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Abstract: Two-dimensional deep-learning pose estimation algorithms can suffer from biases in
joint pose localizations, which are reflected in triangulated coordinates, and then in 3D joint angle
estimation. Pose2Sim, our robust markerless kinematics workflow, comes with a physically consistent
OpenSim skeletal model, meant to mitigate these errors. Its accuracy was concurrently validated
against a reference marker-based method. Lower-limb joint angles were estimated over three tasks
(walking, running, and cycling) performed multiple times by one participant. When averaged over
all joint angles, the coefficient of multiple correlation (CMC) remained above 0.9 in the sagittal plane,
except for the hip in running, which suffered from a systematic 15◦ offset (CMC = 0.65), and for the
ankle in cycling, which was partially occluded (CMC = 0.75). When averaged over all joint angles
and all degrees of freedom, mean errors were 3.0◦, 4.1◦, and 4.0◦, in walking, running, and cycling,
respectively; and range of motion errors were 2.7◦, 2.3◦, and 4.3◦, respectively. Given the magnitude
of error traditionally reported in joint angles computed from a marker-based optoelectronic system,
Pose2Sim is deemed accurate enough for the analysis of lower-body kinematics in walking, cycling,
and running.

Keywords: markerless motion capture; sports performance analysis; kinematics; computer vision;
OpenPose; OpenSim; deep learning; concurrent validity; accuracy

1. Introduction

As coaching athletes implies observing and understanding their movements, motion
analysis is essential in sports. It helps improving movement efficiency, preventing injuries,
or predicting performances. According to Atha [1], an ideal motion analysis system
involves the collection of accurate information, the elimination of interference with natural
movement, and the minimization of capture and analysis times. Currently, reference
methods in sports analysis remain marker-based. These methods, also known as MoCap
(motion capture) procedures, are mostly concerned with accuracy, despite the fact that
marker placement hinders natural movement and is time consuming. Therefore, several
markerless technologies are being examined to solve these issues. The main candidates
are either based on Inertial Measurement Units (IMUs) [2,3], depth cameras [4–6], or a
network of RGB cameras [7–9]. IMUs avoid all camera-related issues such as complex
setup and calibration, potential self- and gear obstructions, and can operate in real time;
however, they need to be worn by the athlete and are sensitive to drift over time, and to
ferromagnetic disturbances. Depth cameras offer more information than RGB cameras but
they hardly work in direct sunlight nor at a distance over 5 m [10]. On the other hand, a
network of RGB cameras does not assume any particular environment, and it does not
hinder the athlete’s movement and focus, but it requires delicate calibration, complex setup,
large storage space, and high computational capacities. The technology, however, is still
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maturing and some light-weight systems such as BlazePose [11] or UULPN [12] are being
proposed, which can operate in real time on a mobile phone; however, they are still not
quite as accurate as required for quantitative motion analysis.

We focus on the latter approach, and more specifically on methods triangulating 2D
joint center estimations from a network of several calibrated RGB cameras. The most
common evaluation metric is the Mean Per Joint Position Error (MPJPE), which is the
average Euclidian distance between the estimated joint coordinate and its ground truth.
A large part of studies investigating 3D joint center estimation choose to triangulate the
output of OpenPose [13], a deep-learning algorithm estimating 2D joint coordinates from
videos. Their MPJPE usually lies between 30 and 40 mm [14–16]. Ankle MPJPEs are
within the margin of error of marker-based technologies (1–15 mm), whereas knee and hip
MPJPEs are greater (30–50 mm). These errors are systematic and likely due to “ground-
truth” images being mislabeled in the training dataset [17]. Triangulation from other 2D
deep-learning algorithms (such as AlphaPose [18] and DeepLabCut [19]) have also been
compared [17]. AlphaPose results are similar to OpenPose’s; however, DeepLabCut errors
are substantially higher.

Numerous studies have focused on the accuracy of 3D joint center estimation, but far
fewer have examined 3D joint angle estimation. D’Antonio et al. computed direct flexion-
extension angles for the lower limb from two cameras processed with OpenPose [20].
Range of Motion (ROM) errors lay between 2.8◦ and 14.1◦. Wade et al. calculated frontal
and sagittal knee and hip angles with OpenPose, AlphaPose, and DeepLabCut [21]. They
deemed the method accurate enough for assessing step length and velocity, but not for joint
angle analysis. AniPose offers a toolkit for triangulating 2D poses from DeepLabCut [22]. To
our knowledge, it has only been concurrently validated for index finger angles in the sagittal
plane, resulting in a root-mean-square error of 7.5 degrees [23]. Theia, a commercially
available software package for markerless analysis, uses its own patent-protected 2D pose
estimator and triangulation procedure, and runs a skeletal model to constrain the results
to physically consistent poses and movements [24]. Their root-mean-square error (RMSE)
compared to a marker-based method ranged between 2.6◦ and 13.2◦.

