image diagnosis system where a variety of image pre-processing algo-
rithms, such as Hu invariant moments [42] and lateral Fourier transform [43] were used
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for the feature extraction, and the SVM was then used as the classifier. The accuracy of the
SVM classifier reached 84.1% for seven predefined classes, and the results suggested that
the training sample number is positively correlated with the final accuracy. In addition to
this study, Zuo et al. applied the SVM algorithm that is based on a specific histogram to
categorize three different cracks at the sub-class level [11]. Before the classification process,
bilateral filtering [44,45] was applied in image pre-processing in order to denoise input
images and keep the edge information. Their proposed method obtained a satisfactory
average accuracy of 89.6%, whereas it requires a series of algorithms to acquire 2D radius
angular features before classifying the defects.

3.1.2. Convolutional Neural Networks (CNNs)

A CNN was first proposed in 1962 [46], and it has demonstrated excellent perfor-
mances in multiple domains. Due to its powerful generalization ability, CNN-based classi-
fiers that automatically extract features from input images are superior to the classifiers
that are based on the pre-engineered features [47]. Consequently, numerous researchers
have applied CNNs to handle the defect classification problem in recent years. Kumar
et al. presented an end-to-end classification method using several binary CNNs in order to
identify the presence of three types of commonly encountered defects in sewer images [48].
In their proposed framework, the extracted frames were inputted into networks that con-
tained two convolutional layers, two pooling layers, two fully connected layers, and one
output layer. The classification results achieved high values in terms of average accuracy
(0.862), precision (0.877), and recall (0.906), but this work was limited to the classification of
ubiquitous defects.

Meijer et al. reimplemented the network proposed in [48], and they compared the
performances based on a more realistic dataset introduced in [49]. They used a single
CNN to deal with multi-label classification problems, and their classifier outperformed
the method presented by Kumar et al. In another work, several image pre-processing
approaches, which included histogram equalization [50] and morphology operations [51],
were used for noise removal. After that, a fine-tuned defect classification model was used
to extract informative features based on highly imbalanced data [52]. Their presented
model architecture was based on the VGG network, which achieved first place in the
ILSVRC-2014 [53]. As illustrated in Figure 7, the model structure in the first 17 layers is
frozen, and the other sections are trainable; also, two convolutional layers and one batch
normalization were added to enhance the robustness of the modified network.
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Table 2. Academic studies in vision-based defect classification algorithms.

Time Methodology Advantage Disadvantage Ref.

2000 Back-propagation
algorithm Perform well for classification Slow learning speed [54]

2002 Neuro-fuzzy algorithm Good classification efficiency Weak feature
extraction scheme [55]

2006 Neuro-fuzzy classifier

• Combines neural network and
fuzzy logic concepts

• Screens data before network
training to improve efficiency

Not an end-to-end model [56]

2009 Rule-based classifier Recognize defects under the
realistic sewer condition No real-time recognition [57]

2009 Rule-based classifier Addresses realistic defect
detection and recognition

Unsatisfactory
classification result [58]

2009 Radial basis
network (RBN)

Overall classification accuracy
is high

Heavily relies on the
pre-engineered results [59]

2012 Self-organizing
map (SOM)

Suitable for large-scale
real applications

High computation
complexities [60]

2013 Ensemble classifiers • High practicability
• Reliable classification result

Feature extraction and
classification are separately

implemented
[61]

2016 Random forests Dramatically reduces the
processing time

Processing speed can
be improved [62]

2017 Random forest classifier Automated fault classification Poor performance [63]

2017 Hidden Markov model
(HMM)

• Efficient for numerous patterns
of defects
• Real time

Low classification accuracy [64]

2018 One-class SVM (OCSVM) Available for both still images
and video sequences

Cannot achieve a standard
performance [65]

2018 Multi-class random forest Poor classification accuracy Real-time prediction [66]

2018 Multiple binary CNNs • Good generalization capability
• Can be easily re-trained

• Do not support
sub-defects classification
• Cannot localize defects

in pipeline

[48]

2018 CNN
• High detection accuracy
• Strong scene adaptability in

realistic scenes

Poor performance for the
unnoticeable defects [67]

2018 HMM and CNN Automatic defect detection and
classification in videos Poor performance [68]

2019 Single CNN
• Outperforms the SOTA
• Allows multi-label

classification

Weak performance for fully
automatic classification [49]

2019 Two-level
hierarchical CNNs

Can identify the sewer images
into different classes

Cannot classify multiple
defects in the same

image simultaneously
[69]

2019 Deep CNN

• Classifies defects at
different levels

• Performs well in classifying
most classes

There exists a extremely
imbalanced data
problem (IDP)

[70]

2019 CNN Accurate recognition and
localization for each defect

Classifies only one defect
with the highest

probability in an image
[71]
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Table 2. Cont.

