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Abstract: We present a preliminary study of microwave head imaging using a three-dimensional
(3-D) implementation of the distorted Born iterative method (DBIM). Our aim is to examine the
benefits of using the more computationally intensive 3-D implementation in scenarios where limited
prior information is available, or when the target occupies an area that is not covered by the imaging
array’s transverse planes. We show that, in some cases, the 3-D implementation outperforms its
two-dimensional (2-D) counterpart despite the increased number of unknowns for the linear problem
at each DBIM iteration. We also discuss how the 3-D algorithm can be implemented efficiently using
graphic processing units (GPUs) and validate this implementation with experimental data from a
simplified brain phantom. In this work, we have implemented a non-linear microwave imaging
approach using DBIM with GPU-accelerated FDTD. Moreover, the paper offers a direct comparison
of 2-D and 3-D microwave tomography implementations for head imaging and stroke detection in
inhomogenous anatomically complex numerical head phantoms.

Keywords: distorted Born iterative method (DBIM); microwave imaging; finite-difference
time-domain (FDTD); graphic processing unit (GPU); inverse scattering

1. Introduction

Microwave medical imaging (MWI) is gaining increased research interest [1–5] for
its potential to offer low-cost, portable solutions to important healthcare needs such as
early screening for breast cancer or detecting acute stroke inside an ambulance. Microwave
tomography (MWT) is an important MWI technique which estimates the spatial distribution
of dielectric properties in a reconstruction region by solving the electromagnetic (EM)
inverse scattering problem [1]. EM inverse scattering processes scattered signals from
the imaging domain to estimate the spatial distribution of its complex permittivity (i.e.,
dielectric constant and conductivity).

MWT relies on the difference in the dielectric properties of the different human tis-
sues [6,7]. In breast imaging, for example, the dielectric contrast of cancerous vs. healthy
tissue depends on the density of the tissue surrounding the tumor, and several studies
have been published recently to assess this contrast with different methodologies [8–13].
High-frequency EM waves increase resolution but attenuate quickly, while low frequencies
result in good penetration depth but low resolution. This trade-off dictates the working
frequency range (e.g., 0.5–2.0 GHz for head imaging systems [14]).

It is well known that the inverse scattering problem of MWI is intrinsically non-
linear, and this may lead to false solutions due to the existence of local minima [15,16].
The non-linearity of the problem is combined with limited knowledge of prior information
and a limited number of observation data points compared to the number of unknowns.
Moreover, measurement noise and a mismatch between the model used in the imaging
algorithm and the true experiment present additional challenges towards an accurate solu-
tion. Non-linearity, ill-posedness, and limited prior information in MWT require advanced
optimization and regularization techniques with a careful selection of parameters that
are problem-specific.
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A few MWT experimental prototypes have been developed in the last twenty years [17–22],
and various methods have been applied to the resulting EM inverse scattering problem [23].
Most of the work, however, has focused on two-dimensional (2-D) algorithms to avoid the
added complexity of three-dimensional (3-D) implementations.

MWT 3-D implementations for medical imaging have been proposed in the literature
for a few years now, but to the best of the authors’ knowledge, they have been tested pri-
marily with simulation data [24–28]. A notable exception is the 3-D MWT algorithm in [2],
which produced clinical 3-D microwave tomographic images of the breast by combining
the discrete dipole approximation (DDA) as the forward solver with the Gauss-Newton
(GN) algorithm.

MWT 2-D problems are easier to model and solve numerically, and they can often
produce reconstructions of sufficient quality. In contrast, 3-D algorithms can be computa-
tionally expensive and require solving a more severely ill-posed inverse problem due to the
much higher ratio of unknowns relative to data points. In iterative GN implementations
such as the distorted Born iterative method (DBIM), a 3-D forward scattering problem must
be solved at each iteration. This can be computationally prohibitive without the use of
semi-analytical approaches [2] or numerical methods implemented in high performance
hardware such as graphic processing units (GPUs) [25,29]. CPU parallelization can also
model 3-D MWI forward solvers efficiently with CG type inverse solvers as in [30], where
the finite element method (FEM) was combined with the contrast source inversion (CSI)
method to image an experimental breast phantom, and in [31], which uses FDTD as a
forward solver for reconstructing a weak scatterer. The latter is implemented on a parallel
Linux cluster with a 20-core CPU and a running time of 1 h for each iteration is required.

For microwave head imaging, studies have analysed scattering from 3-D head mod-
els using FDTD [32] or FEM [33], and the FFT-based volume integral equation (VIE)
method [29]. Most imaging algorithms are 2-D with only a few papers presenting 3-D recon-
structions. For example, a 2-D Newton-type method using S-parameters for inversion has
been proposed and tested with a experimental SAM phantom [34]. A frequency-domain
beamforming imaging algorithm with Bessel function has been applied to qualitative
imaging of a realistic human head in 2-D [35]. This proposed method has been further
applied to 3-D head imaging using a wearable EM cap with 16 planar antennas [36] and
compared with 2-D results obtained by the polar sensitivity encoding method [37] that
works on the principle of encoding S-parameters. A GN-type algorithm using the open
source FreeFEM++ solver has been implemented for imaging a numerical head phantom,
which solves the inverse problem by considering five “sub-problems” of cross-sections in
parallel across five rings of the antenna array [38]. Recently, an FEM-based and FDTD-based
iterative algorithm have been implemented on a single GPU card with Tikhonov regular-
ization and a gradient-based inverse solver [4]. This work has performed 2-D and 3-D
reconstructions with both a numerical and an anthropomorphic mannequin head phantom,
using a matching medium with permittivity comparable to the brain material. 3-D imaging
has also been proposed in [39], which combined FEM with TSVD for linear inversion.

It is important to note that the complex structure of the head cannot be known a priori,
resulting in a highly non-linear and ill-posed EM inverse scattering problem. Assuming
that some prior information may be available, it is therefore important to investigate
performance under different imaging scenarios. To this end, we have recently applied
the DBIM with the fast iterative shrinkage/thresholding algorithm (FISTA) [40] to 2-D
numerical brain phantoms with limited prior information. Results showed that it is possible
to reconstruct the target inside a head phantom of known shape with several unknown
tissue layers [41].

This work investigates microwave head imaging further with the help a 3-D DBIM
algorithm. This allows to test performance for more realistic scenarios, where weak target
responses are captured by a limited number of antennas surrounding the head in a 3-D
array. To this end, we have implemented an in-house GPU-based 3-D FDTD forward solver,
which enables a computationally efficient 3-D implementation of our recently proposed
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DBIM-FISTA. By optimizing the FDTD code specifically for our application, we achieve
a more computationally efficient implementation than previous work [3,25] which used
GPU-based platform Acceleware [42] to perform MWT reconstructions of numerical breast
phantoms of varying tissue density.