We previously proposed Pose2Sim [25], an open-source markerless kinematics work-
flow using a network of calibrated RGB cameras, bridging OpenPose [13] to OpenSim.
OpenSim is open-source 3D biomechanical analysis software that uses a multi-body opti-
mization approach to solve inverse kinematics [26,27]. Our previous study [25] showed
that Pose2Sim was robust to dark and blurry images (0.5 gamma compression and 5.5 cm
Gaussian blur), to 1 cm random calibration errors, and to using as few as four cameras.
Because Needham et al. showed that the quality of markerless results were task spe-
cific [28], we examined walking, running, and cycling. The objective of the present study
was to concurrently evaluate Pose2Sim’s lower-limb 3D accuracy on the same tasks with a
marker-based method.

2. Materials and Methods
2.1. Participant and Protocol

One adult male participant (1.89 m, 69 kg) was equipped with 83 reflective markers
inspired from the CAST marker set [29], composed of 35 anatomical markers, and 12 clusters
of 4 markers (Figure 1). He was asked to perform three tasks: walking, running, and cycling
at a regular pace back and forth across the capture space, following a regular pulsing
sound (see previous article for further details [25]). He provided his written consent prior
to participating.
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Figure 1. Triangulated anatomical markers and clusters (dark green), calculated joint centers (light 
green), and OpenPose BODY_25B keypoints (pink) on a textured mesh. OpenPose’s eyes and ears Figure 1. Triangulated anatomical markers and clusters (dark green), calculated joint centers (light

green), and OpenPose BODY_25B keypoints (pink) on a textured mesh. OpenPose’s eyes and ears
keypoints were excluded [25]. Mesh opacity was set to 0.5 in order to make all points visible. This
view made it possible to precisely place OpenPose triangulated keypoints on the OpenSim model.

2.2. Data Collection

All tasks were performed in a room equipped with a green background for optimal
segmentation of the subject with respect to the background, and 3D animated mesh extrac-
tion using a visual hull approach at each video frame [30]. Twenty opto-electronic cameras
captured the 3D coordinates of the markers, and 68 video cameras allowed retrieval of 3D
textured meshes of the participant, which we subsequently placed in a virtual environment
and filmed from 8 virtual cameras (Figure 2). This gave us the opportunity to assess the
robustness of our protocol (see Part 1 of this series of articles [25]), and for overlaying trian-
gulated markers, calculated joint centers, and OpenPose keypoints to the extracted mesh.
This was particularly useful to correctly place OpenPose keypoints on the OpenSim model,
i.e., with a systematic offset as regards true joint centers [17] (Figure 1). The acquisition was
restricted in terms of 3D volume covered by both systems and data storage, resulting in
the analysis of 8, 13, and 13 cycles of walking, running, and cycling, respectively. Once 3D
point coordinates were retrieved, both systems underwent processes that were as close to
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each other as possible: coordinates were sampled at 30 Hz, then they were filtered with
a 4th-order 6 Hz low-pass Butterworth filter (which efficiently filtered out noise without
underestimating peak values, including in extremities); heel strikes were detected in both
cases with the Zeni et al. method [31]; stride duration was determined as the inverse of
the frequency of the metronome followed by the participant; and inverse kinematics were
optimized with the same OpenSim skeletal model.
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Figure 2. Participant’s 3D textured meshes were extracted using 68 video cameras in the studio, and
then placed in a virtual environment. The scene was then filmed from 8 virtual cameras.

2.3. Pose2Sim Kinematics

All videos from our virtual cameras were processed by OpenPose (version 1.6),
which delivered 2D joint coordinates for each view. We used the OpenPose experimental
BODY_25B model (Figure 1) with the highest accuracy parameters [32]. The Pose2Sim
workflow was then used to track the person of interest, robustly triangulate the Open-
Pose 2D joint coordinates, and filter the resulting 3D coordinates. Then this output
was fed to our OpenSim setup to constrain the results to physically consistent kinemat-
ics (Figure 3; more details in our previous study [25]). The code is freely available on
https://gitlab.inria.fr/perfanalytics/pose2sim (accessed on 26 March 2022).

https://gitlab.inria.fr/perfanalytics/pose2sim
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Figure 3. Pose2Sim full pipeline: (1) OpenPose 2D joint detection; (2i) camera calibration; (2ii–iv)
tracking the person of interest, triangulating his coordinates, and filtering them; (3) constraining the
3D coordinates to a physically consistent OpenSim skeletal model.