Time Methodology Advantage Disadvantage Ref.

2019 SVM Reveals the relationship between
training data and accuracy

Requires various steps for
feature extraction [41]

2020 SVM

• Classifies cracks at a
sub-category level
• High recall and fast

processing speed

Limited to only three
crack patterns [11]

2020 CNN

• Image pre-processing used for
noisy removal and

image enhancement
• High classification accuracy

Can classify one
defect only [72]

2020 CNN
Shows great ability for defect

classification under
various conditions

Limited to recognize the
tiny and narrow cracks [73]

2021 CNN Is robust against the IDP and
noisy factors in sewer images

No multi-label
classification [52]

2021 CNN Covers defect classification,
detection, and segmentation Weak classification results [74]

3.2. Defect Detection

Rather than the classification algorithms that merely offer each defect a class type,
object detection is conducted to locate and classify the objects among the predefined
classes using rectangular bounding boxes (BBs) as well as confidence scores (CSs). In
recent studies, object detection technology has been increasingly applied in several fields,
such as intelligent transportation [75–77], smart agriculture [78–80], and autonomous
construction [81–83]. The generic object detection consists of the one-stage approaches
and the two-stage approaches. The classic one-stage detectors based on regression include
YOLO [84], SSD [85], CornerNet [86], and RetinaNet [87]. The two-stage detectors are based
on region proposals, including Fast R-CNN [88], Faster R-CNN [89], and R-FCN [90]. In
this survey, the one-stage and two-stage methods that were employed in sewer inspection
studies are both discussed and analyzed as follows.

3.2.1. You Only Look Once (YOLO)

YOLO is a one-stage algorithm that maps directly from image pixels to BBs and class
probabilities. In [84], object detection was addressed as a single regression problem using a
simple and unified pipeline. Due to its advantages of robustness and efficiency, an updated
version of YOLO, which is called YOLOv3 [91], was explored to locate and classify defects
in [9]. YOLOv3 outperformed the previous YOLO algorithms in regard to detecting the
objects with small sizes because the YOLOv3 model applies a 3-scale mechanism that
concatenates the feature maps of three scales [92,93]. Figure 8 illustrates how the YOLOv3
architecture implements the 3-scale prediction operation. The prediction result with a scale
of 13 × 13 is obtained in the 82nd layer by down-sampling and convolution operations.
Then, the result in the 79th layer is concatenated with the result of the 61st layer after
up-sampling, and the prediction result with 26 × 26 is generated after several convolution
operations. The result of 52 × 52 is generated at layer 106 using the same method. The
predictions at different scales have different receptive fields that determine the appropriate
sizes of the detection objects in the image. As a result, YOLOv3 with a 3-scale mechanism
is capable of detecting more fine-grained features.

Based on the detection model developed by [9], a video interpretation algorithm
was proposed to build an autonomous assessment framework in sewer pipelines [94].
The assessment system verified how the defect detector can be put to use with realistic
infrastructure maintenance and management. A total of 3664 images extracted from
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63 videos were trained by the YOLOv3 model, which achieved a high mean average
precision (mAP) of 85.37% for seven defects and also obtained a fast detection speed for
real-time applications.
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3.2.2. Single Shot Multibox Detector (SSD)

Similarly, another end-to-end detector that is named SSD was first introduced for
multiple object classes in [85]. Several experiments were conducted to analyze the detection
speed and accuracy based on different public datasets. The results suggest that the SSD
model (input size: 300 × 300) obtained faster speed and higher accuracy than the YOLO
model (input size: 448 × 448) on the VOC2007 test. As shown in Figure 9, the SSD
method first extracts features in the base network (VGG16 [53]). It then predicts the
fixed-size bounding boxes and class scores for each object instance using a feed-forward
CNN [95]. After that, a non-maximum suppression (NMS) algorithm [96] is used to refine
the detections by removing the redundant boxes.
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Moreover, the SSD method was utilized to detect defects for CCTV images in a
condition assessment framework [97]. Several image pre-processing algorithms were used
to enhance the input images prior to the feature extraction process. Then three state-of-the-
art (SOTA) detectors (YOLOv3 [91], SSD [85], and faster-RCNN [89]) based on DLs were
tested and compared on the same dataset. The defect severity was rated in the end from
different aspects in order to assess the pipe condition. Among three experimental models,
YOLOv3 demonstrated that it obtained a relatively balanced performance between speed
and accuracy. The SSD model achieved the fastest speed (33 ms per image), indicating the
feasibility of real-time defect detection. However, the detection accuracy of SSD was the
lowest, which was 28.6% lower than the accuracy of faster R-CNN.
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3.2.3. Faster Region-Based CNN (Faster R-CNN)