We also simplify the 3-D inversion further by considering a scalar Green’s function,
which assumes a single electric field component transmission by our linearly polarized
antenna. We compare results from this approximation with the vectorial Green’s function
which considers all three electric field components inside the reconstruction domain. Im-
portantly, our results show, for the first time in microwave head imaging, that the scalar
3-D approximation leads to almost identical results with the vectorial implementation.
Our DBIM algorithm is also more efficient at each DBIM iteration, as the employed FISTA
algorithm uses an accelerated momentum which leads to faster convergence than CG-type
inverse solvers [43]. Moreover, as a shirnkage/thresholding algorithm, it helps to reduce
the chance of getting stuck into local minima [44].

The algorithm is tested on different reconstruction scenarios with the MRI-based Zubal
head phantom [45] and is validated with an experimental brain phantom. Beyond validat-
ing the algorithm, our study examines the benefits of imaging in 3-D by comparing with
2-D implementations for challenging target location and limited prior information of the
head’s structure. To this end, we use a cross-sectional axial slice from the 3-D brain model
and compare reconstructed images for this slice using the 2-D and 3-D algorithm.

The remainder of the paper is organized as follows: In Section 2, we review our
recently proposed DBIM-FISTA algorithm [40] for reconstructing the spatial distribution
of dielectric properties inside the region of interest. We also presents the algorithm’s
implementation in 3-D with our in-house, GPU-based FDTD forward solver. It also details
the experimental head phantom and the different head models based on the Zubal head
phantom used to test our algorithm. Reconstruction results for the numerical models and
experimental phantom are presented in Section 3, followed by discussion in Section 4.

2. Materials and Methods
2.1. The DBIM-FISTA Algorithm

The DBIM can solve nonlinear EM inverse scattering problems iteratively to recon-
struct the spatial distribution of dielectric properties within a region V [25]. It is based
on approximating the non-linear integral equation which describes the relationship of the
electric field with the continuous spatial distribution of dielectric properties via the Born
approximation. The non-linear integral equation of the fields scattered by the object to be
imaged for each transmitter-receiver (TR) pair can be written as,

Ēs(rn, rm) = Ēt(rn, rm)− Ēb(rn, rm) = ω2µ0ε0

∫
V

Ḡb(rn, r)Ēt(r, rm)δε(r)dr, (1)

where Ēt, Ēs, Ēb are the total, scattered and background vector electric fields, respectively.
The total field is measured at each antenna, but is unknown inside region V, and is
approximated by Eb under the Born approximation. The vectors rm and rn denote the
transmitting and receiving antenna locations, ω is the angular frequency, µ0 and ε0 are
the permeability and permittivity of free space, and Ḡb is the dyadic Green’s function for
the background medium. The difference δε between the relative complex permittivities of
reconstruction ε(r) and background εb(r) is defined as

δε(r) = εr(r)− εb(r). (2)

Assuming an equal discretization step ∆h for each dimension and constant permittivity
inside each voxel, (1) can be written as a discrete equation as,

Ēs(rn, rm) = k2
0∆h3 ∑

r∈V
Ḡb(rn, r)Ēb(r, rm)δε(r), (3)
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where

Ēs(rn, rm) =

Ex
s (rn, rm)

Ey
s (rn, rm)

Ez
s (rn, rm)

, Ēb(r, rm) =

Ex(r, rm)
Ey(r, rm)
Ez(r, rm)

, (4)

with Ex, Ey, Ez representing the x-, y-, z-direction fields of the background field Ēb respec-
tively, and k0 is the free-space wavenumber.

The relation between the background field Ēb and the Green’s function Ḡb due to a
source with current density J̄0 at r0 holds as [46],

Ēb(r, r0) = −jωµ0

∫
V

J̄0(r′) · Ḡb(r′, r)dr′Ex(r, r0)
Ey(r, r0)
Ez(r, r0)

 = −jωµ0

∫
V

Jx(r′)
Jy(r′)
Jz(r′)

 ·
Gxx(r′, r), Gxy(r′, r), Gxz(r′, r)

Gyx(r′, r), Gyy(r′, r), Gyz(r′, r)
Gzx(r′, r), Gzy(r′, r), Gzz(r′, r)

dr′.
(5)

where Jx, Jy and Jz are the x-, y- and z-components of the source current density. When an
antenna due to a single polarization point source current Iz (or Ix or Iy) inside a voxel with
length ∆h is used,

Ji(r) = Ii∆hδ(r) and Ḡb = {Gij}, (6)

where i, j = x, y or z, Ii is the transmitting current at the antenna, and δ(r) is the Dirac delta
function. In this case, the background dyadic Green’s function is linked to the background
electric field as [25,47],

Ḡb(r0, r) =
j

ω0µ0∆h


1
Ix

Ex(r, r0)
1
Ix

Ey(r, r0)
1
Ix

Ez(r, r0)
1
Iy

Ex(r, r0)
1
Iy

Ey(r, r0)
1
Iy

Ez(r, r0)
1
Iz

Ex(r, r0)
1
Iz

Ey(r, r0)
1
Iz

Ez(r, r0)

. (7)

Note that the current terms in (7) correspond to excitation currents for the transmitting
antennas. Hence, only the last row of the matrix is non-zero for a z-polarized antenna,
leading to a Green’s function that is reduced to [25,47],

Ḡb(r0, r) =
j

ω0µ0∆h

 0 0 0
0 0 0

1
Iz

Ex(r, r0)
1
Iz

Ey(r, r0)
1
Iz

Ez(r, r0)

. (8)

Using (8), the vector product of Ḡb and Ēb in (3) is computed as,

Ḡb(rn, r)Ēb(r, rm) =
j

ω0µ0 Iz∆h

 0
0

∑i=x,y,z Ei(r, rn)Ei(r, rm)

. (9)

As our antenna records the z-component of the electric field, a scalar approximation
of the scattered field

Ēs = Ēs · ẑ = Es
z (10)

in the LHS of (3) can be used [25,47,48]. Thus (3) is further reduced to a scalar equation as,