Pose2Sim comes with a generic OpenSim skeletal model that has been slightly im-
proved since the last study [25]. It was adapted from the human gait full-body model [33]
and the lifting full-body model [34]. Although the spine of the gait model is represented
as a single rigid bone, it is articulated in the lifting model, and each lumbar vertebra
is constrained to the next one. This is more accurate for activities for which the spine
is bent, such as cycling. However, the knee joint is more accurately defined in the gait
model: abduction/adduction and internal/external rotation angles are constrained to the
flexion/extension angle, whereas they are simply ignored in the lifting one. This also
improves the estimation of knee flexion. All else being equal, as we want our model to
be as versatile as possible, we used the spine definition of the lifting model, and the knee
definition of the gait model. Since we did not investigate muscle-related issues, they were
removed to decrease computation time. Since no keypoint would have accounted for it,
wrist flexion and deviation were locked at 0◦, and arm pronation/supination was locked at
90◦. Conversely, the translation of the pelvis was unlocked, in addition to the subtalar angle;
and hip flexion was limited to 150◦ instead of 120◦ (which was not enough for the pedaling
task). With regards to our previous study [25], marker placement was also improved in the
OpenSim model. The average systematic offset between OpenPose-triangulated keypoints
and MoCap-calculated joint centers [17] was measured on our 3D overlay view (Figure 1),
and was taken into account when manually placing OpenPose keypoints onto the OpenSim
unscaled model.

OpenSim (version 4.2) was used to scale the model to the participant on a T-pose, and
then inverse kinematics was performed. Scale factors were computed with measurement-
based scaling, i.e., by computing the ratio of distances between keypoints on the model,
and experimental keypoints provided by the coordinates file of triangulated OpenPose
data. Static pose weights were all set to 1, apart from Nose and Head keypoints which were
set to 0.1, and Shoulder and Hip keypoints were set to 2. The participant was standing
upright with feet flat during his T-pose, so we set a weight of 1 for a zero angle in pelvis list,
pelvis tilt, L5-S1 flexion, and ankle angles. The offset in machine-learning-based joint center
estimations has been demonstrated to be systematic and not dependent on the subject [17]
(nor on the operator); hence, once this bias has been taken into account in the generic
model, the markers’ adjustment step is unnecessary. Keypoint weight markers for inverse
kinematics were the same as for scaling.
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2.4. Marker-Based Kinematics

The captured markers were automatically identified with an AIM procedure within
the Qualisys Track Manager software (version 2019.1). Joint centers were then calculated.
The centers of ankles, knees, wrists, and elbows were defined as the midpoints between the
malleoli/epicondyles/styloids since it has been shown that when executed on a lean partic-
ipant, functional methods do not improve the reliability of the kinematics of running [35].
Hip joint center was defined with a functional method [36]. The OpenSim model used for
marker-based scaling and inverse kinematics was the same as the Pose2Sim model. Scale
factors were computed in a similar way, but with marker data rather than with OpenPose
keypoints. Weights proposed by the inverse kinematics solver of OpenSim were set to 5
for joint centers, to 1 for cluster markers, and to 2 for other anatomical markers. Inverse
kinematics was processed with the same marker weights.

2.5. Statistical Analysis

Since the participant did not report any locomotion impairment and the captured
movements were mostly symmetrical, we only analyzed the right side. Our study focuses
on the lower limb, but results for upper limb and sacro-lumbar joints are detailed in
the Appendix A (Figures A1, A2, A5, A6, A9 and A10) for information. The analyzed
angles were ankle flexion/extension, subtalar angle, knee flexion/extension, and hip
flexion/extension, abduction/adduction, and internal/external rotation provided by the
OpenSim inverse kinematics procedure.

First, Pose2Sim scale factors were compared to marker-based ones, and RMS errors
were reported and compared to OpenSim’s best practice rules. Then, the overall similarity
of paired angle waveforms was assessed with a special formulation of the coefficient
of multiple correlation (CMC), specifically designed to compare different protocols or
measurement systems [37]. The CMC gives a single result taking into account differences
in correlation, gain, and offset. It reaches 1 if the curves are perfectly overlapped, and
drops to zero if the curves are very dissimilar, or even to complex values (reported as
“nan” hereafter). This is, for example, the case if the mean inter-protocol offset (averaged
over time and trials) exceeds the grand mean ROM, which results in taking the square
root of a negative number. CMC values are deemed good if between 0.75 and 0.84, very
good if between 0.85 and 0.94, and excellent if above 0.95 [37]. The CMC results were then
broken down to take an in-depth look into correlation, gain, and offset, separately. The
strength of the linear relationship between kinematic analysis systems was assessed with
the Pearson’s r correlation coefficient. Gain was evaluated by computing the paired ROM
differences. Once normality of the ROM errors was checked with a Shapiro–Wilk test [38],
we computed related t-tests to verify whether the error was significant. Mean inter-protocol
offset angle, hereafter called mean error, was one of the outputs of the subsequent Bland–
Altman analysis [39,40]. Once normality of the paired means of the angle differences was
verified, we determined if the mean markerless angles were significantly different to the
mean marker-based ones.