The faster R-CNN model was introduced to first produce candidate BBs and then
refine the generated BB proposals [89]. Figure 10 shows the architecture of faster R-CNN
developed by [98] in a defect detection system. First of all, the multiple CNN layers in the
base network were used for feature extraction. Then, the region proposal network (RPN)
created numerous proposals based on the generated feature maps. Finally, these proposals
were sent to the detector for further classification and localization. Compared with the
one-stage frameworks, the region proposal-based methods require more time in handling
different model components. However, the faster R-CNN model that trains RPN and fast
R-CNN detector separately is more accurate than other end-to-end training models, such
as YOLO and SSD [99]. As a result, the faster R-CNN was explored in many studies for
more precise detection of sewer defects.
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In [98], 3000 CCTV images were fed into the faster R-CNN model, and the trained
model was then utilized to detect four categories of defects. This research indicated that the
data size, training scheme, network structure, and hyper-parameter are important impact
factors for the final detection accuracy. The results show the modified model achieved a
high mAP of 83%, which was 3.2% higher than the original model. In another work [99], a
defect tracking framework was firstly built by using a faster R-CNN detector and learning
discriminative features. In the defect detection process, a mAP of 77% was obtained
for detecting three defects. At the same time, the metric learning model was trained to
reidentify defects. Finally, the defects in CCTV videos were tracked based on detection
information and learned features.

Table 3. Academic studies in vision-based defect detection algorithms.

Time Methodology Advantage Disadvantage Ref.

2004 Genetic algorithm (GA)
and CNN High average detection rate Can only detect one type

of defect [100]

2014 Histograms of oriented
gradients (HOG) and SVM Viable and robust algorithm

Complicated image
processing steps before

detecting defective regions
[101]

2018 Faster R-CNN

• Explores the influences of several
factors for the model performance
• Provides references to applied
DL in autonomous construction

Limited to the still images [98]
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Table 3. Cont.

Time Methodology Advantage Disadvantage Ref.

2018 Faster R-CNN Addresses similar object detection
problems in industry

Long training time and slow
detection speed [102]

2018 Rule-based
detection algorithm

• Based on image
processing techniques

• No need training process
• Requires less images

Low detection performance [103]

2019 YOLO End-to-end detection workflow Cannot detect defect at
the sub-classes [104]

2019 YOLOv3

• High detection rate
• Real-time defect detection
• Efficient input data
manipulation process

Weak function of
output frames [9]

2019 SSD, YOLOv3, and
Faster R-CNN

Automatic detection for the
operational defects

Cannot detect the structural
defects [105]

2019 Rule-based detection
algorithm

Performs well on the
low-resolution images

Requires multiple digital
image processing steps [106]

2019 Kernel-based detector Promising and reliable results for
anomaly detection

Cannot get the true position
inside pipelines [107]

2019 CNN and YOLO Obtained a considerable reduction
in processing speed

Can detect only one type of
structural defect [108]

2020 Faster R-CNN Can assess the defect severity as
well as the pipe condition Cannot run in real time [97]

2020 Faster R-CNN

• Can obtain the number
of defects

• First work for sewer
defect tracking

Requires training two
models separately, not an

end-to-end framework
[99]

2020 SSD, YOLOv3, and Faster
R-CNN Automated defect detection

Structural defect detection
and severity classification are

not available
[105]

2021 YOLOv3

• Covers defect detection, video
interpretation, and

text recognition
• Detect defect in real time

The ground truths (GTs) are
not convincing [94]

2021 CNN and
non-overlapping windows

Outperformed existing models in
terms of detection accuracy

Deeper CNN model with
better performance requires

longer inference time
[109]

2021 Strengthened region
proposal network (SRPN)

• Effectively locate defects
• Accurately assess the

defect grade

• Cannot be applied for
online processing

• Cannot identify if the
defect is mirrored

[110]

2021 YOLOv2 Covers defect classification,
detection, and segmentation Weak detection results [74]

2022 Transformer-based defect
detection (DefectTR)

• Does not require
prior knowledge

• Can generalize well with
limited parameters

The robustness and efficiency
can be improved for

real-world applications
[111]

3.3. Defect Segmentation

Defect segmentation algorithms can predict defect categories and pixel-level location
information with exact shapes, which is becoming increasingly significant for the research
on sewer condition assessment by re-coding the exact defect attributes and analyzing the
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specific severity of each defect. The previous segmentation methods were mainly based on
mathematical morphology [112,113]. However, the morphology segmentation approaches
were inefficient compared to the DL-based segmentation methods. As a result, the defect
segmentation methods based on DL have been recently explored in various fields. The
studies related to sewer inspection are described as follows.