Es
z = k2

0∆h3 ∑
r∈V

[Ḡb(rn, r)Ēb(r, rm)δε(r)] · ẑ, (11)

where the z-component of product (9) is computed as,

Ḡz
b(rn, r)Ēb(r, rm) =

j
ω0µ0 Iz∆h ∑

i=x,y,z
Ei(r, rn)Ei(r, rm) (12)
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and
Ḡz

b(rn, r) =
j

ω0µ0∆hIz

[
Ex(r, rn) Ey(r, rn) Ez(r, rn)

]
. (13)

If we assume that the cross-products of x- and y-components are negligible [25] when
a z-polarized antenna is used, we can simplify the Green’s function further to account only
for the z-directed components as

Gb(rn, r) =
j

ω0µ0 Iz∆h
Ez(r, rn). (14)

We must emphasize that the simplification of assuming a z-polarized source is only
done by our imaging algorithm, and is not used to generate the data in CST, which
models the exact antenna used in our experiments. Moreover, the assumption that only
the z-component of the Green’s function is non-zero is employed only in the inversion
of the linear matrix at each DBIM iteration. The 3D FDTD forward solver used by the
imaging algorithm can calculate all three field components. This allows comparing the
z-only approximation of the Green’s function with the vector formulation in (13). We have
compared results from these two formulations for all our imaging scenarios and concluded
that the scalar approximation produced results of similar quality. More details on this
important contribution of this work are presented in Section 3.

By substituting the Green’s function in (3), the ill-posed linear system is built as,

b = Aδε, (15)

where A = {A(p, q)} is an M× N matrix (M� N), with M transmit-receive pairs and N
voxels of the reconstruction region V,

A(p, q) = k2
0∆h3Ḡb(rn, q)Ēb(q, rm), (16)

p is the p-th TR pair (rn, rm)p, q is the q-th voxel inside region V, and b = {Es(p)} is a
M× 1 vector of the scattered fields. The computational complexity of (16) using the dyadic
Green’s function is O(M× 9N), while the computational complexity further reduced to
O(M × 3N) and O(M × N) respectively when using (13) and (14). At each iteration K,
the forward solver (FDTD for our implementation) is run first to obtain the background
data and then used to build (15), which is solved by the inverse solver FISTA. Finally,
the background profile is updated by

εK+1
b (r) = εK

b (r) + δε(r) (17)

and the DBIM continues to next iteration K + 1.
We use a single-pole Debye model to simulate the frequency-dependent materials in

FDTD as,

εr(ω) = ε∞ +
∆ε

1 + jωτ
+

σs

jωε0
, (18)

where ε∞, ∆ε, τ and σs are the parameters of the Debye model. Thus (15) is constructed as,

(A< + jA
=
)(δε∞ +

δ∆ε

1 + jωτ
+

δσs

jωε0
) = b< + jb=, (19)

where < and = represents the real and imaginary part respectively and

A = A< + jA=. (20)
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As we only consider real valued computations, the following linear system is built as,



b<(1)
b=(1)
b<(2)
b=(2)

...
b<(M)
b=(M)


=



Ā<ε∞(1), Ā<∆ε(1), Ā<σs(1)
Ā=ε∞(1), Ā=∆ε(1), Ā=σs(1)
Ā<ε∞(2), Ā<∆ε(2), Ā<σs(2)
Ā=ε∞(2), Ā=∆ε(2), Ā=σs(2)

. . . , . . . , . . .
Ā<ε∞(M), Ā<∆ε(M), Ā<σs(M)
Ā=ε∞(M), Ā=∆ε(M), Ā=σs(M)





δε∞(1)
δε∞(2)

. . .
δε∞(N)
δ∆ε(1)
δ∆ε(2)

. . .
δ∆ε(N)
δσs(1)
δσs(2)

. . .
δσs(N)



, (21)

where

Ā<ε∞ = A<, Ā=ε∞ = A=, Ā<∆ε =
A< + ωτA=

1 + ω2τ2 , Ā=∆ε =
A= −ωτA<

1 + ω2τ2 , Ā<σs =
A=

ωε0
, Ā=σs =

−A<

ωε0
. (22)

We also use the convolutional perfectly matched layer (CPML) absorbing boundary
condition to terminate the FDTD computational domain.

A minimization problem with a regularization term is considered by FISTA as the
following steps when l1 norm is chosen,

F(x) =
1
2
‖Ax− b‖2

2 + λ‖x‖1 (23)

where λ is a regularization parameter. Thus the structure of FISTA is constructed as [43],

xk = pLk (yk) = ψ

(
yk −

1
Lk

AT(Ayk − b)
)

,

yk+1 = xk +
tk − 1
tk+1

(xk − xk−1)

(24)

where

t0 = 1 and tk+1 =
1 +

√
1 + 4t2

k

2
, (25)

ψ is the soft thresholding function

ψ(x) = sign(x)|x− λ|, (26)

yk is the solution at the k–th iteration. Lk is a non-negative parameter which is selected
based on the following strategy: Find the smallest non-negative integers ik with

Lk = ηik Lk−1 and L0 = 1, (27)

such that
F(pLk (yk)) ≤ QLk ((pLk (yk), yk), (28)

where

η > 1 and QL(x, y) =
1
2
‖Ay− b‖2

2 + 〈x− y, ATAy− b〉+ 1
2
‖x− y‖2

2 + λ‖x‖1. (29)

The computational complexity for FISTA is O(kMN) with a higher order convergence
rate O( 1

k2 ) compared with the traditional CG-type algorithm. The improvement is caused
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by the use of the accelerated momentum tk, which also reduces the chance of getting stuck
into a local minimum when combined with a regularization term [44].

Our implementation selects the initial value of x to be 0 and the regularization param-
eter as

λ = δ‖ATb‖∞, (30)

where δ is a factor with
0 < δ < 1. (31)

The stopping criterion is based on the relative error between current F(xk) and previ-
ous F(xk−1), defined as

eopt =
|F(xk)− F(xk−1)|

F(xk−1)
. (32)

FISTA stops when the relative error eopt becomes smaller than a preset value, usually
chosen between 10−4 and 10−2.