The Bland–Altman analysis gives some more information about the agreement be-
tween the considered markerless and marker-based systems [39,40]. It consists of plotting
the difference between the values given by both systems against their mean, for all angular
points at all time instances. Limits of agreement were defined as the interval within which
95% of data will be found, i.e., between mean difference ±1.96 standard deviation, provided
that the differences follow a normal distribution. Bland–Altman plots also help to identify
the potential presence of heteroscedasticity, i.e., the fact that the spread of the error may
depend on the angle magnitude [40].

Finally, root-mean-square errors (RMSE), mean errors (Meanerr), and ROM errors
(ROMerr) were computed for the walking task to enable comparison with previously
published metrics obtained using Theia3D, a commercial markerless solution [24], and
Xsens [41], a commercial system based on IMUs. Theia3D’s ROM results were approxi-
mated from reported graphics along the flexion/extension degree of freedom.
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3. Results
3.1. Inverse Kinematics: CMC, Correlation, Gain, Offset

Inverse kinematics is successful when OpenSim’s global optimizer keeps the model
markers close to experimental markers, i.e., when RMSE is less than 2–4 cm according to
OpenSim’s best practices. This was the case for both systems (Table 1). However, RMSE
was particularly higher in cycling than in walking or running.

Table 1. RMSE between experimental and theoretical markers during OpenSim inverse kinematics,
for both marker-based and Pose2Sim models.

Task Marker-Based
RMSE (cm)

Pose2Sim
RMSE (cm)

Walking 1.1–1.2 1.4–1.9
Running 1.5–1.7 1.5–2.1
Cycling 3.5–3.5 3.0–3.6

CMC assesses waveform similarities between Pose2Sim and the marker-based ref-
erence method, by jointly evaluating correlation, gain, and offset. It was mostly very
good (CMC > 0.85) to excellent (CMC > 0.95) in all tasks, all degrees of freedom, and all
lower-body joints (Table 2, Figures 4, A3 and A7). This was especially the case along the
flexion/extension degree of freedom, except for angles of the hip in running and of the
ankle in cycling, for which CMC results suffered from an offset compared to the marker-
based method. Hip abduction/adduction and internal/external rotation waveforms were
not in good agreement (CMC < 0.75), except for the hip internal/external rotation angles
in running. In cycling, all non-sagittal angles had complex CMCs, which means that no
agreement was found at all.

Table 2. Summary of comparisons between Pose2Sim and marker-based angle waveforms. A
specific formulation of the coefficient of multiple correlation (CMC) was used, specifically designed
to compare different protocols or measurement systems [37]. CMC jointly evaluates correlation,
gain, and offset, which were respectively assessed with Pearson’s r coefficient, range of motion
errors (ROMerr), and mean errors (Meanerr). * Significant at 5% level. 1 Although ankle subtalar
angle combines abduction/adduction and internal/external rotation, it is hereafter reported in the
abduction/adduction column.

Flexion/Extension Abduction/Adduction 1 Internal/External Rotation
CMC R ROMerr Meanerr CMC r ROMerr Meanerr CMC r ROMerr Meanerr

Walking
Ankle 0.90 0.89 −1.22 −2.79 * 0.86 0.85 6.48 * 2.56 * - - - -
Knee 0.98 0.96 −0.30 −1.92 * - - - - - - - -
Hip 0.96 0.96 −1.70 −3.04 * 0.74 0.81 −1.81 * −2.6 * 0.34 0.54 4.68 * −5.27 *

Running
Ankle 0.99 0.99 −2.9 * −0.71 * 0.97 0.96 2.20 0.96 - - - -
Knee 1.00 1.00 0.04 −0.65 * - - - - - - - -
Hip 0.65 0.95 4.01 * 15.18 * 0.37 0.65 −3.94 * −3.76 * 0.93 0.95 1.25 −3.49 *

Cycling
Ankle 0.75 0.85 1.93 * −6.73 * nan −0.32 10.27 * 1.59 * - - - -
Knee 1.00 1.00 −2.94 * 2.12 * - - - - - - - -
Hip 0.92 0.97 −5.91 * 6.12 * nan 0.14 1.72 * −5.62 * nan −0.07 3.07 * 2.11 *

Pearson’s r correlation coefficient results were close to the CMC ones, albeit they
became very good to excellent in the two angles that were affected by an offset. When
averaged over all joint angles, errors in the range of motion (ROMerr) were 2.7◦ (sd = 2.1◦),
2.3◦ (sd = 1.1◦), and 4.3◦ (sd = 2.5◦) in walking, running, and cycling, respectively. Along the
flexion/extension degree of freedom, they were below 2◦, 4◦, and 6◦, in walking, running,
and cycling, respectively. Along the internal/external rotation degree of freedom, they
stayed below 5◦; however, they reached up to 10◦ along the abduction/adduction degree of
freedom. Average mean angle errors (Meanerr) were 3.0◦ (sd = 1.0◦), 4.1◦ (sd = 1.6◦), and 4.0◦