3.3.1. Morphology Segmentation

Morphology-based defect segmentation contains many methods, such as closing
bottom-hat operation (CBHO), opening top-hat operation (OTHO), and morphological
segmentation based on edge detection (MSED). By evaluating and comparing the segmenta-
tion performances of different methods, MSED was verified as being useful to detect cracks,
and OTHO was verified as being useful to detect open joints [113]. They also indicated
the removal of the text on the CCTV images is necessary to further improve the detection
accuracy. Similarly, MSED was applied to segment eight categories of typical defects,
and it outperformed another popular approach called OTHO [112]. In addition, some
morphology features, including area, axis length, and eccentricity, were also measured,
which is of great significance to assist inspectors in judging and assessing defect severity.
Although the morphology segmentation methods showed good segment results, they need
multiple image pre-processing steps before the segmentation process.

3.3.2. Semantic Segmentation

Automatic localization of the sewer defect’s shape and the boundary was first pro-
posed by Wang et al. using a semantic segmentation network called DilaSeg [114]. In order
to improve the segmentation accuracy, an updated network named DilaSeg-CRF was intro-
duced by combining the CNN with a dense conditional random field (CRF) [115,116]. Their
updated network improved the segmentation accuracy considerably in terms of the mean
intersection over union (mIoU), but the single data feature and the complicated training
process reflect that the DilaSe-CRF is not suitable to be applied in real-life applications.

Recently, the fully convolutional network (FCN) has been explored for the pixels-to-
pixels segmentation task [117–120]. Meanwhile, some other network architectures that
are similar to an FCN have emerged in large numbers, including U-Net [121]. Pan et al.
proposed a semantic segmentation network called PipeUNet, in which the U-Net was
used as the backbone due to its fast convergence speed [122]. As shown in Figure 11, the
encoder and decoder on both sides form a symmetrical architecture. In addition, three
FRAM blocks were added before the skip connections to improve the ability of feature
extraction and reuse. Besides, the focal loss was demonstrated, which is useful for handling
the imbalanced data problem (IDP). Their proposed PipeUNet achieved a high mIoU of
76.3% and a fast speed of 32 frames per second (FPS).
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Table 4. Academic studies in vision-based defect segmentation algorithms.

Time Methodology Advantage Disadvantage Ref.

2005
Mathematical

morphology-based
Segmentation

• Automated segmentation
based on geometry

image modeling
• Perform well under
various environments

• Can only segment cracks
• Complicated and

multiple steps
[123]

2014
Mathematical

morphology-based
Segmentation

Requires less data and
computing resources to

achieve a
decent performance

• Challenging to detect cracks
• Various processing steps [113]

2019 DL-based semantic
segmentation (DilaSeg-CRF)

• End-to-end
trainable model

• Fair inference speed
Long training time [116]

2020 DilaSeg-CRF

• Promising segmentation
accuracy

• The defect severity grade
is presented

Complicated workflow [23]

2020
DL-based

semantic segmentation
(PipeUNet)

• Enhances the feature
extraction capability
• Resolves semantic
feature differences
• Solves the IDP

Still exists negative
segmentation results [122]

2021 Feature pyramid networks
(FPN) and CNN

Covers defect classification,
detection, and segmentation Weak segmentation results [74]

2022 DL-based defect segmentation
(Pipe-SOLO)

• Can segment defect at the
instance level

• Is robust against various
noises from natural scenes

Only suitable for still
sewer images [124]

4. Dataset and Evaluation Metric

The performances of all the algorithms were tested and are reported based on a
specific dataset using specific metrics. As a result, datasets and protocols were two primary
determining factors in the algorithm evaluation process. The evaluation results are not
convincing if the dataset is not representative, or the used metric is poor. It is challenging to
judge what method is the SOTA because the existing methods in sewer inspections utilize
different datasets and protocols. Therefore, benchmark datasets and standard evaluation
protocols are necessary to be provided for future studies.