2.2. Implementation of the DBIM-FISTA with a GPU-Based FDTD Forward Solver

We have used CUDA toolkit to accelerate our FDTD forward solver in GPU simi-
lar to [49], which focused however on modeling RF wave interactions in high-field MRI.
The FDTD algorithm consists of electric and magnetic field updates, and each can be viewed
as a kernel on GPU. The kernel, executed as a grid in GPU, can be divided into multiple
blocks of threads, whose number can be adjusted based on the GPU platform. We can
therefore increase the computational efficiency significantly by computing the blocks of
threads simultaneously. Our algorithm is designed to use the high performance of GPU
without changing the MATLAB based DBIM code, to take advantage of MATLAB’s capa-
bility for matrix computing. To this end, we have implemented the 3-D FDTD algorithm in
C++ with CUDA and then incorporated it with MEX functions in MATLAB, which is also
used to implement the FISTA inverse solver. The environment of our implementation is
MATLAB 2020 (Mathworks Inc., Natick, MA, USA), CUDA 10.2 (Nvidia Co., Santa Clara,
CA, USA) and Visual Studio 2015 (Microsoft Co., Redmond, WA, USA) with Intelr Xeonr

CPU E5-2640 v3 @ 2.60 GHz and GPU Tesla K20c with 5 GB memory.
The maximum number of threads for each block is 1024 and we use a 2-D block with

size 32× 32 = 1024 to make full use of each block. The number of threads for each block
should be set to a multiple of 32 as the working unit in the GPU is a warp, which is a set of
32 threads [50]. Similarly, we use a 2-D grid GPU with size Imax

32 ×
Jmax

32 for each kernel, Ei
(i = x, y or z) for example, and the loop inside each kernel for updating the fields is in the
following structure shown in Algorithm 1, where Imax, Jmax and Kmax represent number
of voxels for the x, y, and z dimension, respectively.

Algorithm 1 Kernel of updating electric field

ti← blockIdx.x ∗ blockDim.x + threadIdx.x
tj← blockIdx.y ∗ blockDim.y + threadIdx.x
if ti < Imax and tj < Jmax then

for tk← 1 to Kmax do
Ei[ti + tj ∗ Imax + tk ∗ (Imax ∗ Jmax)]← UpdateEi

end for
end if

The GPU Tesla K20c has 13 streaming processors (SMs) and for each SM there are at
most 2048 threads. Thus 13 × 2048 threads can be run simultaneously. The flowchart of
the 3-D FDTD algorithm is shown in Figure 1. To reduce computational times, most of the
FDTD functions are run on GPU (kernels), including the source update.
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Figure 1. Flowchart of the GPU-based FDTD algoritm.

At each DBIM iteration, the FDTD variables are first allocated space on GPU after
initialization by MEX functions. Thus all FDTD-related variables are on GPU memory.
Then the FDTD part on GPU starts to simulate the wave propagation for each transmitter
antenna, and the calculated data to be used in DBIM is transferred back to MATLAB via
MEX functions, which can be used directly by the MATLAB code. Finally the ill-conditioned
linear system is built by (3) and solved by FISTA to obtain the reconstructed values.

The discretization size for FDTD is defined as

∆h =
λ f

nd
, (33)

where λ f is the wavelength and nd is the discretization step. To ensure accuracy and reduce
numerical dispersion, nd > 10 is required. While ∆h is 30 mm in air, its value inside the
brain is defined by a much smaller wavelength (λ f = 300√

εr
), thus requiring a greater nd

and a smaller ∆h. We have therefore selected a cubic grid voxel size of 2 mm for each
dimension in all our 2-D and 3-D FDTD simulations. This value can balance accuracy and
computational burden. For example, using a 2 mm vs. a 1 mm cubic voxel side results
in field values with a mean relative difference of 10−3 but requires an 8 times bigger grid.
The time step ∆t defined as

∆t =
∆h
2c

, (34)

where c is the speed of EM wave, will also increase for a higher resolution model and thus
lead to more iterations. In our simulations, the iteration number ranges between 1000–2000.

To compare computational burden vs. grid resolution, we calculated run times for a
two antenna system using 2 mm, 1.5 mm and 1 mm size cubic voxels. These are acceptable
resolutions for a grid with physical volume of about 300 mm × 300 mm × 200 mm, which
is required for our inverse problem with the numerical head phantom. Resolutions of
0.5 mm or lower exceed the GPU’s memory requirements, and they also increase errors
and instabilities for the inverse model [51]. The size and run times corresponding to
these different grids when 16 antennas are used as transmitters and receivers are shown
in Table 1.
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Table 1. Average running time for each antenna.

Resolution Grid Size Time

2 mm 150× 150× 100 31 s
1.5 mm 225× 225× 150 59 s
1 mm 300× 300× 200 176 s

As this implementation is specific for the inverse problem at hand, it is more than 30%
faster than our previously used codes implemented with commercial software package
Acceleware, which is designed for general GPU-based FDTD simulations. Moreover,
the mean absolute error of the fields received by each antenna calculated by Acceleware
and our new code is less than 10−8, which shows our implementation is as accurate
as Acceleware’s. The running time for FISTA for the above-mentioned case with 2 mm
resolution where the size of A is 240 × 449,949 at each DBIM iteration, is around 5–15 s
depending on the number of FISTA iterations. This number typically ranges from 20–100,
i.e., for each iteration the average running time is around 0.2 s.

As noted earlier, we have also employed the 2-D DBIM-FISTA algorithm [40] in this
paper to compare performance with the 3-D implementation. The transverse magnetic (TM)
mode of the EM wave is considered for the 2-D problem. The 2-D code is implemented
in MATLAB without the need of GPU acceleration for the FDTD forward model, which
requires approximately 1 s for each of the eight transmitting antennas and a total of 10–20 s
for each DBIM iteration.

2.3. Numerical and Experimental Phantoms

The original MRI-derived Zubal head phantom [45] comprises 256 × 256 × 128 voxels
with size of 1.1 mm × 1.1 mm × 1.4 mm. First, we imported the phantom into CST
Microwave Studio to obtain the numerical “measured” data (S-parameters) of the full-wave
3-D interaction of the experimental antenna array with the phantom, which is used to test
the 3-D algorithm. We then resized the model to fit the FDTD’s grid of 2 mm for each side.
We have also transformed the original Zubal head model from dozens of materials into an
eight-material head model. The permittivity of the materials used in CST was obtained from
the IT’IS foundation database [52]. These data were also used to develop single-pole Debye
models for our FDTD code by curve fitting. As these two approaches are not identical, there
are discrepancies between the CST and FDTD Debye models.

The 3-D structure of the Zubal head phantoms in CST is shown in Figure 2.

(a) (b) (c) (d)

Figure 2. Views of the Zubal phantom in CST: (a) 3-D side-view, (b) cross-sectional top-down view,
(c) 3-D view with blood target inserted, (d) cross-sectional slice used in the 2-D experiments (93th
slice of the original model, where the center of the target is placed). These phantoms are used for the
“Case I” imaging scenario described in Section 3.