(sd = 0.59◦), in walking, running, and cycling, respectively. In walking and running, mean
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errors remained under 5.3◦ in all degrees of freedom, apart from the hip flexion/extension
angle in running. which was offset by 15◦. Although they were noticeably larger, mean
errors were always under 7◦ in cycling (Tables 2 and 4, Figures A3 and A7).
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Limits of Agreement (LoA) values were relatively evenly and randomly distributed
among all tasks, degrees of freedom, and joints, averaging to an interval of 15◦ within
which 95% of the errors would lie (Table 3, Figures 5, A4 and A8). Due to the limited range
of motion of sacro-lumbar and upper-body angles, limits of agreement were smaller in
these joint angles (Figures A2, A6 and A10). Angle magnitude did not have an influence
on the spread of errors (hence the data are homoscedastic), except for the cycling task for
ankle angles and flexion/extension hip angles.

Table 3. Bland–Altman analysis results of 3D angle errors between Pose2Sim analysis and the refer-
ence marker-based one. Mean errors (Meanerr) and 95% limits of agreement (LoA) are represented.
* Although ankle subtalar angle combines abduction/adduction and internal/external rotation, it is
hereafter reported in the abduction/adduction column.

Flexion/Extension Abduction/Adduction * Internal/External Rotation
Meanerr (◦) 95% LoA (◦) Meanerr (◦) 95% LoA (◦) Meanerr (◦) 95% LoA (◦)

Walking
Ankle −2.79 [−9.4, 3.8] 2.56 [−6.9, 12] - -
Knee −1.92 [−12, 8.4] - - - -
Hip −3.04 [−11, 5.2] −2.6 [−6.9, 1.7] −5.27 [−14, 3.5]

Running
Ankle −0.71 [−4.5, 3.0] 0.96 [−5.3, 7.2] - -
Knee −0.65 [−2.9, 1.6] - - - -
Hip 15.18 [5.5, 25] −3.76 [−9.2, 1.6] −3.49 [−9.3, 2.4]

Cycling
Ankle −6.73 [−16, 2.1] 1.59 [−9.8, 13] - -
Knee 2.12 [−1.1, 5.3] - - - -
Hip 6.12 [−1.7, 14] −5.62 [−10, −1.1] 2.11 [−4.5, 8.7]

3.2. Comparison with Other Systems

The RMSE reported by Theia3D [24] was, on average, 1.5◦ higher than that of Pose2Sim,
and its ROM errors were consistently higher, at least along the flexion/extension degree of
freedom. However, Xsens reported mean errors 0.3◦ lower on average, and ROM errors
1.0◦ lower on average (Table 4).

Table 4. Pose2Sim results compared to Theia3D [24] and to Xsens [41] in the walking task. Root-mean-
square error (RMSE), mean error (Meanerr), and range of motion (ROM) are examined. Theia3D’s
ROM results were approximated from reported graphics along the flexion/extension degree of
freedom. Both studies to which we compared our results involved a different setup (participants,
cameras, protocol, etc.), therefore the differences cannot be totally attributed to the different technolo-
gies (markerless or IMU) nor to the different algorithm (Pose2Sim or Theia3D). * Although ankle
subtalar angle combines abduction/adduction and internal/external rotation, it is hereafter reported
in the abduction/adduction column.

Flexion/Extension Abduction/Adduction * Internal/External Rotation
Pose2Sim Theia3D [24] Xsens [41] Pose2Sim Theia3D [24] Xsens [41] Pose2Sim Theia3D [24] Xsens [41]

RMSE (◦) Ankle 4 6.7 - 5.1 8 - - - -
Knee 5.1 3.3 - - - - - - -
Hip 5.6 11 - 3.1 2.6 - 6.6 6.9 -

Meanerr (◦) Ankle 2.79 - 2.15 2.56 - 1.81 - - -
Knee 1.92 - 1.87 - - - - - -
Hip 3.04 - 2.47 2.60 - 4.83 5.27 - 3.02

ROMerr (◦) Ankle −1.22 ≈−10 0.40 6.48 - 1.38 - - -
Knee −0.30 ≈−1 0.80 - - - - - -
Hip −1.70 ≈−10 2.42 −1.81 - 5.37 4.68 - 0.04
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4. Discussion
4.1. Strengths of Pose2Sim and of Markerless Kinematics