4.1. Dataset
4.1.1. Dataset Collection

Currently, many data collection robotic systems have emerged that are capable of
assisting workers with sewer inspection and spot repair. Table 5 lists the latest advanced
robots along with their respective information, including the robot’s name, company, pipe
diameter, camera feature, country, and main strong points. Figure 12 introduces several
representative robots that are widely utilized to acquire images or videos from underground
infrastructures. As shown in Figure 12a, LETS 6.0 is a versatile and powerful inspection
system that can be quickly set up to operate in 150 mm or larger pipes. A representative
work (Robocam 6) of the Korean company TAP Electronics is shown in Figure 12b. Robocam
6 is the best model to increase the inspection performance without the considerable cost of
replacing the equipment. Figure 12c is the X5-HS robot that was developed in China, which
is a typical robotic crawler with a high-definition camera. In Figure 12d, Robocam 3000,
sold by Japan, is the only large-scale system that is specially devised for inspecting pipes
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ranging from 250 mm to 3000 mm. It used to be unrealistic to apply the crawler in huge
pipelines in Korea.

Table 5. The detailed information of the latest robots for sewer inspection.

Name Company Pipe Diameter Camera Feature Country Strong Point

CAM160
(https://goolnk.

com/YrYQob
accessed on

20 February 2022)

Sewer Robotics 200–500 mm NA USA

• Auto horizon
adjustment

• Intensity adjustable
LED lighting
•Multifunctional

LETS 6.0 (https:
//ariesindustries.

com/products/
accessed on

20 February 2022)

ARIES
INDUSTRIES 150 mm or larger

Self-leveling lateral
camera or a Pan
and tilt camera

USA

• Slim tractor profile
• Superior lateral

camera
• Simultaneously

acquire mainline and
lateral videos

wolverine®2.02 ARIES
INDUSTRIES 150–450 mm NA USA

• Powerful crawler to
maneuver obstacles
•Minimum set uptime
• Camera with lens
cleaning technique

X5-HS
(https://goolnk.
com/Rym02W

accessed on
20 February 2022)

EASY-SIGHT 300–3000 mm ≥2 million pixels China

• High-definition
• Freely choose wireless

and wired connection
and control

• Display and save
videos in real time

Robocam 6
(https://goolnk.

com/43pdGA
accessed on

20 February 2022)

TAP Electronics 600 mm or more

Sony
130-megapixel

Exmor 1/3-inch
CMOS

Korea
• High-resolution
• All-in-one

subtitle system

RoboCam
Innovation4 TAP Electronics 600 mm or more

Sony
130-megapixel

Exmor 1/3-inch
CMOS

Korea

• Best digital record
performance
• Super white
LED lighting
• Cableless

Robocam 30004
TAP Electronics’

Japanese
subsidiary

250–3000 mm

Sony
1.3-megapixel
Exmor CMOS

color

Japan

• Can be utilized in
huge pipelines
• Optical 10X

zoom performance
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4.1.2. Benchmarked Dataset

Open-source sewer defect data is necessary for academia to promote fair comparisons
in automatic multi-defect classification tasks. In this survey, a publicly available benchmark
dataset called Sewer-ML [125] for vision-based defect classification is introduced. The
Sewer-ML dataset, acquired from Danish companies, contains 1.3 million images labeled
by sewer experts with rich experience. Figure 13 shows some sample images from the
Sewer-ML dataset, and each image includes one or more classes of defects. The recorded
text in the image was redacted using a Gaussian blur kernel to protect private information.
Besides, the detailed information of the datasets used in recent papers is described in
Table 6. This paper summarizes 32 datasets from different countries in the world, of which
the USA has 12 datasets, accounting for the largest proportion. The largest dataset contains
2,202,582 images, whereas the smallest dataset has only 32 images. Since the images were
acquired by various types of equipment, the collected images have varied resolutions
ranging from 64 × 64 to 4000 × 46,000.
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Table 6. Research datasets for sewer defects in recent studies.

ID Defect Type Image Resolution Equipment Number of Images Country Ref.

1 Broken, crack, deposit,
fracture, hole, root, tap NA NA 4056 Canada [9]

2
Connection, crack, debris,

deposit, infiltration, material
change, normal, root

1440 × 720–320 × 256 RedZone®

Solo CCTV crawler 12,000 USA [48]

3

Attached deposit, defective
connection, displaced joint,
fissure, infiltration, ingress,

intruding connection, porous,
root, sealing, settled

deposit, surface

1040 × 1040
Front-facing and

back-facing camera with
a 185◦ wide lens

2,202,582 The Netherlands [49]

4

Dataset 1: defective, normal

NA NA

40,000

China [69]Dataset 2: barrier, deposit,
disjunction, fracture,

stagger, water
15,000

5
Broken, deformation, deposit,

other, joint offset, normal,
obstacle, water

1435 × 1054–296 × 166 NA 18,333 China [70]

6

Attached deposits, collapse,
deformation, displaced joint,

infiltration, joint damage,
settled deposit

NA NA 1045 China [41]
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Table 6. Cont.