As for the 2-D cases, a slice of the Zubal head phantom inside the brain is used in FDTD
as shown in Figure 2d. The model includes eight layers with tissue types, color codes and
respective Debye parameters (for our FDTD models) shown in Table 2.
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Table 2. Debye parameters for the Zubal head phantom.

Tissue Type and Respective
Color in Figure 2d

Permittivity at Infinite
Frequency ε∞

Debye Dispersion ∆ε Conductivity σs (S/m)

skin (red) 37.65 11.36 0.62
fat (orange) 8.61 2.92 0.08
bone (blue) 8.48 4.38 0.08

white matter (green) 35.89 6.73 0.45
gray matter (brown) 40.03 14.47 0.72

blood (black) 44.67 18.02 1.32
CSF (yellow) 66.08 4.61 2.34
dura (pink) 39.89 6.00 0.85

The head models are surrounded by 90–10% glycerol-water mixture, which we have
used previously as immersion liquid in our recent experiment work [53,54]. The permit-
tivity of the glycerol-water mixture is εr ≈ 15.9− 14.2j at 1.0 GHz. The Debye parameters
ε∞ = 6.566, ∆ε = 16.86 and σs = 0.3231. The relaxation time τ is fixed as 0.14288 ns for all
the materials.

Starting from this head model, we have studied various different imaging scenarios,
which will be discussed in next section. Moreover, we have used a simplified experimental
head phantom [54] shown in Figure 3 to validate our algorithm with more realistic data.

(a) (b)

(c) (d) (e)

Figure 3. Photos of the experimental head phantom (a,b), antenna (c) and system (d,e) used to
validate the 3-D DBIM-FISTA algorithm. Details of the setup and experiment can be found in [54].

The phantom is made of a 3D-printed plastic mould and is filled with an “average
brain tissue” material with εr ≈ 41.6− 5.9j at 1.0 GHz. We should note that the permittivity
of the brain tissue differs at different positions, i.e., the permittivity near the different
surface, in the inner parts or near the bottom has different values [54]. The brain phantom
is immersed in the 90–10% glycerol-water mixture inside an imaging tank, which is made
of acrylic and is surrounded by absorbing material ECCOSORB MCS covered by a metallic
shield. A printed monopole triangular patch antenna is used, as shown in Figure 3c, which
operates well in the frequency range 0.5–2 GHz [55]. An eight-antenna array inside the tank
captures MWT data with the help of an eight-port VNA system embedded in the Keysight
M9019A PXIe Chassis connected to a desktop, shown in Figure 3d,e. Further details of the
experimental system and the process of making the phantom can be found in [54].
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The number of required antennas for a 2-D microwave imaging problem has been
defined in [56] using the approximation,

M ≈ 2k0α, (35)

where α is the radius of the investigated region, while for 3-D problems the required number
is slightly larger. This requirement may be difficult to satisfy in practice due to experimental
limitations; for example, our experimental setup uses eight antenna hosted by an eight-port
VNA system, and the same setup is used for each antenna ring in our CST scenarios. We
note that the antennas are modelled as point sources in our algorithms, and the received
signals by the antennas are normalized with respect to the source. The calibrated scattered
fields are a standard total field calibration procedure [57] as,

Es
cali(i, j) =

Eb(i, j)
Sb(i, j)

(
St(i, j)− Sb(i, j)

)
(36)

where Sb and St represent the S-parameters for the background case and for the unknown
case to be imaged, as measured experimentally or modeled in CST. In (36), Eb represents
the background incident signals calculated by the FDTD forward model, and (i, j) refers to
the transmitter-receiver pair.

3. Results
3.1. Validation of the Proposed DBIM-FISTA Algorithm

This subsection presents results from simple imaging scenarios where only a stroke-
like target is unknown, with the aim to validate our 3-D DBIM-FISTA implementation. We
consider both CST-calculated and experimental data and compare our results with 2-D
scenarios where the target is placed at the same height as the antenna ring used by the 2-D
algorithm. The 2-D DBIM-FISTA can perform well for these scenarios, as it deals with a
detectable scattered signal and an inverse problem of much fewer unknowns. Although the
number of iterations required for convergence will be different for each 2-D and 3-D
imaging scenario, we have selected a fixed number of 20 iterations for this comparison.
To study the impact of keeping the number of iterations fixed, we have compared results
with a much greater number of iterations for “Case I” presented in Section 3.1.1. We note
that all of our reconstructions estimate 3D volume distributions, but we only show the 2D
axial slice results, as we have limited array coverage along the z-axis, and we also want to
compare directly 2D and 3D simulations along the axial planes.

The true dielectric constant values <(εr) of the numerical and experimental phantoms
are shown in Figure 4.

The root mean square error (RMSE) of the xy-slice reconstruction contrast is used to
compare the 2-D and 3-D reconstructions, defined as

RMSE =

√√√√ 1
Nr

Nr

∑
p=1

e2
ε (p), (37)

where Nr is the number of voxels inside the reconstruction region, p is the index of the
voxel, and eε is the difference between the real part of relative permittivity of reconstruction
εr(p) and true values of εgt(p), i.e.,

eε = εr(p)− εgt(p). (38)

The max error of the xy-slice reconstruction contrast is defined as

emax = max|eε(p)|, (39)
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and the relative error is defined as the relative norm between the residual errors at the K–th
and first DBIM iteration,

RE =
‖bK‖2

‖b1‖2
. (40)

(a) (b) (c)

(d) (e) (f)

Figure 4. Dielectric constant distribution <(εr) for our validation models. Top: (a) y-z slice, (b) x-z
slice, and (c) x-y slice for the numerical head model; Bottom: (d) y-z slice, (e) x-z slice, and (f) x-y
slice for the experimental phantom.

3.1.1. Reconstructions with CST Data

“Case I” considers the numerical model in Figure 2 immersed inside “infinite” 90–10%
glycerol-water mixture. A cylindrical blood target centered at Otg = (20 mm, 20 mm) with
εr = 61.1− 28.4j, radius ρ = 15 mm and height h = 30 mm is inserted into the Zubal head
phantom. Eight antennas are placed in an elliptical array configuration with semi-major
and semi-minor axes equal to 100 mm and 85 mm, respectively. Two CST simulations are
performed to obtain the scattered field data, with and without the target, to which we refer
as WT and NT, respectively. The initial guess of FDTD model for reconstruction is chosen
to be similar to the NT case CST model. The reconstruction area inside the brain is a cubical
volume with height along the Z-axis between [10, 70] mm for the 3-D model.