Pose2Sim offers a way to perform a markerless kinematic analysis from multiple
calibrated views, taking OpenPose results as inputs, and giving biomechanically oriented
results via OpenSim. Both OpenPose and OpenSim are open-source and among the most
widespread and renowned tools in their respective fields. We compared Pose2Sim lower-
body results to those of a reference marker-based method, over three tasks performed
by one participant: walking, running, and cycling. Both protocols were as similar as
possible, and used the same constrained skeletal model in order to ensure that there was no
discrepancy in results caused by different definitions of anatomical frames [42]. Pose2Sim
kinematic waveforms were very similar to marker-based ones, especially in the sagittal
plane. One exception to this observation was the hip angle in running, which suffered from
a 15◦ offset due to the dearth of keypoints in this area. This led the optimization procedure
to admit two solutions for the spine curvature, both mathematically and kinematically
correct: one with a lordotic posture, and the other with a kyphotic posture. There was
also less agreement for ankle angles in cycling, most likely because for both Pose2Sim
and marker-based kinematics, keypoint/marker detections suffered from occlusions from
the bike. This is corroborated by the higher RMSE between experimental and theoretical
markers observed in cycling (Table 1). The similarity of waveforms among both protocols
was assessed with the coefficient of multiple correlation (CMC) [37], which takes into
account the concurrent effects of correlation, gain, and offset. When averaged over all
lower-limb joints and all degrees of freedom, mean errors amounted to 3.0◦, 4.1◦, and 4.1◦

in walking, running, and cycling, respectively, and range of motion errors were equal to
2◦, 2.3◦, and 4.3◦. It should be noted that, unlike ours, Theia3D [24] and Xsens [41] studies
to which we compared our results involved several subjects (30 and 10, respectively.) Our
study recorded with eight virtual cameras, 1 MP definition, 30 Hz framerate, and perfect
calibration, whereas the Theia system recorded with eight cameras, 3 MP definition, 85 Hz,
with a marker-based calibration. Hence, the comparison between accuracies of Theia3D,
Xsens and Pose2Sim are given for an overview of their order of magnitude, not as a claim
for exact comparison. This study focused on lower-body kinematics, although we report
upper-body and sacro-lumbar kinematics in annexes for reference. It may be noted that
differences between the two approaches were higher than for the lower body, and especially
for the sacro-lumbar flexion.

This shows that a carefully designed skeletal model, when correctly scaled and con-
strained, can lead to accurate results from a markerless approach, despite poorly labeled
joint centers [17,21] and despite a low number of detected keypoints. Indeed, it has been
shown that the triangulation of deep-learning-based pose estimation methods produces
systematic errors up to 50 mm in 3D knee and hip joint center coordinates [17]. Without
the use of a skeletal model, flexion/extension lower-body angle errors in cycling have been
demonstrated to be as large as 3–12◦ [43]. Moreover, Pose2Sim still gave relevant results
when using the coordinates of only 21 triangulated keypoints coordinates (after exclusion
of eye and ear keypoints). This is in line with conclusions that were previously made for
marker-based approaches, implying that constrained kinematic models are resilient to
marker placement and quantity [44].

The setup of Pose2Sim can be installed anywhere, i.e., directly on-site rather than in a
laboratory setting. No particular attention has to be devoted to the background color, to the
participant’s clothing, nor to the luminance of the recording area. No apparatus interferes
with the athlete’s movement, who can fully concentrate on their performance. This is of
crucial importance in the context of sports analysis. Results are not operator or subject
dependent, which makes labeling, scaling, and inverse kinematics both easy and robust. It
is to be noted, however, that it does not leave room for adjustment if it is needed to better
monitor a specific body part. However, the operator or scientist has access to fine control on
most parameters at each step of the analysis: the deep-learning 2D pose estimation model



Sensors 2022, 22, 2712 12 of 27

can be changed; tracking, triangulation, and filtering parameters can be adjusted; and the
OpenSim model, scaling, and inverse kinematics can be entirely controlled.

4.2. Limits and Perspectives

Our study still has potential limitations. First, it was conducted on a limited amount of
data: only 8–13 cycles per task were captured, performed by one participant, and captured
at 30 Hz. Given the relatively slow and steady movements we analyzed, we believe that
this framerate did not impact our results, although both marker-based and markerless kine-
matics would beneficiate from a higher sample frequency on more demanding activities.
Note that Pose2Sim can operate at any framerate, and this limitation is only due to the
settings of the video acquisition system. Although results cannot be overly generalized to
other sports movements, we assume that conclusions would hold for other healthy subjects,
first because the OpenPose training was done on numerous participants having different
gender, race, body shape, and outfit [45]; second, because deep-learning-based pose esti-
mation algorithms are not subject to inter-operator errors or to soft-tissue artifacts; and,
third, because the OpenSim kinematic model is scaled to the participant’s anthropometry.
Nonetheless, it would be worth assessing its accuracy on more challenging sports and with
multiple subjects. Moreover, we used perfect virtual cameras instead of real ones. Real
cameras could have induced errors due to motion blur, large distortions, or calibration
errors. Our previous study, however, showed that the system was very robust to these
issues, including with as little as four cameras, at least with movements such as walking,
running, and cycling on an ergometer [25]. It may be interesting to try Pose2Sim with light
and versatile action cameras such as GoPros, calibrated with a checkerboard. The accuracy
of these cameras has already been explored on marker-based data. Although the maximum
point coordinate error was about 10 times as large as that with a motion capture system
(2.47 versus 0.21 mm), knee joint angles were highly correlated (joint coordinates error
below 2.5◦) [46].