ID Defect Type Image Resolution Equipment Number of Images Country Ref.

7
Circumferential crack,

longitudinal crack,
multiple crack

320 × 240 NA 335 USA [11]

8
Debris, joint faulty, joint

open, longitudinal,
protruding, surface

NA
Robo Cam 6 with a

1/3-in. SONY Exmor
CMOS camera

48,274 South Korea [71]

9
Broken, crack, debris, joint
faulty, joint open, normal,

protruding, surface
1280 × 720

Robo Cam 6 with a
megapixel Exmor CMOS

sensor
115,170 South Korea [52]

10
Crack, deposit, else,

infiltration, joint,
root, surface

NA Remote cameras 2424 UK [66]

11 Broken, crack, deposit,
fracture, hole, root, tap NA NA 1451 Canada [104]

12 Crack, deposit,
infiltration, root 1440 × 720–320 × 256 RedZone® Solo CCTV

crawler 3000 USA [98]

13 Connection, fracture, root 1507 × 720–720 × 576 Front facing CCTV
cameras 3600 USA [99]

14 Crack, deposit, root 928 × 576–352 × 256 NA 3000 USA [97]

15 Crack, deposit, root 512 × 256 NA 1880 USA [116]

16 Crack, infiltration,
joint, protruding 1073 × 749–296 × 237 NA 1106 China [122]

17 Crack, non-crack 64 × 64 NA 40,810 Australia [109]

18 Crack, normal, spalling 4000 × 46,000–3168 × 4752 Canon EOS. Tripods
and stabilizers 294 China [73]

19 Collapse, crack, root NA SSET system 239 USA [61]

20

Clean pipe, collapsed pipe,
eroded joint, eroded lateral,

misaligned joint, perfect joint,
perfect lateral

NA SSET system 500 USA [56]

21 Cracks, joint,
reduction, spalling 512 × 512 CCTV or Aqua

Zoom camera 1096 Canada [54]

22 Defective, normal NA CCTV (Fisheye) 192 USA [57]

23 Deposits, normal, root 1507 × 720–720 × 576 Front-facing
CCTV cameras 3800 USA [72]

24 Crack, non-crack 240 × 320 CCTV 200 South Korea [106]

25 Faulty, normal NA CCTV 8000 UK [65]

26 Blur, deposition,
intrusion, obstacle NA CCTV 12,000 NA [67]

27 Crack, deposit, displaced
joint, ovality NA CCTV (Fisheye) 32 Qatar [103]

29 Crack, non-crack 320 × 240–20 × 20 CCTV 100 NA [100]

30 Barrier, deposition,
distortion, fraction, inserted 600 × 480 CCTV and quick-view

(QV) cameras 10,000 China [110]

31 Fracture NA CCTV 2100 USA [105]

32 Broken, crack, fracture,
joint open NA CCTV 291 China [59]

4.2. Evaluation Metric

The studied performances are ambiguous and unreliable if there is no suitable metric.
In order to present a comprehensive evaluation, multitudinous methods are proposed in
recent studies. Detailed descriptions of different evaluation metrics are explained in Table 7.
Table 8 presents the performances of the investigated algorithms on different datasets in
terms of different metrics.

Table 7. Overview of the evaluation metrics in the recent studies.

Metric Description Ref.

Precision The proportion of positive samples in all positive prediction samples [9]
Recall The proportion of positive prediction samples in all positive samples [48]

Accuracy The proportion of correct prediction in all prediction samples [48]
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Table 7. Cont.

Metric Description Ref.

F1-score Harmonic mean of precision and recall [69]
FAR False alarm rate in all prediction samples [57]

True accuracy The proportion of all predictions excluding the missed defective images among the
entire actual images [58]

AUROC Area under the receiver operator characteristic (ROC) curve [49]
AUPR Area under the precision-recall curve [49]

mAP mAP first calculates the average precision values for different recall values for one
class, and then takes the average of all classes [9]

Detection rate The ratio of the number of the detected defects to total number of defects [106]
Error rate The ratio of the number of mistakenly detected defects to the number of non-defects [106]

PA Pixel accuracy calculating the overall accuracy of all pixels in the image [116]
mPA The average of pixel accuracy for all categories [116]
mIoU The ratio of intersection and union between predictions and GTs [116]

fwIoU Frequency-weighted IoU measuring the mean IoU value weighing the pixel
frequency of each class [116]

Table 8. Performances of different algorithms in terms of different evaluation metrics.