The 3-D reconstruction results using the simplified Green’s function are shown in
Figure 5, where the top shows the reconstructed relative permittivity <(εr) and the bottom
shows the contrast <(δε) due to the target.

We have also performed reconstructions using the vectorial Green’s function (13),
and the reconstruction results of <(δε) are shown in Figure 6 with errors RMSE = 3.65,
emax = 20.42, RE = 0.27, which are close to the reconstructed values using the simplified
Green’s function shown in the first row of Table 3.
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(a) (b) (c)

(d) (e) (f)

Figure 5. 3-D reconstructions with simplified Green’s functions for “Case I” of Figure 2 at 1.0 GHz.
(a–c) Relative permittivity <(εr), and (d–f) contrast <(δε) for the y-z, x-z, and x-y slices, respectively.
A cylindrical eight-antenna array centered at the target height is used to produce the data.

(a) (b) (c)

Figure 6. 3-D reconstructions, same as Figure 5 but with vectorial Green’s function in (13), for “Case
I” of Figure 2 at 1.0 GHz. (a–c) Relative permittivity <(εr) for the y-z, x-z, and x-y slices, respectively.

Table 3. Reconstruction errors for the cases considered in Section 3.1.1.

Simulation
Name Iteration RMSE emax RE

Case I, 3-D 20 3.39 19.38 0.28
Case I, 2-D 20 4.11 20.46 0.72
Case I, 3-D 120 3.21 19.42 0.01
Case I, 2-D 200 3.71 19.03 0.07
Exp, 3-D 20 9.73 48.87 0.17
Exp, 2-D 20 7.31 36.23 0.73

This comparison suggests that the z-only approximation for the Green’s function does
not affect the accuracy of the results. We thus argue that this formulation is sufficient to
achieve similar accuracy with the more complete vector formulation of (13). To re-enforce
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this argument, we have performed another comparison of the two formulations for a more
challenging imaging scenario in Section 3.2.

The target is also detected in 2-D as shown in Figure 7, but the reconstructed values
are lower.

(a) (b)

Figure 7. 2-D reconstructions of: (a) relative permittivity <(εr) and, (b) contrast <(δε) for “Case I” of
Figure 2 at 1.0 GHz.

Inaccuracies in these 2-D and 3-D results can be attributed to the complex brain
structure which leads to a highly non-linear scattering problem, and to the mismatch
between the CST model producing the data and the FDTD forward model of our DBIM-
FISTA algorithm. For example, our FDTD solver models the antennas as point sources
to avoid the additional computational complexity and much finer resolution required for
modeling the full antenna structure, which leads to a model mismatch from the full antenna
CST model. Moreover, the models in FDTD and CST have discrepancies in the Debye
material properties due to their different computational environments. This includes errors
in the head boundary between the CST (or experimental model) and the FDTD solver, due
to discretization errors and the coarser resolution used in FDTD.

To assess whether a fixed number of 20 iterations for both 2-D and 3-D algorithms
leads to fair comparison, we have run Case I with a large number of iterations which can
ensure that the residual error RE converges to almost a fixed value (see plots (a) and (b) in
Figure 8). The numbers of iterations and errors for these cases are given in Table 3, and the
resulting images are shown in Figure 8.

Relative to the reconstruction results with 20 DBIM iterations, reconstructions after a
much greater number of iterations (120 in 3-D, 200 in 2-D) lead to rather modest reductions
in the errors in Table 3, despite a significant decrease in the data residual RE. Importantly,
the ratio between the 3-D and 2-D RMSE errors for the increased iterations is similar to the
20 iterations case, thereby allowing us to draw conclusions for 2-D vs. 3-D results using this
limited fixed number. These observations and the results in Figure 8 suggest that using a
fixed number of 20 iterations is sufficient for our comparison, although it does not represent
complete convergence of the algorithms.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Reconstructions of “Case I” when RE converges: 2-D with 200 iterations and 3-D with
120 iterations. (a,b) Residual error plot for 2-D and 3-D, respectively. (c) Contrast <(δε) for 2-D
reconstruction. (d–f) Contrast <(δε) for the y-z, x-z, and x-y slices of 3-D reconstruction, respectively.

3.1.2. Reconstructions with Experimental Data

We conducted an experiment with the antenna array surrounding the lower half of the
phantom shown in Figure 3. We inserted a cylindrical blood target with radius ρ = 15 mm
and permittivity εr ≈ 67.3− 9.3j at 1.0 GHz into the phantom, centered at Otg = (−30 mm,
30 mm) along the horizontal axes. Reconstructions in 3-D and for the 2-D slice defined
by the antenna centers are shown in Figure 9, where the Debye parameters of the brain
material ε∞ = 20, ∆ε = 20 and σs = 0.147 are used.

(a) (b)

(c) (d)

Figure 9. Reconstructions of <(εr) for the experimental data at 1.0 GHz in 3-D: (a) y-z slice, (b) x-z
slice, and (c) x-y slice, and in 2-D (d).

The 2-D reconstruction has less artifacts than the 3-D image along the same x-y slice,
as it solves an inverse problem with a lot fewer unknowns. The y-z and x-z slices from the
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3-D reconstructions show that the bottom part of the cylindrical target is detected more
clearly than the upper half, as the eight-antenna ring is placed in the lower half. These
images also suggest that reflections from the plastic container have created artifacts in the
3-D reconstruction images. Overall, both 2-D and 3-D algorithms have detected the target
at the right position, albeit with artifacts that are more pronounced in 3-D for the axial
slice. We have also performed reconstructions when the antenna ring is placed at different
heights, and the results become worse and even fail to detect the target when the antenna
ring is near the upper part of the head phantom due to that the curvature of the surface
reflects signals into the air which are not captured by the antenna ring.

3.2. Imaging Performance with Limited Data

This subsection focuses on reconstructions of more challenging imaging scenarios.
These include imaging with limited prior information, as well as detecting a target posi-
tioned in-between the antenna rings of a 3-D array. We compare 2-D and 3-D reconstructions
for these cases to examine possible benefits of using the 3-D algorithm. Similar to the previ-
ous results, we have performed twenty DBIM iterations in all our reconstructions below.

3.2.1. Reconstructions with Limited Prior Information

To investigate a scenario of limited prior information where only the boundary of the
head is known, the model of Figure 2 was filled with white matter only for the NT case.
Moreover, taking into account that the dielectric properties of gray and white matter are
not very different (see Table 2), gray matter is replaced with white matter in Figure 2 to
reduce the model complexity [41]. The resulting head model is then used in two WT cases
(WT1 and WT2), “Case II.1” and “Case II.2”, which differ by the presence or absence of the
CSF layer with εr ≈ 68.4− 44.9j. Cross-sectional views of the 3-D models for these cases
are shown in Figure 10 while the true values of <(εr) is shown in Figure 11.