OpenPose keypoint localization suffers from systematic offsets when compared to
actual joint center positions [17]. This has been taken into account on a static pose in
the OpenSim unscaled model, by shifting OpenPose keypoint placements with regard to
marker-based joint centers. This was done manually, but precisely, due to our overlayed
view (Figure 1). The OpenSim model was then scaled to the participant’s anatomy without
the use of any MoCap procedure. However, OpenPose’s offset may not be the same when a
limb is extended as when it is bent, which may influence kinematic results on extreme poses.
Hence, using a pose estimation model free from systematic biases on all ranges of motion
would improve kinematic accuracy, even if applying a constrained skeletal model already
largely reduces the detrimental impact of low-quality 2D joint center estimations. Pose2Sim
could operate with such a 2D pose estimation model, although new keypoints should
then be placed afresh on the unscaled OpenSim model. Note that the training dataset of
this more accurate pose estimation model should not base its labeling on markers, which
could be interpreted as visual cues, which would not be available in real sports situations.
However, this condition is not sufficient: the dataset should be large enough, represent a
wide variety of body types and movements [47], and include images with motion blur such
as found in sports videos. It is also possible to enhance the OpenPose dataset, by training
it on specific sports poses, or by augmenting it with larger rotations, so that the model
recognizes upside-down poses. One risk of this approach is that the model may perform
better on specific extreme poses, but worse on standard ones [48]. Furthermore, detecting
more keypoints would also improve results, provided that they are reliably labeled: first,
it would help solve indeterminations in non-sagittal planes and in pelvis angles, without
having to add constraints to the skeletal OpenSim model; then, it would allow for the
analysis of more angles, especially in the pelvis, the spine, and the upper body. Finally,
instead of constraining pose estimation results with a physically consistent skeletal model,
it would be interesting to develop a physics-informed pose estimation model [49], which
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would offer the possibility of embedding the kinematics priors as early as possible in the
learning process.

Currently, Pose2Sim does not work in real time, which could be interesting for sports
action live analysis. Moreover, it only automatically tracks one person of interest. It
would be useful to expand it to multi-person motion analysis, especially in the context
of races, team sports, or combat sports. It can also be of considerable interest to train a
single neural network able to detect both the human 2D pose and sports gear, such as a
ball [50], skis [51], or bike parts in the context of cycling. This would help to analyze game
dynamics, and to quantify posture cues related to a specific sports discipline. Other minor
adjustments could be made in order to improve the triangulation and the filtering steps.
Implementing Random Simple Consensus (RANSAC) triangulation [52] as an alternative
to our weighted Direct Linear Transform (DLT) [25], and opting for optimal fixed-interval
Kalman smoothing instead of low-pass filtering [28,53], may reduce errors, especially in
large outliers.

5. Conclusions

Pose2Sim can use any 2D pose estimation algorithm, triangulate 2D coordinates, and
constrain the resulting 3D coordinates to a physically consistent skeletal model. Desmarais
et al. proposed a taxonomy of 3D pose estimation algorithms based on accuracy, robustness,
and speed [54]. Accuracy was assessed in this study, and robustness was investigated
in our previous study [25]; however, speed has not yet been tested. The bottleneck for
computational costs, here, is by far the pose estimation system, but some neural networks
are tackling this issue [11,12].

Deep-learning-based human pose estimation is making considerable and consistent
progress. It is becoming more accurate, more robust, faster, and simpler to use, approaching
Atha’s 1984 [1] definition of an ideal motion analysis system. Pose2Sim takes advantage of
these advances, and mitigates the remaining errors by constraining these outputs to obtain
physically consistent kinematics.
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Appendix A

Plots for running and cycling are provided in Appendices A.2 and A.3. Corresponding
results are discussed in the main body of the article.

Although the article focused on lower limb kinematics, we ran the same analysis
on sacro-lumbar, elbow, and shoulder joints (Figures A1, A2, A5, A6, A9 and A10). The
OpenPose model we used does not allow for the capture of wrist deviation or prona-
tion/supination, or of any hand or finger movement.

Results were generally less good than in the lower body, especially on sacro-lumbar
flexion/extension, for which all CMC values were complex. This can be attributed both to
the lack of OpenPose keypoints in this area, and to the simplicity of the OpenSim model in
the upper-body part. Indeed, currently all pelvis, lumbar, and thoracic angles are solely
determined by the detection of the hip keypoints on the lower part, and of the shoulder
and neck keypoints on the upper part. Moreover, the skeletal model did not allow for
any scapulo-thoracic degree of freedom. In addition to the sacro-lumbar joint, upper-body
Pearson’s correlation coefficients were mostly very good (>0.85) in most planes in walking
and running. The range of motion error remained below 1◦ for shoulder and elbow angles
in walking, while it reached almost 5◦ in the shoulder and 2◦ in the elbow in running.
The mean error in the sagittal plane was below 1◦ in the shoulder angle in walking, but it
reached 10◦ in the elbow; conversely, in running it reached 9◦ in the shoulder but remained
under 1◦ in the elbow. In cycling, upper-body Pose2Sim angles were mostly not correlated
to marker-based ones, and ROM errors and mean errors were much worse than in other
tasks. Moreover, the Bland–Altman analysis showed that the data is heteroscedastic: the
spread and magnitude of the errors varied as the joint angle evolved.