ID Number of Images Algorithm Task
Performance

Ref.
Accuracy (%) Processing Speed

1 3 classes Multiple binary
CNNs Classification

Accuracy: 86.2
Precision: 87.7

Recall: 90.6
NA [48]

2 12 classes Single CNN Classification AUROC: 87.1
AUPR: 6.8 NA [48]

3

Dataset 1: 2 classes

Two-level
hierarchical CNNs

Classification

Accuracy: 94.5
Precision: 96.84

Recall: 92
F1-score: 94.36 1.109 h for

200 videos
[69]

Dataset 2: 6 classes

Accuracy: 94.96
Precision: 85.13

Recall: 84.61
F1-score: 84.86

4 8 classes Deep CNN Classification Accuracy: 64.8 NA [70]

5 6 classes CNN Classification Accuracy: 96.58 NA [71]

6 8 classes CNN Classification Accuracy: 97.6 0.15 s/image [52]

7 7 classes Multi-class
random forest Classification Accuracy: 71 25 FPS [66]

8 7 classes SVM Classification Accuracy: 84.1 NA [41]

9 3 classes SVM Classification Recall: 90.3
Precision: 90.3 10 FPS [11]

10 3 classes CNN Classification

Accuracy: 96.7
Precision: 99.8

Recall: 93.6
F1-score: 96.6

15 min 30 images [73]

11 3 classes
RotBoost and

statistical
feature vector

Classification Accuracy: 89.96 1.5 s/image [61]

12 7 classes Neuro-fuzzy
classifier Classification Accuracy: 91.36 NA [56]
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Table 8. Cont.

ID Number of Images Algorithm Task
Performance

Ref.
Accuracy (%) Processing Speed

13 4 classes Multi-layer
perceptions Classification Accuracy: 98.2 NA [54]

14 2 classes Rule-based
classifier Classification

Accuracy: 87
FAR: 18

Recall: 89
NA [57]

15 2 classes OCSVM Classification Accuracy: 75 NA [65]

16 4 classes CNN Classification
Recall: 88

Precision: 84
Accuracy: 85

NA [67]

17 2 class Rule-based
classifier Classification

Accuracy: 84
FAR: 21

True accuracy: 95
NA [58]

18 4 classes RBN Classification Accuracy: 95 NA [59]

19 7 classes YOLOv3 Detection mAP: 85.37 33 FPS [9]

20 4 classes Faster R-CNN Detection mAP: 83 9 FPS [98]

21 3 classes Faster R-CNN Detection mAP: 77 110 ms/image [99]

22 3 classes Faster R-CNN Detection
Precision: 88.99

Recall: 87.96
F1-score: 88.21

110 ms/image [97]

23 2 classes CNN Detection Accuracy: 96
Precision: 90 0.2782 s/image [109]

24 3 classes
Faster R-CNN

Detection
mAP: 71.8 110 ms/image

[105]SSD mAP: 69.5 57 ms/image
YOLOv3 mAP: 53 33 ms/image

25 2 classes Rule-based detector Detection
Detection rate:

89.2
Error rate: 4.44

1 FPS [106]

26 2 classes GA and CNN Detection Detection rate:
92.3 NA [100]

27 5 classes SRPN Detection mAP: 50.8
Recall: 82.4 153 ms/image [110]

28 1 class CNN and YOLOv3 Detection AP: 71 65 ms/image [108]

29 3 classes DilaSeg-CRF Segmentation

PA: 98.69
mPA: 91.57
mIoU: 84.85
fwIoU: 97.47

107 ms/image [116]

30 4 classes PipeUNet Segmentation mIoU: 76.37 32 FPS [122]

As shown in Table 8, accuracy is the most commonly used metric in the classifi-
cation tasks [41,48,52,54,56–58,61,65–67,69–71,73]. In addition to this, other subsidiary
metrics such as precision [11,48,67,69,73], recall [11,48,57,67,69,73], and F1-score [69,73]
are also well supported. Furthermore, AUROC and AUPR are calculated in [49] to mea-
sure the classification results, and FAR is used in [57,58] to check the false alarm rate in
all the predictions. In contrast to classification, mAP is a principal metric for detection
tasks [9,98,99,105,110]. In another study [97], precision, recall, and F1-score are reported in
conjunction to provide a comprehensive estimation for defect detection. Heo et al. [106]
assessed the model performance based on the detection rate and the error rate. Kumar and
Abraham [108] report the average precision (AP), which is similar to the mAP but for each
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class. For the segmentation tasks, the mIoU is considered as an important metric that is
used in many studies [116,122]. Apart from the mIoU, the per-class pixel accuracy (PA),
mean pixel accuracy (mPA), and frequency-weighted IoU (fwIoU) are applied to evaluate
the segmented results at the pixel level.