3-D and 2-D reconstruction results are shown in Figures 12 and 13, respectively,
with errors shown in Table 4.

Table 4. Reconstruction errors for the cases considered in Section 3.2.1.

Case No. RMSE emax RE

Case II.1, 3-D 16.62 46.71 0.19
Case II.2, 3-D 18.75 62.01 0.51
Case II.1, 2-D 15.51 22.27 0.16
Case II.2, 2-D 18.01 21.68 0.50

(a) (b) (c)

Figure 10. Cross-sectional view of models for “Case II.1” and “Case II.2”: (a) the NT model for
both cases; (b) WT1 model for “Case II.1” where gray matter and CSF are replaced by white matter;
(c) WT2 model for “Case II.2” where gray matter only is replaced by white matter.
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(a) (b) (c)

(d) (e) (f)

Figure 11. True values of <(εr) of Case II.1 and II.2 at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y
slice of Case II.1. (d) y-z slice, (e) x-z slice, and (f) x-y slice of Case II.2.

The target is detected by both 2-D and 3-D algorithms, but there are significant image
artifacts due to the skin, fat, and bone tissue regions which are not taken into account
in the inverse model. These image artifacts are comparable in 2-D and 3-D, while the
contrast in the estimated dielectric properties near the target is quite higher in the 3-D
reconstructions. The RMSEs of both algorithms are similar but the 3-D has much larger
emax values, which suggests that the 3-D algorithm may be more sensitive to limited prior
information. Comparing the results of Cases II.1 and II.2, it can be concluded that not
including a thin layer with high contrast such as CSF in the inverse model’s initial guess
does not have a significant impact in the reconstructions.

(a) (b) (c)

(d) (e) (f)

Figure 12. 3-D reconstructions of <(εr) at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y slice for Case
II.1; (d) y-z slice, (e) x-z slice, and (f) x-y slice for Case II.2.
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(a) (b)

Figure 13. 2-D reconstructions of <(εr) at 1.0 GHz: (a) Case II.1, and (b) Case II.2. A cylindrical
eight-antenna array centered at the target height is used to produce the data.

3.2.2. Reconstructions of Small Target at an Offset Height Using a Headband

We consider another scenario in which a small target is placed in-between a two-ring
array surrounding the model of Figure 2. The head phantom comprises white matter
and includes a target at the same x-y position as previously, but with a smaller radius
ρ = 10 mm and height h = 20 mm for the WT case. As the immersion liquid cannot extend
infinitely in a practical scenario, we consider a headband of finite dimensions filled with the
immersion liquid and surrounded by air. The setup is shown in Figure 14. The two rings
are placed with an offset in the x-y plane, to obtain information from more angles and
reduce coupling. The target covers an area between the x-y planes of the two rings only,
as shown in Figure 14a.

(a) (b) (c)

Figure 14. (a) Top and (b,c) side views of the setup used in Section 3.2. A headband is placed at the
top of the head phantom, and sixteen antennas are placed in a two ring array inside the headband,
with 8 antennas for each ring.

We have considered different ways of applying our 2-D imaging algorithm to the
data by the two-ring array by using: (1) the bottom ring data, (2) the top ring data, and
(3) combined data from both rings as if they were on the same plane, effectively creating a
sixteen-antenna array for the slice reconstructed in 2-D, which was selected as the slice of
the target center.

The head model for the cases considered in this subsection (Cases III.1, 2 and 3) is
shown in Figure 15, while the headband used in each case is different.

We note that the “homogeneous white-matter” head model of Figure 15 is unrealistic,
but it was selected to focus on comparing 3-D with 2-D results of more realistic arrays and
smaller targets. To compare the errors of the target domain more clearly, we have also
defined an RMSE in the selected target slice as RMSE–T.

“Case III.1” considers a headband of ρ = 130 mm radius and h = 110 mm height filled
with the glycerol-water mixture. The antennas are very close to the air-liquid interface in all
directions (top/bottom/side) for this case, resulting in strong reflections from the interface.
The reflections can be taken into account by our 3-D FDTD model along all dimensions,
while the 2-D model can only model the x-y boundary. In both models, of course, the wave
reflections from the boundary will be different for the realistic CST model relative to its



Sensors 2022, 22, 2691 19 of 25

simplified version in FDTD, firstly because realistic antennas have been replaced by simple
point sources.

(a) (b) (c)

Figure 15. True values of <(εr) of Case III at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y slice.

Results from 3-D and 2-D reconstructions are shown in Figure 16.

(a) (b) (c)

(d) (e) (f)

Figure 16. 3-D (a–c) and 2-D (d–f) reconstructions of Case III.1 at 1.0 GHz: (a) y-z slice, (b) x-z
slice, and (c) x-y slice of 3-D reconstructions. 2-D slice reconstructions (d) bottom ring, (e) top ring,
and (f) both rings. The headband of Figure 14 is used to obtain the data.

Despite including the interface in the 3-D model, the reconstructed images suffer from
strong artifacts near the interface, which suggest that the mismatch between the CST and
FDTD model is significant. The target is reconstructed to some extent, but it is difficult to
detect it with certainty. The 2-D reconstructions fail to detect the target completely regardless
of whether we use data from the top, bottom, or both rings. This is not surprising given that
the target is not aligned with any of these rings, and that the interface between air and the
glycerol-water immersion liquid cannot be fully modeled in 2-D.

To examine the impact of this interface and improve detection performance, “Case
III.2” considers the same headband as Case III.1, which is now surrounded by an additional
layer of absorbing material. The headband layers are as follows: glycerol-water mixture,
plastic, absorbing material (ECCOSORB MCS), and a metallic shield. Finally, “Case III.3”
uses a a larger size (ρ = 140 mm and h = 120 mm) headband with the same materials as
Case III.1. As with the absorbers in Case III.2, increasing the distance between the antennas
and the interface with air can reduce the resulting reflections.

Results from 3-D and 2-D reconstructions at 1.0 GHz are shown in Figures 17 and 18
for Case III.2. Note that we have limited the colorbar’s range of values in these images



Sensors 2022, 22, 2691 20 of 25

to increase the contrast. The 3-D reconstructions show that the target’s location and size
is detected accurately with the use of the absorbers. The 2-D results, however, fail to
distinguish the target from the noise.