In conclusion, Pose2Sim does not evaluate some anatomical joint angles in the upper
body, and is generally less accurate than for the lower body. This is mostly due to the lack
of keypoints OpenPose detects. To date, OpenPose offers hand and face models but no
detailed model of the upper limb exists. Pose2Sim could be used with other pose estimation
algorithms, including custom ones leveraging DeepLabCut, for example [19], although it
would involve manually labeling a large training dataset. This would enable the use of a
more anatomically realistic kinematic model, such as Seth’s [55] for the shoulder girdle.
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Appendix A.1. Sacro-Lumbar and Upper-Body Angle Comparisons and Bland–Altman Analysis in
the Walking Task
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Figure A1. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles 
for the walking task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, 
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for 
gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are also rep-
resented at the bottom of the graphics. 

Figure A1. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the walking task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are also
represented at the bottom of the graphics.
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Figure A2. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the walk-
ing task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are 
represented as dotted lines. 

  

Figure A2. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the walking
task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are
represented as dotted lines.
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Appendix A.2. Angle Comparisons and Bland–Altman Analysis in the Running Task
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Figure A3. Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the running task. 
Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively, Pear-
son’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and overall 
mean errors (Meanerr) for offset. Mean error and standard deviations are also represented at the 
bottom of the graphics. 

Figure A3. Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the running task.
Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively, Pearson’s
coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and overall mean
errors (Meanerr) for offset. Mean error and standard deviations are also represented at the bottom of
the graphics.
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Figure A4. Bland–Altman analysis of lower-body joint angle errors for the running task. Mean bias 
is represented as a horizontal solid, bold line, and 95% limits of agreement are represented as dotted 
lines. 

Figure A4. Bland–Altman analysis of lower-body joint angle errors for the running task. Mean
bias is represented as a horizontal solid, bold line, and 95% limits of agreement are represented as
dotted lines.
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Figure A5. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles 
for the running task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, 
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for 
gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are also rep-
resented at the bottom of the graphics. 

Figure A5. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the running task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean error (Meanerr) for offset. Mean error and standard deviations are also
represented at the bottom of the graphics.
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Figure A6. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the run-
ning task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are 
represented as dotted lines. 

  

Figure A6. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the running
task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are
represented as dotted lines.
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Appendix A.3. Angle Comparisons and Bland–Altman Analysis in the Cycling Task
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Figure A7. Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the cycling task. 
Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively, Pear-
son’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and overall 
mean errors (Meanerr) for offset. Mean error and standard deviations are also represented at the 
bottom of the graphics. 

Figure A7. Pose2Sim (cyan) and marker-based (black) lower-body joint angles for the cycling task.
Coefficient of multiple correlation (CMC) is indicated, and broken down into, respectively, Pearson’s
coefficient (r) for correlation assessment, range of motion errors (ROMerr) for gain, and overall mean
errors (Meanerr) for offset. Mean error and standard deviations are also represented at the bottom of
the graphics.
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Figure A8. Bland–Altman analysis of lower-body joint angle errors for the cycling task. Mean bias 
is represented as a horizontal solid, bold line, and 95% limits of agreement are represented as dotted 
lines. 

Figure A8. Bland–Altman analysis of lower-body joint angle errors for the cycling task. Mean
bias is represented as a horizontal solid, bold line, and 95% limits of agreement are represented as
dotted lines.
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Figure A9. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles 
for the cycling task. Coefficient of multiple correlation (CMC) is indicated, and broken down into, 
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr) for 
gain, and overall mean errors (Meanerr) for offset. Mean error and standard deviations are also rep-
resented at the bottom of the graphics. 

Figure A9. Pose2Sim (cyan) and marker-based (black) sacro-lumbar and upper-body joint angles
for the cycling task. Coefficient of multiple correlation (CMC) is indicated, and broken down into,
respectively, Pearson’s coefficient (r) for correlation assessment, range of motion errors (ROMerr)
for gain, and overall mean errors (Meanerr) for offset. Mean error and standard deviations are also
represented at the bottom of the graphics.
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Figure A10. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the cy-
cling task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are 
represented as dotted lines. 

  

Figure A10. Bland–Altman analysis of sacro-lumbar and upper-body joint angle errors for the cycling
task. Mean bias is represented as a horizontal solid, bold line, and 95% limits of agreement are
represented as dotted lines.
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