5. Challenges and Future Work

This part first discusses the main challenges in recent studies, and some potential
methods are then indicated to address these difficulties in the future work. Since a few
surveys have already mentioned the partial limitations, a more complete summary of the
existing challenges and future research direction are presented in this survey.

5.1. Data Analysis

During the data acquisition process, vision-based techniques such as the traditional
CCTV are the most popular because of their cost-effective characteristics. Nevertheless,
it is challenging for the visual equipment to inspect all the defects whenever they are
below the water level or behind pipelines. As a result, the progress in hybrid devices
has provided a feasible approach to acquire unavailable defects [126]. For example, the
SSET methods [31,127,128] have been applied to collect quality data and evaluate the de-
tected defects that are hard to deduce based on the visual data. In addition, the existing
sewer inspection studies mainly focus on the concrete pipeline structures. The inspec-
tion and assessment for the traditional masonry sewer system that are still ubiquitous in
most of the European cities become cumbersome for inspectors in practice. As for this
issue, several automated diagnostic techniques (CCTV, laser scanning, ultrasound, etc.)
for brick sewers are analyzed and compared in detail by enumerating the specific advan-
tages and disadvantages [129,130]. Furthermore, varied qualities of the exiting datasets
under distinct conditions and discontinuous backgrounds require image preprocessing
prior to the inspection process to enhance the image quality and then improve the final
performance [131].

Moreover, the current work concentrates on the research of structural defects such as
cracks, joints, breaks, surface damage, lateral protrusion, and deformation, whereas there
is less concern about the operation and maintenance defects (roots, infiltration, deposits,
debris, and barriers). As mentioned in Section 4.1.2, there are 32 datasets investigated in this
survey. Figure 14 shows the previous studies on sewer inspections of different classes of
defects. We listed 12 classes of common defects in underground sewer pipelines. In addition
to this, other defects that are rare and at the sub-class level are also included. According
to the statistics for common defects, the proportion (50.5%) of structural defects is 20.3%
higher than the proportion (30.2%) of operation and maintenance defects, which reflects
that future research needs more available data for operation and maintenance defects.

5.2. Model Analysis

Although defect severity analysis methods have been proposed in several papers in
order to assess the risk of the detected cracks, approaches for the analysis of other defects are
limited. As for cracks, the risk levels can be assessed by measuring morphological features
such as the crack length, mean width, and area to judge the corresponding severity degree.
In contrast, it is difficult to comprehensively analyze the severity degrees for other defects
because only the defect area is available for other defects. Therefore, researchers should
explore more features that are closely related to the defect severity, which is significant for
further condition assessment.

In addition, the major defect inspection models rely on effective supervised learning
methods that cost much time in the manual annotation process for training [10]. The
completely automated systems that include automatic labeling tools need to be developed
for more efficient sewer inspections. On the other hand, most of the inspection approaches
that demand long processing times only test based on still images, so these methods cannot
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be practiced in real-time applications for live inspections. More efforts should be made in
future research to boost the inference speed in CCTV sewer videos.
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6. Conclusions

Vision-based automation in construction has attracted increasing interest of researchers
from different fields, especially with image processing and pattern recognition. The main
outcomes of this paper include (1) an exhaustive review of diverse research approaches pre-
sented in more than 120 studies through a scientific taxonomy, (2) an analytical discussion
of various algorithms, datasets, and evaluation protocols, and (3) a compendious summary
of the existing challenges and future needs. Based on the current research situation, this
survey outlines several suggestions that can facilitate future research on vision-based sewer
inspection and condition assessment. Firstly, classification and detection have become a
topic of great interest in the past several decades, which has attracted a lot of researchers’
attention. Compared with them, defect segmentation at the pixel level is a more significant
task to assist the sewer inspectors in evaluating the risk level of the detected defects. How-
ever, it has the lowest proportion of the research of overall studies. Hence, automatic defect
segmentation should be given greater focus considering its research significance. Secondly,
we suggest that a public dataset and source code be created to support replicable research
in the future. Thirdly, the evaluation metrics should be standardized for a fair performance
comparison. Since this review presents clear guidelines for subsequent research by analyz-
ing the concurrent studies, we believe it is of value to readers and practitioners who are
concerned with sewer defect inspection and condition assessment.
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