(a) (b) (c)

Figure 17. 3-D reconstructions of <(εr) for Case III.2 at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y
slice. The headband of Figure 14 (with the addition of absorbing material) is used to obtain the data.

(a) (b) (c)

Figure 18. 2-D Reconstructions of <(εr) of Case III.2 for the x-y slice at 1.0 GHz using data from the:
(a) bottom ring, (b) top ring, and (c) both rings. The headband of Figure 14 (with the addition of
absorbing material) is used to obtain the data.

Similarly, 3-D and 2-D reconstruction results for Case III.3 are presented in Figure 19
and Figure 20. Detection is improved from Case III.1, as the distance from the interface
has been increased, but is less accurate than Case III.2 where the absorbing material was
added. Similar to the other two cases, the 2-D imaging results in Figure 20 suggest that the
algorithm fails to detect the target in all cases.

(a) (b) (c)

Figure 19. 3-D reconstructions of <(εr) for Case III.3 at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y
slice. The headband of Figure 14 (with an increased distance between the array and the interface with
air) is used to obtain the data.

The RMSE, RMSE–T, emax and RE of Case III.1, 2 and 3 are shown in Table 5, where
the 3-D reconstructions have a lower RMSE–T for all the three cases.
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(a) (b) (c)

Figure 20. 2-D Reconstructions of <(εr) of Case III.3 for the x-y slice at 1.0 GHz using data from
the: (a) bottom ring, (b) top ring, and (c) both rings. The headband of Figure 14 (with an increased
distance between the array and the interface with air) is used to obtain the data.

Table 5. Reconstruction Errors for the cases considered in Section 3.2.2.

Case No. RMSE RMSE–T emax RE

III.1, 3-D 3.05 20.14 22.79 0.57
III.1, 2-D bot 2.44 21.35 21.49 0.71
III.1, 2-D top 2.43 21.27 21.40 0.69

III.1, 2-D both 2.59 21.40 21.48 0.75
III.2, 3-D 2.30 20.02 20.70 0.70

III.2, 2-D bot 2.44 21.49 21.44 0.70
III.2, 2-D top 2.41 21.23 21.15 0.70

III.2, 2-D both 2.40 21.25 20.92 0.72
III.3, 3-D 2.57 20.08 21.14 0.47

III.3, 2-D bot 2.43 21.17 21.59 0.70
III.3, 2-D top 2.43 21.36 21.40 0.70

III.3, 2-D both 2.59 21.40 21.48 1.49

Reconstructions of other cases with the vectorial Green’s function (13) have also been
performed and Case III.2 is shown in Figure 21. The relative errors are RMSE = 2.37,
RMSE− T = 20.89, emax = 21.08, RE = 0.62, which again shows similar reconstruction
quality with the simplified Green’s function even when the antenna array is placed at
an offset height. This comparison confirms that the simplified Green’s function does not
affect the 3-D reconstruction quality significantly, leading to equally accurate results for the
scenarios considered in this paper.

(a) (b) (c)

Figure 21. 3-D reconstructions of <(εr) for Case III.2 at 1.0 GHz: (a) y-z slice, (b) x-z slice, and (c) x-y
slice, same as Figure 17 but with vectorial Green’s functions in (13).

Finally, we note that we have also performed reconstructions for additional scenarios
related to Cases III.1–3, i.e., headbands with radii ρ = 135 and 140 mm, with and with-
out the absorbing layers. As expected, when the interface distance increases, detection
accuracy and reconstruction quality improves. Moreover, the absorbing materials improve
reconstructions further. Importantly, the 3-D imaging outperforms its 2-D counterpart in
all these cases.
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4. Discussion

We have developed and validated a computationally efficient 3-D DBIM algorithm
for microwave head imaging. Our DBIM implementation uses the FISTA solver for the
linear inverse problem, which has shown advantages over traditional CGLS solvers in
our previous work [58]. The 3-D DBIM-FISTA algorithm relies on an in-house 3-D FDTD
forward solver implemented on GPU, which is equally accurate but runs considerably faster
than previous implementations with commercial software Acceleware. Our implementation
combined this 3-D GPU-based FDTD solver with the inversion code on MATLAB via
MEX functions.

Inspired by microwave head imaging applications, we used CST-calculated as well
as experimental data to validate the 3-D DBIM-FISTA algorithm. We implemented a
simplified 3-D inverse algorithm that considers a scalar Green’s function for linearly
polarized antennas, such as the printed monopoles used by our system. Importantly, we
showed that this approximation does not lead to worse performance than a vectorial Green’s
function implementation for the considered head imaging scenarios. Our numerical studies
employed different numerical head models in CST based on the Zubal head phantom. Our
experimental study examined a simpler, homogeneous head model, with the purpose to
validate the 3-D implementation rather than examining more complex head models.

Our results showed that reconstructions are of similar quality to those produced by a 2-
D version of the algorithm for cases where the data processed by the 2-D imaging algorithm
is of sufficient quality. To show that this may not always be possible, we considered cases
where the target was not centered at the same transverse plane as the antenna ring and
reflections from the interface of a headband with air were significant. Comparison of 3-D
and 2-D reconstructions for these imaging scenarios showcased the advantages of imaging
in 3-D. Moreover, these cases also demonstrated that terminating the imaging headband
with absorbing material can improve drastically the 3-D array’s imaging performance.

Future work will focus further on reconstructions with experimental data inspired by
the outcomes of this study. In particular, using prior information to improve reconstruction
accuracy in realistic clinical settings requires further investigation. This prior information
is not only required for dealing with the complexity of the brain’s heterogeneous tissues,
but also to estimate accurately the head boundary, which constitutes the reconstruction
domain of our MWT approach. Moreover, the issue of patient movement should also
be investigated in clinical settings. Motion artefacts are an important issue in imaging
techniques which require long data acquisition times such as MRI, and a MWT system
must be designed to minimise their impact by ensuring very short data acquisition times.
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Abbreviations
The following abbreviations are used in this manuscript:

DBIM distorted Born iterative method
GPU graphic processing unit
3-D three-dimensional
2-D two-dimensional
MWT microwave tomography
MWI microwave imaging
FDTD finite difference time domain
EM electromagnetic
DDA discrete dipole approximation
GN Gauss-Newton
FEM finite element method
CSI contrast source inversion
VIE volume integral equation
TSVD truncated singular value decomposition
FISTA fast iterative shrinkage/thresholding algorithm
CG conjugate gradient
FFT fast Fourier transform
TR transmitter–receiver
CPML convolutional perfectly matched layer
RMSE root mean square error
RE residual error
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